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Using the method of canonical transforms, we explicitly find the similarity or kinematical symmetry group, 
all "separating" coordinates and invariant boundaries for a class of differential equations of the form 
[ao 2/oq2 +(3q%q+'Yq2 +oq+e%q+ ~ 1 u(q,t)=-i(%t)u(q,t),or of the form 
[a'(02/oq2 + iJ./q2) + (3'q %q + 'Y'q2] u(q,t) = -i(o/3t) u(q,t), for complex a, (3, .•. , 'Y'. The first 
case allows a six-parameter WSL(2,R) invariance group and the second allows a four-parameter O(2)'® 
SL (2, R) group. Any such differential equation has an invariant scalar product form which, in the case of 
the heat equation, appears to be new. The proposed method allows us to work with the group, rather than 
the algebra, and reduces all computation to the use of 2 X 2 matrices. 

I. INTRODUCTION 

A. In a recent series of papers1
-

3 we have dealt with 
realizations of Lie algebras in terms of second-order 
differential operators and their exponentiation to the 
group. In contradistinction with first-order differential 
realizations, which produce geometric transformations 
of the general form 

(1. 1) 

where Jl is a multiplier function, second-order differ
ential operators, when exponentiated, will in general 
lead to an integral transform 

f(q)..'I.. fg(q)=j dq'Kg(q,q')f(q'), (1. 2) 

where Kg(q, q') is an integral kernel. The action (1. 1) 
has been extensively treated4 since the times of Lie, 5 

while only recently 6, 7 have forms (1. 2) been subj ected 
to intensive study. In Refs. 1 and 2, we have worked 
with the groups SL(2,C) [the group of unimodular 2x2 
complex matrices] and the associated mappings (1. 2) as 
unitary transformations between Hilbert spaces, one of 
them being L 2(R) or L 2(R+) (Lebesgue square-integrable 
functions on the real line R or on the positive half-line 
R+), and the other one, a space of analytic functions over 
regions of the complex plane a la Bargmann. ij When the 
mapping (1. 2) belongs to the SL(2,R) subgroup (of uni
modular 2 x 2 real matrices), the "Bargmann" spaces 
collapse to ordinary L 2 spaces. We have called these 
mappings canonical transforms since they arose from 
the study of complex canonical transformations in quan
tum mechanics. They include as particular cases the 
transforms of Fourier, Laplace, Weierstrass, Barg
mann, Hankel, and Barut-Girardello. 

B. If H is a second-order differential operator in a 
variable q, element of a Lie algebra (which in this paper 
will be sl(2,R) or wsl(2,R)-semidirect sum of the Weyl 
and sl(2,R) algebras), the solution of the parabolic dif
ferential equation 

()Hu(q, t)= - i :t U(q, t), (1. 3) 

where e is an in general complex constant, can be ex
pressed as a canonical transform of the initial condition 
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u(q);;; u(q, 0), 

u(q, t) = exp(it()H) u(q). (1.4) 

Now we can subject u(q) to a general integral transform 
(1. 2) to a ug(q), and the corresponding ug{q, t) will still 
be a solution of (1. 3) and, in fact, a geometric trans
form of u(q, t). This will be the group of symmetries, 
kinematical 9,10 or similarity 11,12 group of the differ
ential equation (1. 3). We can further look for the in
variant lines (boundaries) under go in the q-t plane, 
v(q, t) and thus use the generator of the said transforma
tion to separate Eq. (1. 3) into two ordinary differential 
equations, one in v and one in t. The solution of (1. 3) 
will then have the .form of a general superposition of 
separable solutions, 13-17 

us(v(q, t), t) = exp[iS(v, t)] Vs(v) T s(t), (1. 5) 

where S (v, t) is a multiplier function (not expressible as 
a function in v plus a function in t). 

C. Our claim in this article is that we can consider
ably simplify the process of finding these features for 
the class of differential equations (1. 3) by starting with 
a given group and pair its realization in terms of a Lie 
algebra of second-order differential operators with the 
matrix realization .of the group. Since we shall be dealing 
with real subgroups of WSL(2, C), the algebra required 
is essentially that of 2 x 2 matrices. This can be used to 
replace the rather lengthy conventional methods for 
finding separable coordinates and similarity groups 
through the solution of partial and coupled differential 
equations and the exhaustive examination of multi
parameter ranges. 

The canonical transform method, as used here, has 
the following limitations: it applies only to differential 
equations where H in (1. 3) is of the form 

d2 d d 
H = 01. dqr + (3q dq + yq2 + oq + E dq + /;, (1.6a) 

or of the form 

(
d

2 
) d H=OI.' ~ +~ +{3'q-d +Y'q2, 

dq q q 
(1. 6b) 

for complex 01., {3, ••• ,y', i. e., it applies only to a 

Copyright © 1976 American Institute of Physics 601 



                                                                                                                                    

particular class of parabolic, linear, second-order dif
ferential equations. Yet this class contains the physical
ly interesting cases of the heat equation and the 
Schrodinger equations for the free particle or quadratic 
(attractive or repulsive) plus linear or inverse-quad
ratic potentials in one dimension. Through a simple 
point transformation, these can be related to the pseudo
Coulomb Schrodinger equation. 3 Our tabulated results 
are exhaustive within the group framework. 18 

D. The outline of the paper is the following. In Sec. 
II we assemble the mathematical tools: the algebra and 
group realizations in terms of second-order differential 
operators (1. 6a) and their exponentiation to the six
parameter group, as acting on the space L 2(R) of func
tions and its adjoint action on the algebra; eigenfunctions 
and their eigenvalues for any operator in the algebra can 
thus be found in terms of their orbit representatives. In 
Sec. III we allow for the complexification of the group, 
and phrase the solution of (1. 3) in terms of canonical 
transforms, reducing the problem of finding separating 
coordinates associated with a second operator in the 
algebra, to the manipulation of 2x2 matrices. We ex
emplify some of these developments for the heat equa
tion as a complex canonical transform, pointing out the 
existence of a new quadratic-scalar product-invariant. 
Some of the group-integrated features of similarity 
methods are seen in Sec. IV. The free particle and heat 
equation are used as examples. In the latter, the set of 
bounded transformations constitute a semigroup. In 
Sec. V, differential equations with operators of the class 
(1. 6b) are treated. Some connections, conclusions, and 
directions for further work are collected in Sec. VI. 

II. THE GROUP WSL (2,R) AND ITS ORBIT STRUCTURE 

A. The Heisenberg-Weyl algebra 19 UJ, of generators 
Q, P, and :n is defined through the commutator brackets 

On the Hilbert space L 2(R), it is known2o that every 
representation of UJ is unitarily equivalent to the 
Schrodinger representation 

(2.1) 

Qf(q)=qf(q), Pf(q)=-i d~ f(q), 1 f(q)=f(q), 

(2.2) 

which is densely defined and self-adjoint in L 2(R). The 
generator :n is in the center of the algebra and thus 
denoted as the identity operator to start with. 

B. We can exponentiate (2.2) to a unitary representa
tion of the Weyl group UJ, where the elements 19 
w(x,y,z) ICC W act onf c L 2(R) as, 

[ L(x, y,z )f] (q) '" {exp[i(xQ +yP +z:n)f]} (q) 
(2.3) 

= exp[i(xq + hy +z)]f(q +y). 

Defining for convenience ~=(x,y) as a two-component 
row vector, its transpose ~T = G) and n = (~ -0

1), the 
product law in W can be written; for w(~,z)"'w(x,y,z) as, 

w(~I'z I)W(~2,z2) = w(~1 + ~2' Z 1 +z2 + t~ln~f), (2.4) 

so that the group indentity is w(O,O) and W(~,ztl 
=w(-~,-z). 
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C. Out of the enveloping algebra w of UJ, we want to 
produce other Lie algebras under the commutator 
bracket. The set of second-order expressions, 

Il=:t(p2-Q2), I2=:t(QP+PQ), I3=:t(p2+Q2), 

(2.5) 

are densely defined and self-adjoint on L 2(R), satisfying, 

[Iu I2]=-iI3, [I3,!1] = iI2, [I2,!3]=iIto (2.6) 

which we recognize as the sl(2,R)=su(1, 1)~so(2, 1)' = sp(2,R) algebra. 4 No other unitarily inequivalent, 
finite-dimensional algebra of finite-order expressions 
can be found in w besides (2.1), (2.5), and their com
position. 21 

D. The algebra (2.5) can be exponentiated to the group 
SL(2,R) of real unimodular 2x2 matrices through its 
one- parameter subgroups, 

( 

coshta 

- sinhta 
(27a) 

(2.7b) 

.1 ) - Sl~ZY 

coszY 

(2.7c) 

C :), (2.7d) 

exp(;h,P'), G -1 b) , (2.7e) 

so that every A'" (~ ~) ICC SL(2,R) [with ad - be = 1 for uni
modularity] can be decomposed in terms of two or more 
of the elements (2.7). Now, the representation of sl(2,R) 
on L 2(R) obtained from (2.2) can also be exponentiated 
to a unitary representation of SL(2,R) on the same space 
as 1,6,14 

[C(~ ~)f](q)=l dq'A(q,q')f(q') 
R 

= (27Tbt!l2 exp(- i7T/4) i: dq' 

x exp[(i/2b){aq,2 - 2qq' + dq2) Jf (q'). 

(2.8a) 

Notice that exp(i7T/4)CCol ~) is the ordinary Fourier 
transform. When I b I - 0, the integration kernel in (2.8) 
appears indeterminate, but can be shown to be well de
fined and turn (2. 8) into 

(2.8b) 

Formulas (2.8) give a unitary representation of SL(2,R) 
on L 2(R). This is actually a true representation of 
SL(2,R), the covering group of SL(2,R) with respect to 
the 0(2) subgroup generated by 13; for SL(2,R) it is a 
ray representation and the possible phase differences 
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with a true representation have been discussed in Ref. 
1. 22 

E. We can join the set of generators in w and sl(2,R) 
using the derivation property of the commutator bracket, 
and in the resulting algebra we find that w is an ideal. 
We thus define wSl(2,R) ==w -a sl(2,R), where -a is the 
semidirect sum, as the collection of generators (2.1) 
and (2.5). Correspondingly, from Wand SL(2,R) we 
build the semidirect product WSL(2,R) = W ~ SL(2,R) 
of pairsg={A,w}, and its unitary representation on 
L 2(R) is given by the composition of the constituent 
actions (2.3) and (2.8) as 

(J{(~ ~), (xyz)}f](q) "'[Ce ~) Tw(x,y,z)!](q) 

== f dq' Bg(q,q') !(q'), 
R 

(2.9a) 

where the integral kernel Bg(q, q') can be found 23 from 
(2.3) and (2.8); it will not be of interest by itself, in
deed, the usefulness of the methods proposed in this 
article hinge upon our not needing the general form 
(2. 9a), but only those transformations with b = 0 where 
the integral transform collapses to a geometric trans
form, 

g(a, c;x,y,z) '" J{(~ .°_1), (x,y,z)}, 

which has the effect 

(2.9b) 

'ha2 _ b2 _ C2 +d2) bd-ac t(a2 - b2 + C2 _ dZ) 

- ab +cd ad+bc - ab - cd 

t(a2 + b2 _ C2 _ d2) - ac - bd t(a2 + bZ + C
2 +dZ) 

M= 

0 

Since the group parameter z does not appear in (2.12), 
the latter is a faithful representation only of wsl(2,R)/n . 
An operator H built as a linear combination of the gen
erators of the algebra, 

H =6 8j l j = t(8 j + 83)p2 + t82(QP + PQ) + t(- ii j + 83)Q2 
j 

(2. 13a) 

will transform under the adjoint action of the group as 

H.!.. H' = gHg-1 =66 8iM;}j= I; 8JI}. 
i J J 

(2. 13b) 

G. Two elements Hand H' of the algebra are said to 
be on the same orbit under the group if there exists an 
element g in the group such that (2. 13b) holds. Such 
elements Hand H' generate one-parameter subgroups 
go(OI) = exp(iOlH) and gl ((3) = exp(i{3H') which are conjugate 
throughg, and thusgo(OI) andg j (OI) are in the same class 
in the group. Even if we perform an over-all change in 
scale H" = yH' [which is not a transformation (2.12)
(2.13) for II'I * 11, the subgroup generated as gz(OI) 

603 J. Math. Phys., Vol. 17, No.5, May 1976 

[g(a, c; x,y,z )j](q) 

==a-l12 exp[i(cq2/2a +xq/a +hy +z)]j(q/a +y), 

(2.9c) 

i. e., changes of scale (a), translations (y ),' multiplica
tion by an exponential (x) and Gaussian (e), and an over
all phase (z). Notice that the composition of two geom
etric transforms is a geometric transform, and so is its 
inverse. Equation (2. 9a) allows us, though, to write 
the WSL(2,R) product law for g{A, w(x,y,z)}~g{A, /;,z} 
compactly as 

g{A j , I;t,zl}g{Az, l;j) z 2} 

= g{At A2 , /;tA2+/;2,Zt+z2+tl;tA201;n, (2.10) 

so that the group indenUty is g{1, 0, o} and the inverse 
g{A, I;,z}-t = g{A- j

, -I;A- j
, - z}, where we have used the 

fact that AOAT =0 and 1;0l;T =0 for AE SL(2,R). 

F. The action (2.9) of WSL(2,R) on L 2(R) induces its 
adjoint representation by automorphisms of the algebra,4 

li.!..lj=glig-1"'Adgfi =6 M;}j, (2.11) 
j 

for Ii Ewsl(2,R) denoting 14=Q, 15=P, andI6 =1. 
Through (2.1), (2.3), (2.5)-(2.7), and (2.9) we obtain 2 

t(ex - dy) t(-ax+by) 

t(- dx - cy) t(bx +ay) 
1 

- 2Xy 

t(eX +dy) t(- ax - by) t(x2 +y2) 

d -b y (2.12) 

-c a -x 

0 0 1 

I 
= exp(iOlH") = gl (1'01) = ggo (YOl) g-1 will as a whole still be 
conjugate to the subgroup generated by H. Since the 
0(2) subgroup generated by n is a trivial phase, it will 
serve us to ignore it in our analysis, so that we will 
restrict our orbit analysis to the coset space 4 

WSL(2,R)/0(2) •. In terms of the algebra wsl(2,R)/1, 
this means that operators differing by an additive term 
861 are considered equivalent. In choosing the orbit 
representatives, over-all factors will also be disre
garded since they generate the same subgroup. 

H. The orbit structure of wsl(2,R)/1 can now be 
analyzed, 14 noting that 6 '" 8~ - iii - ii~ is an invariant 
under the transformation (2.13). As we are interested 
in operators equivalent up to over-all changes in scale 
y (for which 6" = Y6') we consider three cases: (i) 
6>0, (ii) 6<0, and (iii) 6=0. In each of these cases 
we can pick out an orbit representative operator HW, 
for each orbit w. This is simplified by noting that we 
can choose the transformation to be a geometric trans
formation (b = 0) and that (2. 12) has a lower-left zero 
sub matrix. 

(i) 6> 0 (harmonic oscillator): 
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through 

ah == [11/(111 +113)]112, ch=1I2[8 h(81 +113)]-112, 

Xh == 28j;2[115(83 - 81) - 114112], 

Yh == 28j;2[115 82 - 84(83 + 81)], 

(2. 14a) 

(2. 14b) 

where 8~ = e = 8§ - 8i - II~ and the choice 8k = 2 leads to 
the form (2. 14a). Clearly, the transformation (2. 14b) 
is possible for all II's except when 81 =- 83• This cor
responds to the case when H has no p2 (kinetic energy) 
term, which we can regard as unphysical. In this case, 
we can subject H to a Fourier transform, which is 
known and easy to implement, but is not a geometric 
transform. 

(ii) e < 0 (repulsive oscillator): 

further case when 84 = 0 = 11 5 , has 0 for its orbit rep
resentative in wsl(2,R)/1 and 1 in wsl(2,R). 

To sum up: We have five orbits in WSL(2,R)/O(2)1 
generated by H W (w =h,r, l,f or m). We have found in 
each case the explicit transformation (2.12) leading a 
general operator (2. 13a) to one of the five representa
tives, up to an over-all multiplicative constant and the 
(possible) addition of a multiple 8~ of 1 given from 
(2.12)-(2.13) as 

II~ = t(x~ - y~)81 - hwY wll2 + t(x~ +y~)113 
(2.20) 

+Yw Il4- x w85+ 86 

with x w, Yw (w =h, r, l,f, or m) as in (2. 14b), (2. 15b), 
or (2. 16b). 

I. As the operators H as given by (2. 13a) are self
adjoint in L 2(R), their eigenfunctions will constitute a 

HT = 211 = ~(p2 _ Q2), 

through 

ar == [II T/(81 + 83) ]1/2, Cr == 112[lI r (8 1 + 03)]-112, 

Xr == 20;2[05(81 - 03) + 84112], 

(2. 15a) complete orthonormal (possibly in the sense of Dirac) 
set of eigenvectors for the space, and since the trans
formations (2.9) are unitary, it suffices to give the 
results for the orbit representatives: 

(2. 15b) Har'monic Oscillator: These are well known 20 to be 

Yr==211;2[- 85112+114(113+01)], 

where B; = - e = O~ + 8~ - 8~ and the choice IIr = 2 leads to 
(2. 15a). Remarks as in (i) apply when Bl =- 11 3 , 

(iii) e = 0 (linear potential): 

(2. 16a) 

Here we have several cases. As 8~ + 8~ - II~ == 0 assume 
first 01, O2 , and 83 are not all identically zero. Then 
through 

al==[28/(81 +e3)]1I2, CI=[(e3- 81)/20 1]1/2, 

xI(83 + 81)112 _ Y 1(113 _ 01)112 = 205(0 3 + 01t1 12 
(2. 16b) 

we can bring H to the form HI with III a free parameter 
and II{ == III = 113, while 

(2.16c) 

The ratio p='O,;/ II I can be varied by varying 0 I, and the 
choice (2. 16a) corresponds to p = 1. We cannot make p 
vanish, however, unless to start with we have 04(83 
+ 111)112 = 05(113 - 81)1/2. We distinguish this case: 

(iii')e=O, 8~(83+01)=1I~(03-81) (jreeparticle): 

Hf=Il+13=tp2, (2.17) 

and we must add the remark following (i) in the case 
01 = - 11 3• Now we examine the cases where 111 = 112 = 113 
=0. We only have the lower-right submatrix (2.12), 
and we can always bring the operator to the form 

(iii") 81 = 0, O2 = 0, 03 = 0 (momentum): 

(2.18) 

through 

(2.19) 

applying the Fourier transformation when 05 == O. The 
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I/JZ (q) = [2nn! Ii ]-1 12 exp(- ~q2)Hn(q), 

\=n+l, n=0,1,2, 00., 
(2.21) 

where Hn(q) are the Hermite polynomials. Orthonor
mality has the usual phrasing as (I/J~, I/J~') = ox,x' (Kronec
ker delta) and completeness states zI!(q) = 'i 1/J~(q)(I/J~-, zI!)in 
the norm for any zl!Ee L 2(R). 

Repulsive Oscillator: The basis and spectrum of ff 
= 211 can be found 14 in terms of that of Hd =' - 212 
= i(q d/dq + t), which is on the same orbit: H r =gI2Hdgi~ 
withgI2 =W/lf) C\ j), (O)} (this is the "square root" of 
the Fourier transform, as g~2 = {COl 6), (OJ}). The eigen
functions of Hd are found from the theory of Mellin 
transforms to be, properly normalized, 

q.=_ {

±q, q~O, 

I/J~'(q) = (27Tt! 12 q~iX-l 12, A Ee R, 
0, q 0;:0, 

(2. 22a) 

with a spectrum covering twice the real line. Using 
(2.9a) for g12, we can find zI!~= J(g12)1/J~ as 

I/J~'(q) = 2-3/4 7T-1 exp[ - (i/4)7T(iA +~)] 

x r(- i A + ~)Di\-1I2 (± 21 12 exp(3i7T/4)q) , A E R, 

(2. 22b) 

where Dv(r) is the Parabolic Cylinder function. 24 Or
thonormality means here (Ij;~', I/J~n = 6(A - A ') (Dirac delta) 
and (I/J~" </Jxr:') = O. Completeness integrates twice over 
A ER, i. e., Ij;(q) = JRdA </J~+(q)(I/J~+' Ij;) + JR dAW(q) (zI!r-, I/J), 
Ij;E L 2(R). 

Linear potential: Again, the basis and spectrum of 
HI is easier to analyze 14 for its Fourier transform tQ 2 

- p which gives rise to a first-order differential equa
tion whose normalized solutions are "iJ;~(q) == (27Tr1l2 

xexp(-Aq+i q3), for AER. The inverse Fourier trans
form yields zI!~(q) through Airy's integral 25 
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(2.23) 

and the usual orthonormality and completeness state
ments are (1/1~, 1/1~') = o(X - A') and 1/I(q) = fR dX 1/I~(q)(1/IL 1/1), 
1/IE L 2(R). 

Free particle: The basis and the spectrum of P is 

<t{(q) = (27Tt1/2 exp(iXq), XER. (2.24) 

This serves also as a convenient basis for Hi = tp2 
which in linearly, but not functionally independent of P. 
The spectrum of Hi is tX2, i. e., twice the half-line. 

The eigenfunctions 1/1", and eigenvalues iJ. of an 
operator H as given by (2. 13a) can now be determined, 
knowing the ones for the orbit representatives HW, 1/1~, 
and A (w=h,r,l orf-m). We have 

(2. 25a) 

with g W a geometric transformation of the type (2. 9b), 
with parameters given by (2. 14b), (2. 15b), or (2. 16b) 
(save the cases when a Fourier transformation is needed) 
and the 8 W determined correspondingly. Hence 

(2. 25b) 

Recall that geometric transforms are easily obtained as 
in (2.9c). 

J. Example: 

H= 2P2 + (QP +PQ) + iQ2 +Q +P+ 1:]. (2. 26a) 
=311 +412 + 513 + Q +P + n .. 

We see that 0=0, so this case belongs to (iii). From 
(2. 16b) we find al =ire;, Cl = 1/re; and 2xl- YI =t. The 
transformation 

then maps H into H' = i81P
2 + 1/re; Q + (XI + {; - 3/8)1 so 

we choose 81=1 and xl=i- {;. The spectrum of His 
then iJ. = A E R, while the basis functions are 

=[g(i, 1; i - (;, t - 2{;, Otl1/1~](q) 

=[g(2,-1;-i, (;-to)1/I~l(q) 
(2. 26b) 

= 2-112 exp i[- t(q2 +q + {; -1/8)l1/l~(iq + (;- i) 

III. COMPLEX CANONICAL TRANSFORMS AND 
TIME DEVELOPMENT OF A SYSTEM 

A. We will now allow the group parameters of g 
={A, ;,z}EWSL(2,R) (det A=l) to range over the com
plex field. The resulting set also forms a group which 
we denote by WSL(2, C). The representation given by 
(2.3)-(2.8) and (2.9) does not follow for the whole new 
group: If f is assumed to be in L 2(R), Jf will belong to 
L 2(R) only if the kernel Bg(q, q') is bounded. This hap
pens for the parameters in A only if Im(a/b) ;" 0 so that 
the Gaussian factor will be decreasing and, when a = 0, 
b must be real so that the kernel will be an oscillating 
exponential. For the w(x,y,z) parameters it is only re
quired that when a = 0, x be real also. The product of 
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two bounded operators is bounded and the group identity 
is bounded as well as all real elements in WSL(2,R). 
Thus, (2.9a) represents properly a subsemigroup of 
WSL(2, C) which we denote by HWSL(2, C), following 
Refs. 1,2, and 7 which deal with the SL(2, C) part. As 
regards unitarity, those transformations in HWSL(2, C) 
which are not in WSL(2,R), are represented by integral 
nonunitary transformations from L 2(R) into L 2(R). 

B. In Refs. 1 and 2, we constructed Hilbert spaces 
of analytic functions J A such that HSL(2, C) is rep
resented by unitary mappings between L 2(R) and J A' 

The Hilbert spaces J A are characterized by a scalar 
product performed over the complex plane, as in 
Bargmann's case, 8 given by 

(j, g)A= ~ d2iJ. (q)j (q)* g(q), 

with the measure 

(3. 1a) 

d2iJ. (q) = 2 (27TV)"1I2 exp[ (1/2v )(uq2 - 2qq* + u*q*2) 1 
x d ReqdImq, (3.1b) 

and where 

u=a*d - b*c, v =2 Imb*a > O. (3.1c) 

Corresponding to the geometric transformations 
(2.9b), where v = 0 the measure becomes singular and 
one can show that 

lim 1 d2iJ.(q) f(q)* g(q) = 1 .. ,dx exp(- UJ Ix 1 2/2)f(x)* g(x), 
v--O C ReI .... 

(3.1d) 

where UJ = 2Imc*d, and the integration contour is along 
a line in the complex ([-plane tilted with respect to the 
real axis by an angle 1/1 = - i phase of u. Finally, for the 
general complex case, the transform inverse to (2.8) is 
given by 

f(q) = 1 d2iJ.(q')A(q',q)* [Ul(q'). (3. Ie) 
t: 

With little extra labor we can build a similar scalar 
product and Hilbert spaces such that the transformations 
in HWSL(2,C) will be unitary. The only application we 
will touch upon is the one provided by the heat equation, 
and so the construction of the general case beyond (3.1) 
is unnecessary here. 

C. The action of WSL(2, C) transformations on oper
ators H of the form (2. 13a) closely follows that seen in 
the last section, except for allowing all parameters to 
be complex. The orbit structure analyzed in I1-H sim
plifies, in that the cases (i) and (ii) (attractive and re
pulsive oscillators) coalesce, if we allow for over-all 
complex factors. Indeed, the well-known Bargmann 
transformation, 8 gB= {(l//2)(.) on, (O)}, bridges (i) and 
(ii), asgB l 3gil=il2 while gH= {(; }-I),(O)}, w2=_i, 
performs g HHi gil = - iHi and takes us from the free 
particle Schrodinger equation to the heat equation. 

D. The parabolic differential equations we want to 
analyze here are those of the general form 

Hu(q, t) = - i(a/at)u(q, t), 

where H is an operator of the form (1. 6a)- (2. 13a). 
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Formally, the solution of (3.2) is given by the time
translated initial condition u(q) '= u(q, 0), 

u(q, t) = exp(t a/at') u(q, t') It' =0 

= exp(itH)u(q) '= [Htu](q). (3.3) 

The third term in (3.3) is a differential operator of 
infinite degree in q (termed also hyperdifferential op
erator 26

) densely defined in L 2(R), whose action on 
u(q) is a time-dependent canonical transform Ht whose 
integral form is given by (2.9). Corresponding to the 
four orbits seen in the last section (excluding P), their 
four H~ time-evolution operators are represented by 

HZ=exp(it1-[p2+Q2]): ~(c~st -sint), (o,o,o)l (3.4a) 

~ smt cost 

H;=exp(it1-[p2_Q2]): ~( cosht -sinht), (O,O,O)t 

{ - sinht cosht ~ 
(3.4b) 

H: ~ exp{£t[ip' + Q ]), 1 G ~ '} H, W, - (l/6)") l 
(3.4c) 

(3.4d) 

All these expressions can be read off from (2.7), except 
for (3. 4c), which requires some extra work in ex
ponentiating. 

For a general operator H [(2. 13a)] we can find its 
geometric transformationgw (w=h,r,l orj) relating 
it to its orbit representative. Its time- evolution trans
form will be 

H t = exp(itH) = exp(itBs) exp(itewg-;}HWg w) 
(3.5a) 

and its solutions 

u(q, t) = H t u(q) = exp(it86) q(g~l)H 9':t q(g w)u(q). 

(3.5b) 

E. Simplest to consider, is the time evolution of the 
eigenfunctions iJ;x(q) of the operator H in (3.2), since 

(3.6) 

These are the solutions of (3.2) separable in q and t: if 
we know the expansion coefficients, Ux of an arbitrary 
function u(q)=u(q,O) in terms of the iJ;x-basis, the ex
pansion coefficients of the u(q, t) solution of (3.2) are 
U x exp(iAt). But assume that the physically meaningful 
expansion for u(q) is in terms of a iJ;~(q)-basis, eigen
functions of an operator H' which mayor may not be on 
the same orbit as H. Assume for definiteness that Hand 
H' are the orbit representatives of the last section, with 
(3. 4) their time- evolution transforms. Then, it is funda
mental for our results that, at least in a region around 
t = 0, we can write 
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(3.7) 

where t' = t' (t). That is, the time- evolution transform 
Ht can be written as the time-evolution transform H;. 
for a rescaled time t'(t), times a (time-dependent) 
geometric transform qt. Finding the group parameters 
of q t and the function t'(t) is an exercise in 2 x 2 matrix 
algebra. 

F. Example: Let H be the harmonic oscillator 
Schrodinger Hamiltonian [so that Ht is HZ in (3. 4a)]. 
want to find the time evolution of plane waves [free 
particle eigenfunctions iJ;{ in (2. 24), H~.being H{,l in 
that system. We write (3.7), where only the SL(2,R) 
parameters need to be considered, as 

We 

(:::: -,::') - (:: 0\ (1 t') 
a;l} ° 1 ' 

(3.8a) 

and we find immediately, 

(3.8b) 

so, from (3.6) and (2.9), 

1/J{(q)1fl I/J{(q) = qt H{. /f{(q) 

= exp(it>.2t') q t/f{(q) 

= exp(itA2t')ai1l2 exp(ic tq2 /2a t)/f{ (q/ at) 

= (costr1l 2 exp[i tant(tA 2 + tq2) M(q/ cost) 

= exp[it sint cost(q/ cost)2M(q/cost) 

(3.9c) 

This result can be checked using the harmonic oscillator 
Green's function and performing the integration. 

A few comments on (3. gc): Although the points 
t=±t7T, ± (3/2)7T, n •• appear to be singular for some 
elements of the expression, since the transformation 
(3.7) is unitary in L 2(R), we are assured that any L 2(R) 
function expanded in the /f{-basis will exhibit no singu
larities in its time development. Systems which clas
sically are periodic or exhibit turning points will be in 
many-to-one correspondence with open systems. In 
Table I we give, for all pairs of orbit representatives, 
the geometric transformation which bridges them. 

G. The next point to be remarked upon is that the final 
expression in (3. 9c) is (from right to left) a product of 
a function in t'(t) times a function in v(q, t) = q/cost times 
a multiplier exp(itvz sin2t). If we follow the procedure 
of Kalnins, Miller, and Boyer 14,15 in finding coordinate 
systems v (q , t) - t such that, in (3. 2), 

(3.10) 

separates into two ordinary differential equations in v 
and t, one of such systems will be the one found above. 
The presence of the exponent in S(v, t) (specifically not 
a sum of a function in v plus a function in t), defines this 
case as R-separable, as opposed to ordinary separa
bility, whenS(v,t)=O. It is thus that, as detailed below, 
we obtain all "separating" coordinate systems for all 
parabolic equations (3.2). We follow the procedure of the 
example in subsection III. F to read them off Table I as 
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TABLE I. Expressions for the geometric transformations between pairs of time-development operators corresponding to the 
four orbit representatives Hf=(/"t(a,c;x,y ,z)flf,'. The entry "I" means t=t' and.(/" is the identity tr~sformation. When x, y, . 
z do not appear, they equal o. The example in Sec. II. E corresponds to w =h,w' =/. The heat equatlOn follows the/-system with 
the replacement t- 2it. 

h 

r 

/ 

1 

tant' = tanht 

at = (cosh2t) 1/2 

Ct = sinh2t(cosh2t)-1/2 

tant' =t 

at =(1 +t2)1/2 

Ct = t(1 + t 2)-1/2 

x t = -t(1 +it2)(1 +t2)-1/2 

Yt=-!t2(1 +t2)-1/2 

Zt=-t,t3 

tant' = t 

at = (1 + t 2) 1/2 

Ct = - t(1 + t2)-1/2 

r 

tanht' = tant 

at= (cos2t)1/ 2 

Ct = sin2t(cos2t)-1/ 2 

1 

tanht' = t 

at=(1-t2)1/ 2 

Ct=t(l-t2)-1/ 2 

Xt=-t(I-!f2)(1-t2)-1/2 

Yt = - !t2(1 - t 2)-1/2 

Zt=-it3 

tanht' =t 

at=(1-t2)1/2 

Ct = t(l- t2)-1/2 

follows: From (2.9c) and (3.7), 

= (jtll"/-' </J( (q) = exp(iAt') (j t </Jr' (q) 

= (at)"! 12 exp{i[c /2at)q2 + (x/ at)q +Z t + txty t + At']} 

X</J( (qlat +Yt) 

= (at)"! 12 exp{i[tctatv2 + (v - h t)(Xt - CtatY t) 

+ Zt + At']}</J( (v), 
where 

(3. Hb) 

and all other parameters in ft, at, bt , ... , Zt, and t' 
depend on t only. Thus II~</Jr (q) is a separable function 
in the sense (3.10) in v and t, where the multiplier 
S(v, t) can be read off (3. Ha) and is 

S(v, t) =tcta tv
2 + (Xt - ctatYt)v, (3. Hc) 

where as stated, at,ct,xt,Yt depend on t. 

The differential equation (3.2) for H W generating II~ 
will separate in two differential equations, one of the 
form of an eigenvalue equation for H W

' in the variable 
v (q ,t) and the other, a first- order differential equation 
in t. This can be seen by writing (3.7) for t- 0, as 
ot'lot I t=o = 1; it yields 

(3.12) 

where G generates (jt and is thus a first-order differ-
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t' =tant 
at = cost 
Ct = sint 
x = t' ,y = !t'2 
z =!t'3 

t' =tanht 
at =cosht 
Ct = sinht 
x=t', y=!t'2 
Z = !t'3 

1 

t' =t 

at =l, Ct=~2 
xt=t, Yt="2t 
Zt =.t3 

/ 
t' =tant 

at= cost 

t' =tanht 

at = cosht 

C t = sinht 

at = I, c t = 0 

xt=-t 

Yt=-!t2 

Zt = -it3 

1 

ential operator in q. The part in the separable function 
which depends only on v is </J(, which was chosen as an 
eigenfunction of H W

' to start with. We have used H W
' to 

separate the variables for H W in (3.2). 

We can now see a posteriori why the factorization 
(3.7) works for all orbit representatives: They all have 
the form tp2 + V(Q) so that G will only be a function of 
Q. A disentanglement of the Baker-Campbell-Hausdorff 
type to produce (3.7) out of (3.12) will introduce the P 
and PQ + QP parts which generate the translations and 
scale transformation. In Table II we have collected the 
separating coordinates and multipliers for all pairs of 
orbit representatives. The results can be compared 
with the literature. 27 In order to describe the general 
form of the separating coordinates and to determine the 
H' to which they correspond, defining equivalence be
tween coordinate pairs, we must present first the 
material of the next section. The general case, however, 
can be formulated as follows. 

H. We are given arbitrary Hand H', and we can 
determine the (geometric) transformation relating them 
to their orbit representatives. We are thus able to know 
their time-evolution transforms lit and II~ through (3.5). 
We can write IIt={(~a ~b), (hx,hy,hz)} with hi =hi(t), (i 

C d 
=a,b, ... ,z), where, it should be noticed, the hi(t) are 
linear combinations of trigonometric, hyperboliC, or 
power functions of t when H lies in the h, r, or l-j or
bits. A similar construction is done for II;. with hi(t'), 
and the product with a general (jt is made as in (3.7). 
Comparison of the ratio of the 1-1 and 1-2 matrix ele
ments gives 
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TABLE II. Expressions for the coordinate systems (v(q,t),t) which separate the equationH"'I/J=-iBtI/J into two ordinary differential 
equations in v and t, such that I/J(q, t) = eiS(v,tlV(v) T(t). The separation operator is H"". The heat equation follows the I-case with 
t- 2it. 

>r: r 
w 

v=q v=q(cos2t)-1/2 

h S=O S=tv2 sin2t 

v =q(cosh2t)-1/2 v=q 

r S = tv2 sinh2t S=O 

v = q(l + t 2)-1/2 V = q(l - t 2)-1/2 
I S = tv 2t - vt( 1 + t 2) 1/2 S=tv2t-vt(1-t2)-1/2 

v = q(1 + t 2)-1/2 v=q(l _ t 2)-1/2 

I S = - ty2t S=tv2t 

h(t) = h.(t)/hb(t) = h~(t')/hW') = h'(t'), (3. 13a) 

whereby all h;'s are known as functions of t. This is 
valid whenever hb and h~ are different from zero (this 
is not the case when H or H' is (}I2 , for example). The 
parameters in the geometric transformation are then 
found as 

at = h./h~ = hih~, 
c t :::: hJh~ - hd'h. = hd/h~ - h;jhb , (3. 13b) 

) ( r h h') (h~ - hb ) (xpYt = hx-hx, y- y -h~ h~ , 

and the separating variables and multipliers are found as 
in (3. llb)-(3.11c). 

I. These developments also apply to complex trans
forms. Of particular interest is the heat equation, 

a2 a 
--aqru(q,t)=ai u(q,t), (3. 14a) 

i. e., in the form (3.2), HH = 2iHf. In the form (2. 25a) 
this corresponds to (}f = 2, ()~ = 0 and a scale transforma
tion with a2 = i (subsection III. C). Better still, we can 
set (}f = 2i and Eqs. (3. 4d)- (3. 5a) then state that the 
time-evolution transform is, 

H: = HL=exp~ a7) : { G -:it) , (O)}. (3. 14b) 

The separable solutions, coordinates, and multipliers 
for the heat equation, with respect to each of the orbit 
representatives we have conSidered, can thus be read 
off the bottom row of Table II, replacing t- 2it. We have 
thus the separable solutions in terms of OSCillator, 
parabolic cylinder, Airy, and exponential functions. 28 

J. In comparing with the literature,29 we notice that 
one of the better-known separating coordinate systems, 
that giving rise to the heat polynomials3o vn(q, t) 
= (- W/ 2 Hn(-~q[- tJ-1I2 ), solutions of (3. 14a). is ap
parently missing. We proceed to show that it is related 
to the entry in the h-orbit. 
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1 I 

v = q/ cost + han2t v = q/cost 

S=~2sin2t S = !v 2 sin2t 

+v tant(1- hin2t) 

V = q/cosht+ hanh2t v =q/cosht 

S= - ~2 sinh2t S= - !v2 sinh2t 

+v tanht(1 + !sinh2t) 

v=q v=q-W 

S=O S=-vt 

v=q+tt2 v=q 

S=vt S=O 

The Hermite differential equation can be written as 

( 1 d2 
d 1) 

DHn(q) = -"2 a;;: +q dq +"2 Hn(q) 

= (11 + 2iI2 +I3)Hn(q) = (n +~)Hn(q), (3.15a) 

so that e:::: 4> 0 and we can write g,.,Dgh l = (}"I3 = ~(}Jih 
finding g h to be a geometric SL (2, C) transformation 
given by (2.14) with (}h = 2, ah = 1, c h = i. This is a com
plex canonical transform, so that the eigenfunctions of 
D, Hn(q) , will be orthogonal with respect to the measure 

2 
given by (3. Id) which is e-q dq and the integration per-
formed over the real line 31 as in (3. Id). The time-

deve;:::htl;~;:tr(i:xp(_ it') - sint' ), (0) l (3.15b) 

{ 0 exp(it') ~ 
and the decomposition H: = qdJ t , is possible with a 
=exp(it')=(1-4t)1I2, ct=O. This yields 

H :Hn(q) =exp[i(n + 1/2)t']q tHn(q) 

= (1 - 4t)n /2 Hn(q[l - 4t ]-1/2) = 2nv n(q, t - i), 

(3.15c) 

which is a polynomial in q and t - i. 
The separating coordinates are v = q(1- 4tr1l2 and t 

equivalent under time translation to ~q(- t)-1I2, t and 
the multiplier S(v, t) is zero. From (3. 15c) we see that 
if the temperature distribution of a conducting rod at t 
= 0 is Hn(q) = 2nvn(q, - i). it will evolve in time as 
2nv n(q,t-t) and at t=i, 2nvn(q,0)=(2q)n. It should be 
observed that the vn(q,t- t) are not elements of L2(R) 
[nor is D self-adjoint in L 2(R»). However, as remarked 
above, D is self-adjoint if we take the measure e-q2 

dq, 
and there its eigenvectors are orthogonal and complete. 
Were we looking for the separating operator which 
produces the heat polynomials themselves, as vn(q, 0) 
=qn, the operator would have been H'-iI2 • For this 
operator, however, we have h~ = 0 and the decom
position (3.7) fails. 
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It should be observed that, since HH = - i o2/oq2 is not 
Hermitian in L 2(R), the time development operator for 
the solutions of the heat equation (3. 14b) is not unitary 
and does not preserve the orthogonality of two functions 
j(q,t), g(q,t) in L 2(R). However, if we use the for
malism of complex canonical transforms, H: is made a 
unitary mapping between L 2(R)=Jo and spaces Jt where 
the scalar product is, from (3. 14b) and (3.1), 

(J(., t), g(., t)t=1 dReqdImq(211't)"1I2 
c 

exp[ - (Imq)2/t JJ(q, t)* g(q, t), t ~ O. 

(3.16) 

Thus we can state that the quantity (3.16) is a quadratic 
invariant of the heat equation under time translations. 
This invariant is distinct from the total heat (a linear 
invariant), and is apparently new. Indeed, any differ
ential equation (3.2) of the type we are studying will have 
its corresponding quadratic invariant. 

IV. INVARIANCE GROUP AND INVARIANT 
BOUNDARIES 

A. Lie theory has been used to solve partial differ
ential equations through exploring their invariance under 
infinitesimal transformations, reducing thus by one the 
number of variables and then determining the subgroup
which leaves invariant a particular set of boundary con
ditions. 12 These methods apply to linear or nonlinear 
equations of any order. By contrast, our procedure is 
designed for linear parabolic equations of the type 
(1. 6)-(3. 2) and solves the problem through the use of 
matrix algebra in a global rather than infinitesimal man
ner. 

The invarianee of (3.2) under a transformation 
g E WSL(2, C) can be stated as follows: when u(q, t) is a 
solution of (3.2), then v(q, t) = JiOU(q, t), where Jit) is a 
two-variable representation of a canonical transform, 
is also a solution of (3.2). Notice that we have not said 
"if": Any such function will be a solution and the full in
variance group of the equation will be the group WSL(2, C 
of six (complex) parameters. We will show below that, 
moreover, v (q, t) will have the form 

v(q,t)=Jit>u(q,t)=llg(q,t)u(qg(q,t), fc(t» , (4.1) 

where Ilg, qgo and 19 are determinable functions of q and 
t. We should impose the additional conditions, however, 
that if q and t are real, then qg and t.. should be also real 
and that if u is either square-integrable or real (the 
latter case in the heat equation, for example), then so 
should (4.1) be. This will reduce the acceptable sym
metry group to a real subgroup of WSL(2, C). 

B. In order to prove (4.1) and find the functions in
volved, use (2.9), (3.2)- (3.3), and (3.11): if u(q, t) is 
the time development of the initial conditions u(q) 
=u(q,O) then v(q,t)=JiOu(q,t) is the time development 
of v(q) = (J gu)(q): 

609 

v(q, t» = (JiOu)(q, t) =:: (Htv)(q) 

= (HJgu)(q) = «(ji(g,O Htg(t) u)(q) 

= «(jgu)(q, t..) 
=a-1 12 exp{i[(c/2a)q2 + (xla)q + iXji +Z']} 

Xu(qg(q, t), 4(t)), (4.2a) 
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where a = a(t), •.. , z =z(t) and 

qg(q, t) = (qia) +y, h(fc) = [dh(t) + bJ/[a +eh(t)] (4.2b) 

with the function h(t) defined as in (3. 13a). The key step 
in (4. 2a) has been that of writing HJg = (j;Hr, i. e. , 
time development x canonical transform = geometriC 
transform x time development in fAt). The last member 
of (4. 2a) and (4. 2b) were obtained from (3. lla)-(3.11b). 

C. As a first illustration of (4.2) consider the case 
of the free particle, closely related to the heat equation, 
where the results are known 12,14: 

<={(a~et b~dt), (X,y,Z)} 
(4.3a) 

= (jg/lf ={ (~ a~l) (XYZ)H(~ -/), (O)} 

{( a -aJ) (-- --::;;} = c _ ct + a-I , x, y - xt, z, . 
Equation (4.3a) contains six independent simultaneous 
equations which yield 

a=a-et, c=e, x=x, y=y+xt, z=z 
and from (4. 2b) 

q= qg(q, t) =:: (q +xdt - xb)/(a - et) +y, 

t = [g(t) = (dt - b)/(a -ct). 

Hence, if u(q, t) is a solution of the free-particle 
Schrodinger equation, then so is 

V(q,t) = (jgu(q,t) 

= (a _ et)"1 12 

exp(i{(a- et)"l[eq2 +xq +h2(dt- b)] 

+hY+z}) 

u«q + xdt - xb)/(a - et) 

+y, (dt- b)/(a- et». 

(4.3b) 

(4.3c) 

(4.4) 

The physical meaning of each of the one-parameter 
subgroups in (4.4) can be readily ascertained when we 
put all others to their identity values. Thus y can be 
seen to represent coordinate translations (q - q + y), - b 
time translations (t - t - b), a =d-I space-time scale 
transformations (q - q/ a, t - tl a2), z phase multiplica
tion (u - exp(iz )u), x Galilean transformations (q - q 
+ xt, u - exp(ixq)u), e conformal transformations (q - q/ 
(1- et), t- tl(l- et), u- (1- et)"112 exp{i[eq2/(1- et)]}u). 
The last two are not "inspectionally" obvious sym
metries of the equation. 

If we further require that, under the transformation 
J, q and t remain real and u remains in L 2(R), the 
values of the parameters a, b, ••. ,z must be real. Thus 
the symmetry group of the free-particle Schrodinger 
equation is the six-parameter WSL(2,R) group. 

D. The results for the heat equation can be read off 
(4.4) when we replace t- 2it. It is convenient to define 
f3=iib, y=-2ie, ~=-2ix, s=-iz. Herewerequireq, 
t, and u to be real. In terms of the new variables, we 
can see that the symmetry group of the heat equation is 
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TABLE m. Action of the general group transformation g 
= {A, w} E WSL(2, C) on a function u(q, t), solution of HWu 
- iBtu for w = h, r ,lor f, as given by Eq. (4.2). 

w time transformation geometrical transformation 

h tanl = 
dtant - b a = (a cost -c sint)/ cost 
a -ctant = (d sint - b cost)/sint 

C = (c cost +a sint - a-I sint)/cost 

(x ,y) = (x ,y) 
cost sinl 

, Z=Z 
-sinl cost 

r tanhl= 
dtanht- b a = (a cosht - c cinht) / cosht 
a -ctanht = (d sinht - b cosht) /sinht 

c=(c cosht-a sinht 
+ a-I s inhl) / cosht 

(x ,y) = (x ,y) 
coshl sinht 

, Z=Z 
sinhl coshl 

1 
- dt- b a=a-ct, c=c, Z=Z t=--

a-ct b (x ,y) ={(x,y) +(-t,W) 
a 
c d 

+ (t, !t2)} 
1 t 
0 1 

f 
- dt-b a=a-ct, c=c, Z=Z 
t=--

a-ct 1 t (x,Y) = (x ,y) 
0 1 

given by the subgroup of WSL(2, C) represented by the 
matrices 

{(
a - 2i(3) ('·t .,.)1 

tiy d ' "2Z."y,ZbJ' (4.5a) 

with a, (3, ••• , s real. 32 

The operators which represent the canonical trans
formation (4.5) in (2.8) will be bounded when 

a~O, (3?0, y?O, d?O, ~=O wheny=O. (4.5b) 

The transformations (4. 5a) with the restrictions (4. 5b) 
form a semigroup, the SL(2,R) part of which is identical 
with the HSL(2,R) semigroup introduced in Ref. 7. It 
lies on the same orbit-through complex transforma
tions-as the semigroup of real transformations in 
SL(2,R) with nonnegative matrix elements. 33 It is here 
augmented by the Weyl group and can be seen to be a 
subsemigroup of (4. 5a) which preserves the positivity of 
the time displacements. 34 

E. The treatment of the four quantum Hamiltonians 
chosen in the last section as orbit representatives, 
follows the procedure of Eqs. (4. 2a, b). We give in 
Table III the expressions for the time and geometriC 
transformations as done in (4.2). It should be noted, 
though, that the physical transformations represented 
by the parameters a, b, •.. ,y differ from case to case. 

F. In solving a differential equation, we usually have 
to contend with boundary conditions uo(q, t) on the 
boundaries (3(q, t) = const. Similarity methods choose the 
transformation Jit) to leave these boundaries invariant: 
(3(q,t)=(3(q,t). We will now show that the separating co
ordinates (v(q, t), t'(t)) of subsection III. G provide such 
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boundaries in the form v(q, t) = const. Consider an ex
ample: Assume the transformation J;o in (4.3) is of the 
particular kind fi~~) = H~(t) as in (3. 4a). Then (4.3) 
tells us that q = q/(cosa - t sinal and t = (t cosa + sina)/ 
(cosa - t sinal. Taking the lead from the entries f-II of 
Tables I and II, we can verify that v = q(1 + t2t1l2 
=q{1 +(2t1/2 =const, while for t=tant' and t=tant', t' 
= i' + a simply. Hence, the family of hyperbolae q2 
=v2

(1 +t2
) for any v ER remains invariant under Ji~~). 

G. The general proof of this fact hinges on writing 
J ii~) = H~' (t) for some generating operator HW'. If now 
we are looking at the solution u(q, t) = H~ u(q), we should 
write Hf = (jtHf,' and look for the corresponding sep
aration of variables {v(q,t),t'(t)} as done in (3.11). The 
action of H~(t) will thus be t' - i' + a, and leave u(q, t) 
as a family of invariant lines on the q-t plane. 

H. As for the inverse problem, if we know {v(q, I), 
t'(t)} to be system of coordinates where the operator 
H"' is separated by a second operator H W

' [see Eqs. 
(3.7), (3.11), and (3.12)]withamultiplier5(v,t), then 
v=v(q,t), 1'=t'(t) as given by (4.2b) will be the sep
arating coordinates of H W by the operator gHW

' g-1 with 
multiplier 5(v,1). In order to see this, let Jit) [the two
variable representation (4.1)-(4.2) of a transformation 
g associated with the time development H~l act on 
(3.11). The result of this action will still be a solution 
of (3.2) for H W

: 

J it) HfljJ';:' (q) 

= H~jg 1jJ~' (q) 

= exp{i[5(v,t) - ty(x - cay) +2' + ,\t']}a-1I2iJJ~' (v), (4.6) 

where all barred variables depend on q and t, while 
J g 1jJ( (q) is an eigenfunction of gHw'g-1. 

1. As an illustration, we can apply this relation to 
the separable solutions of the heat equation seen in 
subsections III. I and III. J. When the separating operator 
is Hh (see entries f-II in Table II with t - 2it), then" 
=q(l- 4t 2t l12 • Hence, when we use gHhg-! to separate, 
the corresponding variables are 

_ q+t(yy-d~)+(ay-(3~) 
v = [t2(y2 _ 4d2) + 2i (ay _ 4d(3) + (a2 _ 4(32) ]172 

- dt + (3 
1=-([ + yl 

(4.7) 

with a, (3, •.• ,y as in (4.5). Now, the Hermite sep
arating operator (3.15) is related to Hh through D=gHhf{-1 
Li.i=g;;! as defined below Eq. (3. 15a)l; hence, for f{ 
={(!i~)' (O)},a=l=d, y=-2, ~=O=:\'theseparating 
variables (4.7) become precisely those of (3. 15c), 
namely v =q(l- 4tt! 12. Conversely, proposing a form 
for V, we can find the group element which takes the 
separating operator to one of the four orbit representa
tives. We must compare the proposed form with (4.7) 
and the corresponding expressions for the y, l, and f 
orbits, solving (nonlinear) algebraic equations for the 
parameters of g. If these equations are incompatible, 
the separating operator does not lie on the proposed 
orbit. If two operators are related through a similarity 
transformation in the symmetry group of the differential 
equation of a third, the variables they separate in the 
latter can be called equi1'alent in a general sense. "' 
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Hence, while in Sec. III we found the separating vari
ables for any given operator in the algebra; here we 
have solved the converse problem. 

V. EQUATIONS CONTAINING TERMS IN q_2 

A. A class of operators containing terms in q-2 is 
amenable to a treatment parallel to the previous sec
tions. The analysis is in fact simpler, and much of the 
groundwork has been done in Refs. 2 and 3, so only the 
general outline and conclusions will be presented. The 
operators we are refering to are 

1 ( d
2 

Jl 2) J 1 ="4 - aqr + ~ - q , (5.1a) 

J--.!:.. q-+-. (d 1) 
2- 2 dq 2' (5. 1b) 

1 ( d
2 

Jl 2) J 3 = 4" - aqr + qr + q , (5.1c) 

which, together with 11 close onto an 0(2) EB sl(2,R) al
gebra as (2.6), the commuting 0(2) is the one generated 
by 11. The operators (5. 1) can be seen as the radial part 
of (2.5) for n-dimensional vectors Q and P in the space 
of angular momentum L, with Jl = (tn + L - 1)2 - t and 
subjected to a Similarity transformation with the factor 
Iql(n-n/2 in order to cancel the term [(n-l)/q]d/dq in 
p2. The operators (5.1) are densely defined and have 
self-adjoint extensions 36 for the ranges of Jl specified 
below, in L 2(R·). There is no underlying Weyl algebra 
here. 2 

Define now k through 

Jl = (2k - 1)2 - t, 2k = 1 ± (Jl + W 12 (5.2) 

so that the Casimir invariant for the algebra (5.1) can 
be seen to be k(1 - k). 

Exponentiating the algebra (5.1) to an 0(2)0 SL(2,R) 
group, we associate a realization through 2x 2 matrices 
as in (2.7). As the 0(2) part generated by 1 corre
sponds to over-all phase transformations, it is rather 
trivial and we shall work henceforth with the SL(2,R) 
part only. The action of the SL(2,R) group onjE L2(R·) 
is 2,3.6.1 

[C(~ ~)j](q) = b-1 exp(i7rk)[ dql(qq')!l2 exp[(i/2b)(aq'2 +dq2)] 
o 

X J 2k_1 (qq '/b) j(q ') (5.3a) 

and, when b=O, we have the geometric transformation 

[C(~ a21)j](q) = I a 1-112 exp[(ica/21 a 12)q2]j (Ia I-lq), 

(5.3b) 

which, save for the absolute values, is identical with 
(2. 8b). The transformations for complex group param
eters and the definitions of Hilbert spaces into which 
these transformations are unitary was detailed in Ref. 2. 

B. The adjoint action of SL(2,R) on the algebra is 
found exactly as in Sec. II. It is represented as in 
(2.11)-(2.13): 

where IINjkl1 is the 3 x 3 upper-left submatrix of (2.12). 
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The orbit structure of SL(2,R) is well known: there are 
three orbits corresponding to the sign of the invariant 
9 = 11~ - 1II - 11~. The orbit representatives are chosen to 
be 2Ja (9)0), 2J1 (9<0), andJ1 +J3 (9=0), corre
sponding respectively to the Schrodinger Hamiltonians 
for harmonic oscillator plus centrifugal force, repulsive 
oscillator plus centrigural force, and pure centrifugal 
force. The relative strength of the oscillator and 
centrifugal parts can be varied through dilatation trans
formations in SL(2,R) and the transformations leading a 
general operator K to one of the orbit representatives 
are calculated through the use of (2. 14b), (2. 15b), and 
(2. 16b) excluding the expressions for x,y, /14' and 85, 

For completeness, we list the eigenfunctions and 
spectrum of the orbit representatives 3: 

Harmonic Oscillator + JlI q2, Kh = 2J3, spectrum A 
=2(n+k), n=O,I,2, .,.: 

¢~(q) = [2n! /r(n + 2k) J' 12 exp(-l/2) q2k-l /2 L~2k-l )(q2). 

(5.4) 

Repulsive Oscillator + Jl/q2, KT = 2J1, spectrum A ER: 

¢~(q) = (27rqt1/2 exp(i7rk) exp(7rA/4) 2i~ 12 

x[r(k +hA)/r(2k)]Mi~/2.k_1I2(- ill, (5.5) 

where M"v is the Whittaker function. 2~ 

Pure Centrifugal, Jl/q2, KI =J1 +J3 , spectrum tA2, 

AER·: 

(5.6) 

These functions are orthogonal and complete for L 2(R·). 
It should be noted that the ¢~ are, up to a phase, func
tions of Iql and in fact ¢~(ei·q)=exp[i1T(2k-I/2)]¢~(q). 
The operators (5.1) are invariant under q - - q. Thus, 
the analysis of the eigenfunctions for q E R and harmonic 
analYSis for functions in L 2(R) makes use of (5.4)- (5.6) 
with a few extra facts 3.36: 

(i) For 11 ~ ~ (repulsive centrifugal force), the oper
ators (5.1) have unique self-adjoint extensions in L 2(R·) 
sothatk=t(1+[Jl+t]1I2)~1 and ¢r(O)=O. 

(ii) For ~ > Jl > 0 (repulsive), we have two square
integrable solutions and ¢~(q) - q2k-1/2 at q - 0, one for 
kl = t(l + [Jl + t ]1/2), t < kl < 1, where the solutions are 
regular at the origin and one for k2 = t(l - [Jl + t J' 12), 

0< k2 < t, where the solutions are irregular, but still 
square-integrable. We thus have to impose an extra 
boupdary condition at q = O. (For example, if we have an 
infinite potential wall for q <' 0, only the first solutions 
are acceptable). In L2(R), the two families of solutions 
must be considered. 

(iii) At Jl = 0 the centrifugal "barrier" has disap
peared, kl =~. and k2 = { represent the odd and even 
solutions, which become zero and constant as q - O. 
Their union gives back the spectrum and eigenvalues of 
the corresponding operators (2.5) on the whole of R. 

(iv) For - t < Jl < 0 (attractive centrifugal force), 
t < k{ < £ and t < k2 < t. Both solutions are regular at the 
origin. At Jl = - t they coalesce. 

(v) The centrifugal part cannot be more attractive 
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than JJ. = - t; otherwise, the k's become t ± ill (II real): 
the spectrum of Kh is no longer lower-bound and the 
functions belong to the principal series rather than the 
lower-bound "discrete" representations of SL(2,R). 

From these observations, eigenfunctions of any other 
operator K in s1(2, C) can be constructed as in II. J as 
a geometric transform of the eigenfunctions of their 
orbit representatives. 

C. When we come to analyze differential equations of 
the type 

Ku(q,t)=-i :tu(q,t) (5.7) 

with K in the algebra 0(2, C) EB sl(2, C) generated by (5.1) 
the time- evolution transforms associated with K can be 
constructed out of the basis (3. 4a, c, d) (the linear po
tential does not appear here). Copying Sec. II. E we can 
describe the time evolution of a function, solution of 
(5.7), expanded in terms of eigenfunctions of an op
erator K'. In particular the example II. E applies (re
placing IjJ by <{» for K = 2J3 and K' =J1 +J3 with no change 
at all. Here we have three instead of the four cases of 
former sections and Tables I, II, and III on separating 
coordinates and multipliers apply here when we take out 
the l-rows and columns. The geometrical action of a is 
replaced by la I. 

Following the results of Sec. IV, we can see that the 
full invariance group of the class of differential equa
tions (5.7) is the four-parameter group 0(2)0 SL(2,R) 
when the appropiate reality and square-integrability 
conditions are imposed. The illustration in subsection 
IV. C is valid for the Schrodinger equation with a JJ.lq2 
potential when we eliminate the variables x and y, and 
its invariant boundaries are found as in the ensuing 
discussion. 

VI. CONCLUSION 

A. First, we would like to compare our approach with 
that of the "kinematical" invariance groups of Niederer 
and Boyer. We have dealt with representations of 
WSL(2, C) on spaces of functions u(q) on the real line q. 
The time development of a system (3.2) is a particular 
one-dimensional subgroup of such transformations: 
u(q, t) = H t u(q). Then, we found that the action of 
WSL(2, C) on the space of functions of two variables 
could be written as u(q,t).!..v(q,t)=Jit)u(q,t) as in 
(4.1)-(4.2). Clearly J~t)= HJIfHil. If these trans
formations are generated as J If(a) = exp(iaF) and J ~~~) 
= exp(iaF(t») , then also F(t) = HtFHi1, so that F and F(t) 
are the Schrodinger and Heisenberg pictures of the same 
operators, 37 while u(q, t) and u(q) are the corresponding 
wavefunctions. We have 

(6.1) 

B. It should be noticed that F(t) generates geometric 
transformations in q-t space, i. e., v(q, t) is a multi
plier function times the function u of the transformed 
arguments 7j and t. Thus F(t) can also be realized as a 
first-order differential operator in q and t. Indeed, if 
now, whenever H appears as a summand in F(O we re
place it by - ia/at in such a way that the resulting op-
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erator F[tJ contain no second-order derivative terms in 
q and F(O - F[t] = f(t){H +ialat), where f(t) is a func
tion only of t which appears among the matrix elements 
in the representation of Ht through (2.12). We will have 
- [ia t , F Ctl ] = GCtl , where G[tJ is in the algebra and has 
Similarly H replaced by - ialat and no second-order 
derivative terms. Now, it is still true that [H,F[tl] 
= G(t) since H commutes with the H part in F( t). Hence, 
for some function g(t) which we can find in (2. 12), 

[H+ialat, FCtl]=G(O_GCtl=g(t)(H+ialat), (6.2) 

acting on the space of differentiable functions of q and t. 

Equation (6.2) can be recognized as the starting point 
for Niederer9 who proposed definite forms for H (free 
particle and harmonic oscillator), and Boyer, 10 who left 
H in the general form tp2 + V(Q) and then determined the 
possible two-variable first-order differential operators 
F Ctl satisfying (6.2). It was then found that only poten
tials of the form studied here allowed such a kinemati
cal invariance group. 38.39 A widel' class of time-depen
dent operators, not necessarily polynomials in P and Q 

have been considered by Anderson, Wulfman, et al. 40 

C. BoyerlO pursued the study of (6.2) for n-dimen
sional systems and found the symmetry algebra (and 
group) to be subgroups of W;~ (SO(n) 0 SL(2,R)), called 
the Schrodinger group. Our method appears applicable 
to quadratic operators of the type 

66 aljPjPj + 66 (3ij(pjQj +Q?j) 

+ 66YijQjQ j +6 0iQi + 6 EjP j + 11. (6.3) 

The symmetry algebra will be generated by the oper
ators appearing in the summands and the generated 
group will be WSp(2n,R), complexified. This group con
tains the Schrodinger group but cannot appear out of the 
starting equation (6.2) since the transformations in 
WSp(2n,R) which are not in the Schrodinger group are 
not geometric transformations in q-t space and hence 
are not representable as first-order differential op
erators in these variables satisfying (6.2). 

D. Our analysis should reduce the examination of 
the symmetry group of quadratic Hamiltonians of the 
type (6.3) to the complete orbit analysis of WSp(2n,R) 
or of different real forms of its complex algebra. 41 

Presence of "centrifugal force barriers," radial or 
plane, would cut down the full symmetry and some of 
the more interesting cases up to three dimensions have 
been analyzed through separation of variables in the 
conventional way. 15.16.18 Further, one need not restrict 
oneself to L 2(R") spaces of functions, but use any dif
ferentiable group coset manifold17 and look for finite- or 
infinite-dimensional subalgebras in the enveloping al
gebra 42 of the group. Eventually, one would also like to 
extend the application of the global group method through 
matrix algebra (on an extended space, if possible), to 
other types of differential equations. 
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Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 
(Received 25 July 1974; revised manuscript received 7 November 1975) 

An explicit formula for the discrete Case normalization coefficient is presented in terms of functions related 
to the dispersion function. These functions are easily determined and provide the normalization coefficient 
without need of prior evaluation of the eigenvectors. 

The single -group (reduced) transport equationl 

is an eigenvalue equation for z: setting 
1 J dJ.l ¢(J.l)= 1, 

-1 

one obtains (z ri [ - 1,1]) 

¢(J.l)=CZ/2 
z- J.l 

with z determined by reimposing (2) upon (3): 

f 1 CZ 11 dJ.l 
1= ¢(J.l)dJ.l=2 -_-=M(z). 

-1 -1 z J.l 

(1) 

(2) 

(3) 

That is, the eigenvalues z are the zeroes of the function 
a(z), where 

a(z)= 1-- -- = 1 -M(z). cz f dJ.l 
2 z - J.l 

(4) 

Had ¢ been multicomponented (as for multigroup equa
tions), the eigenvalues z would similarly have been the 
zeroes of a function a(z), which then is the determinant 
of the coefficients of the linear system analogous to (0: 

a(z) = det( I - M(z»). (5) 

That is, (4) is simply the one-dimensional case of (5). 
We shall write the explicit form of the matrix M(z) 
later. 

A normalization factor N is defined for a solution to 
(1), according to 

N= f dJ.l J.l¢2(J.l). (6) 
-1 

By utilizing the solution (3) [with z replaced by zo, where 
a(zo) = 0], it is easy to verify that the value of N 

satisfies the well-known formula 

(7) 

For multi-group equations for particular (and small, 
e. g. , two) numbers of groups results similar to (7) have 
surfaced in the literature. 2 In this paper we attempt to 
determine just what the connection between N and a' 
is for a fairly general class of nonconstant, non isotropic 
multi group equations. 

To be exact, we investigate the equation3 

" (LZ - J.l1)· ¢(J.l) = z 6 Am(J.l)' f dJ.l' Bm(J.l') 0 ¢(J.l') (8) 
m=l -1 

for an a-fold degenerate nonconstant, nonisotropic 
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scattering kernel, with L the diagonal matrix of cross
sections: 

L= 

for an N-group problem. 

With M(z) the Net X Net matrix, 

we shall establish that 

where AI (z) is ith eigenvalue of M, and 

a=det(1 - M)= 11 [1 - Ai(z)] 
i-1 

In analogy to the solution of (0, one solves (8) by 
isolating ¢. Defining 

r dJ.lB(m)(J.l)'¢(/1)=~(m) (11) 
-1 

upon multiplying by (LZ - /11)-1, 

¢(/1)=Z(LZ-/1'1)-1.± A(m)W)·~(m). 
m=l 

Next, multiply by B(n)(/1) and integrate over /1: 

t B(n)( /1) 0 ¢(/1) d /1 = ~(n) 
-1 

O! 

=6 (t d/1 B(n)(/1)' Z(LZ - /1' 1)-1., A(m)(/1»' ~(m) 
m==l .. 1 

" ",.6 M(n)(m)(z). ~(m). 
m=l 

That is, 2:
m

(onm 1- M(n)(m\z))j3(m) =0, where M(n)(m) is 

defined by (9). Clearly, this is a usual homogeneous 
system of equations in Net. dimensions. Thus, apart 
from direct product subscripting, an et.-fold degenerate 
kernel presents the identical mathematical problems as 
the onefold kernel A.( /1)' B( /1'). Accordingly, with no 
loss of generality, we consider the notation ally simpler 
problem of the onefold degenerate kernel: 

(I - iVi(z») 0 ~= 0, ¢= z(Iz - /11)"10 A o~, (12) 
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where 

M(Z) = t d Il B(Il)' z(~z - Iln-1 
• A(Il), 

-1 

~= t B(Il)- 4>(Il)dll. 
-1 

Next, define the adjoint solution 4>*: 

4>* • (~Z - Ill) = z( J dil' 4>*(Il' ) 'A( Il')) • B( ilL 

In an identical fashion to the above, with 

P* = t d Il 4>* (Il) • A( J.L) 
-1 

one obtains 

and 

(13) 

(14) 

(15) 

(16) 

(17) 

(~ differs from f3* only when M is nonsymmetric. ) The 
solubility of either (12) or (17) is exactly the eigenvalue 
condition S"2(z) = 0, where 

S"2(z)=det(I-M(z)), (18) 

with f3 and f3*, respectively, right and left eigenvectors 
of M corresponding to the eigenvalue + 1; the condition 
on a Zo is that M(zo) should possess the eigenvalue + 1. 

Corresponding to the mth zero of 'liz) [i. e., S"2(zm) 
= 0] is a f3(m) and f3 * (m). As a natural nor malization for 
that solution, we choose 

(19) 

and shortly comment on when this condition. is tenable: 
At this point we cannot yet even comment on orthogonal
ity of different modes. Normalization on the solution 
through (19), having been set, the normalization co
efficient is determined: 

Nm = f dllll4>*(Il)' 4>(Il) 
-1 

and 

N =-z 2f3*(m)'M'(Z )of3(m) [where i\Ii ' = (d/dz)W.]. 
m m m 

(20) 

Equation (20) establishes some connection between N 
and M, although it requires the evaluation of both ~ and 
f3* prior to calculating N. It is our goal to provide an 
evaluation of N independent of explicit f3 dependence. 
Unfortunately, Eqs. (12) and (17) are not valid for all 
z: Rather, they are a compatable system of equations 
only for certain specific values of z (i. e. , the zm)' 
Accordingly, neither of (12) or (17) can be differentiated 
to be useful in (20). Thus, we are forced to pose a more 
flexible eigenvalue problem for M. Clearly, for any z, 
we can evaluate the elements of M(Z) and pose its eigen
value problem. Equation (12) poses a more restricted 
problem, in that it seeks out those special values of z 
for which the eigenvalue is + 1: For other values of z, 
M will possess eigenvalues different from 1 and z-
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dependent: 

i'vl(z)' Y(z) = A(Z)y(Z), 

where 

A(Zm) = 1. 

For a given z, there will, in general, be N different 
eigenvalues: 

Am(Z), m=1, ..• ,N 

(21) 

and, in general, at a zm satisfying S"2(zm) = 0, only one 
A will achieve the value + 1. Accordingly, we label the 
z-dependent eigenvalues with the same index that labels 
the z's that satisfy S"2(Z) = 0: 

(22) 

[Should S"2(z) = 0 possess a degenerate root, evidently 
exactly that number of the A'S must simultaneously 
achieve the value + 1 at that z-value.] For zm' (21) 
becomes 

M(zm)' ym(zm) = rm(zm), 

where r<m)(z) is the eigenvector associated with Am' 
That is, 

f3(m) = ym(zm). (23) 

Similarly, 

r,;; (z)· M(Z) = Am(Z)r,;; (z) (24) 

and 

(25) 

We are now in a position to examine orthonormality 
questions. 

M(z) • l'm(z) = Am(Z)l'm(z) 

=> l'n*(z), M(z)' l'm(z) = Am(Z)l'~ (z)· ym(z) 

and 

r~(Z)' M(z)= \(z)l'~(z) 

=> r~(z) • M(z)· rm(z) = \(z)l'~ (z)· Ym(z) , 

i. e. , 

(26) 

so that 

(27) 

Should all the eigenvalues be distinct, then these Ym's 
must span the N-dimensional space. Since, by (27), r~ 
is orthogonal to N - 1 linearly independent vectors, and 
is nonnull, it must have a projection upon the last, 
so that by appropriate normalization coefficients of the 
r 's, one can set 

(28) 

Accordingly, by defining 

(29) 

where (28) also guarantees G's invertibility. Clearly, 
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G accomplishes M's diagonalization 

Y~ • M' Ym= AmY~' Ym 

~ (G-1
• M' G)mn = AmOmn '" (A)mn' (30) 

However, with degenerate eigenvalues and M nonsym
metric, diagonalization is not in general possible. 
Should it be possible, M's spectrum is termed complete. 
We assume completeness from this point onwards. This 
is important because it guarantees the validity of the 
normalization posited in (19): Set m = n in (28) and 
evaluate at Z = zm: 

1= r*(z ). r (z )= Q*(m). Q(m) 
m m m m ~ ~. 

Also, 

O(Z) = det( 1- M(Z) = detG-1 (z)G (z)· det( I - M(Z) 

= det(G-1 (z) • (I - M (z))· G (z) 

= det( I - A(Z) 
N 

= IT [1 - Am(Z)]. (31) 
m:::l 

Since (21) holds for all z, we can differentiate it: 

M'(z) • rm(z) + M(z), r~(z) = A~(z)rm(z) + Am(Z)Ym(z) 

or 

Projecting upon r,!, paying attention to (24) and (28), 
we obtain 

r~(Z)' M'(z)' rm(z) 

= A~(Z)r:(z) • rm(z) + r,! (z)· (Am(Z) I - M(z», r~(z) 

=A~(Z). 

Finally, evaluating at z = zm' 

Y,! (zm) • M'(zm)' rm(zm) 

=~*(m)'M'(z ).Q(m)=II.'(z) 
m IJ m m 

so that 

(32) 

Thus, knowledge of the lI.(z)'s suffices to determine at 
once the zm's and Nm's. To rewrite (32) in terms of 0, I 

differentiate (31): 

O'(zm)= - A~(Zm) IT [1-lI. j (zm)] 
U m 

or 

(33) 

It is, at this point, perhaps useful to explicate these 
ideas by examining a two-group equation with constant, 
isotropic kernel, 4 

=(1 0) . = (cn 
C

12
) '" C ~ Oa,AB CC ' 

21 22 

and 

¢*(iJ.)(~Z - iJ.1)=z r ¢*(iJ.')diJ.'·C. 
-I 

Defining 

~= J diJ.' ¢(iJ.'), 

13* = J diJ.' ¢*(iJ.,). C, 

we have 

M(zl= z r diJ. (~z - iJ.1)-1. C 
-I 

(34) 

(35) 

with ~ and ~* right and left eigenvectors. Writing out 
(35), we have 

(

ztdiJ./(Z-iJ.) 0 ) 
M(zl= _I C 

o zrdiJ./(az-iJ.) • 

= t:1 
(1/ Ol~ o,n) , c',' (36) 

Calculating A(Z): 

det(AI -0'1 (l/OI:O,Jc) ~o, (37) 

which, after some algebra, reduces to 

11.2 
- A[Cnf(z) + (C2/a)j(az)] + (C/a)f(z)f(az) = 0, 

C '" detC. (38) 

Differentiating (38), 

2AII.' - A'[ Cnf(z) + (C 22/ a)j( az)]- A[Cllf(z) + C22 f'(az)] + (C/ a)f'(z)j(az) + Cf(z)f' (az) = O. 

Solving for A' and setting A = 1, z = zo, 

11.' __ (C/ a)f(zo)f(azo) + Cf(zo)f(azo) - [Cllf(zo) + C2d(azo)] 
- 2 - Cllj(Zo) - (C 2/ a)j(azo) 

so that 

N 
-_ 2,,( )-C 2(1/a)f(zo)j(azo)+j(zo)f(azo)-(1/C)[Cllf(zo)+C2d(azo)] 

0- zo" Zo - Zo j( ) ( /)j( ) 2 - Cll Zo - C22 a azo 
(39) 

To evaluate zo, one sets A = 1 in (38), which of course, 
is simply O(zo)=O as can be seen by setting A=1 in (37). 
Since f is a perfectly definite function 

f(z) = z t diJ./(z - J.L) = z ln I (1 + z)/(1 - z) I = 2z tanh-1(1/ z), 
-1 
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'once Zo is evaluated, No is obtained from (39) without 
further computation. It is to be recalled here that No 
of (39) is the normalization factor for the solution 
normalized to ~* • ~= 1, or 

(j diJ. ¢* (iJ.». C· (j diJ. ¢(J.L» = 1. 
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Models of Zermelo Frankel set theory as carriers for the 
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This paper is a first attempt to explore the relationship between physics and mathematics "in the large." In 
particular, the use of different Zermelo Frankel model universes of sets (ZFC models) as carriers for the 
mathematics of quantum mechanics is discussed. It is proved that given a standard transitive ZFC model 
M, if,inside M, B(fiM) is the algebra of all bounded linear operators over a Hilbert space fi M' there exists, 
outside M, a Hilbert space H and an algebra B(fi), along with isometric monomorphisms UM and VM from 
fiM into H and from B(fiM) into B(H). UM and VM are used to relate quantum mechanics based on M to 
quantum mechanics based on the usual ZFC model. It is then shown that, contrary to what one would 
expect, all ZFC models may not be equivalent as carriers for the mathematics of physics. In particular, it is 
proved that if one requires that an outcome sequence, associated with an infinite repetition of measuring a 
question observable on a system prepared in some state, be random, and if a strong definition of 
randomness is used, then the minimal standard ZFC model cannot be a carrier for the mathematics of 
quantum mechanics. 

I. INTRODUCTION 

The basic pOSition taken here and in the succeeding 
paper is that the relationship between physics and 
mathematics is deeper and more complex than has per
haps been realized. As a step towards understanding 
this relationship we take seriously here the fact that all 
the mathematics used by physics so far, and in fact 
most of mathematics itself, is considered to take place 
in intuitive set theory. This can be seen, for example, 
by examining most any comprehensive treatise in 
mathematics or mathematical physics where the first 
few pages usually give a brief review of set theory. Fur
ther on in such treatises one also sees such statements 
as "a Hilbert space is a set such that' , • , " the set of 
complex numbers is ... ," etc. 

There are many ways to treat axiomatically the in
tuitive concept of set. By far the most extensively 
studied and developed is Zermelo Frankel set theory or 
ZF set theory. This theory, which axiomatizes much of 
the intuitive concept of set, is adequate to encompass 
most of the mathematics done to date and all of the 
mathematics used so far by physics. More preCisely 
this means that all the mathematical theorems and re
sults used so far by physics can be cast as theorems 
and results of Z F set theory. For example the Hilbert 
space axioms give various properties of vector addition 
" + ", scalar multiplication", ", and the scalar product 
( , l. "+" is a map from H xH to H and as such is a set 
of ordered triples of elements of H. "0" is a map from 
C xH to H and as such is a subset of C xH xH, and so 
on. 

One often considers in physics many different Hilbert 
spaces, many different algebras, groups, etc. Formal
ly this is expressed by saying that the axiomatic theory 
of Hilbert spaces has many models where a model is 
a mathematical structure in which the axioms are true. 
Similar statements hold for the theory of algebras, 
groups, etc. 

Now the same also holds true for ZF set theory. 
That is, there are many collections of sets along with a 
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binary membership relation which satisfy the axioms of 
set theory. The existence of many different such Z F 
models or "universes of sets" as they are referred to 
is, perhaps, unfamiliar. However, it is an essential 
aspect of modern axiomatic set theory where much of the 
the work is directed towards the construction of models. 

Probably the main reason for this unfamiliarity is 
that the mathematics used by physics and most of 
mathematics itself is considered to take place in one 
universe, V, of sets. [V is that part of the Cantorian 
universe of sets which is axiomatizable in ZF set 
theory.] This is clear from the way mathematics is 
used in physics. An example of this, which will be dis
cussed more later on in Sec. III, is the uniqueness (up 
to isomorphism) of the scalar field of (standard) 
complex numbers, which is taken for granted in physics 
and most mathematics. In this case one carries out the 
mathematics of physics entirely within V and ignores 
entirely the existence of the other universes of sets. 

The concern of this paper begins with the following 
point. The different universes of sets, when viewed 
from the inside have all the same "common" properties. 
They differ only by such "esoteric" properties as 
whether or not the continuum hypothesis holds, 1 whether 
or not the universe is Godel constructible, etc. 

Now all the mathematical theorems and results used 
by physics so far are independent of these properties. 
For example, no theorem used in physics so far 
requires for its proof the continuum hypothesis or its 
negation, or the axiom of constructibility or its negation, 
etc. Thus as far as the mathematics of physics is con
cerned, all universes of sets are entirely equivalent and 
it should not matter which universe one takes as the 
mathematical carrier for physics. 

In this paper this point is examined in more detail. 
Among other things, it is suggested that there is a pos
sibility that this may not be true. In Sec. III some as
pects of quantum mechanics based in a model of ZF set 
theory are compared with quantum mechanics based on 
the usual informal mathematics. Part A gives some 
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necessary conditions which must be satisfied if a Z F 
model M is to be a carrier for the mathematics of 
quantum mechanics. In essence these conditions are the 
strengthened interpretative rules for quantum mechanics 
given elsewhere. 2 Sections Band C give the necessary 
correspondences between some of the mathematics of 
quantum mechanics inside M and outside M. In partic
ular it is shown in Part B (Theorem 1) that given a set 
H M which, inside M, is a Hilbert space, there exists a 
Hilbert space H outside M and a natural map V M to H 
which is an isometric monomorphism. However, V M is 
not in general an isomorphism. Section C gives similar 
results for the algebras of bounded linear operators 
over H ItI and H with a corresponding map V l1 • 

In Part D, VM is used to give a natural correspon
dence between quantum mechanics based on M and quan
tum mechanics based on the usual informal mathematics. 

In Sec. IV the equivalence of all universes of sets as 
carriers for the mathematics of quantum mechanics is 
discussed. It is suggested that all models may not be 
equivalent. In particular it is shown (Theorem 11) that 
if the definition of randomness used elsewhere2 is cor
rect, then the minimal standard model of ZF set theory 
cannot be a carrier for the mathematics of physics. 

This result is discussed in Sec. V with respect to 
different definitions of randomness. In particular it is 
noted that an important open question is to show how 
strong the weakest possible definition of randomness 
must be to not run into any inconsistencies or difficul
ties. Section II gives a preliminary discussion of those 
parts of standard mathematical logic and ZF set theory 
which are relevant to this paper. The discussion on ab
soluteness in set theory is especially relevant. 

II. PRELIMINARIES 

A. General 

In mathematical logic a theory such as the theory of 
groups, C* -algebras, Z F set theory, etc. , consists of 
a set of formulas as part of the language of the theory 
along with a particular designated subset of the formulas 
as the nonlogical axioms of the theory. 

The symbols of the language consist of the logical 
symbols V (or), 1\ (and), , (not),:3 (there exists), 
(for all) as well as =, and some nonlogical relation and 
function symbols, constant symbols, and a countable set 
of variables x, y, c, o. The atomic formulas of a lan
guage are those symbol strings built up directly from 
the nonlogical symbols without using any of the logical 
symbols except =. Thus in ZF set theory u = v and u E v 
with II, l' variables are the atomic formulas. The formu
las of a language are defined as the smallest class of 
symbol strings which contains the atomic formulas and 
is closed under the following: If I/J and () are formulas 
and It is a variable, then '4', I/JVa, ij;1\(),:3 ul/J, and u;p 
are formulas. 

Note in this definition ;p, 8, u, and v are syntactic 
variables and are part of the informal language (English) 
which is used to talk about formulas and variables. 
They do not belong to the object language. 

In a formula a variable is bound if it is acted on by a 
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quantifier; otherwise it is free. ThUS, in:3xxEY, x is 
bound and y is free. A sentence is a formula with no free 
variables. 

A theory is a language as specified above with a 
particular set of sentences designated as the nonlogical 
axioms. Besides the nonlogical axioms one has the 
logical axioms and deduction rules which are common 
to all theories. The set of theorems is the smallest set 
of formulas which contains all the axioms and is closed 
under the deduction rules. 

The above describes the formal grammar rules for 
a theory. A theory acquires meaning by interpreting it 
in various mathematical structures. A structure for a 
language is a universe of objects along with a speCific 
relation and function for each relation and function sym
bol in the language and a particular element of the uni
verse for each constant symbol. The variables (in a 
first order theory) range over the entire universe. A 
model for a theory is a structure for the language of a 
theory in which each of the axioms is true. 

Some important theorems about the relationships be
tween theories and their models are the following: A 
theory is consistent if and only if it has a model where 
a theory is defined to be consistent if not all sentences 
are theorems. A sentence is a theorem if and only if it 
is true in every model. For almost all theories there 
is no formula of the theory which formalizes the notion 
of truth in the models. One always has to go to a 
stronger theory. 

B. Z F set theory 

Z F set theory has been greatly developed in the past 
few years and several texts are available. 1,3_7 Here a 
few aspects which are most relevant will be reviewed. 

The intuitive idea of set is the following. 3 One starts 
with an empty universe (1. e. , the set theoretic vacuum) 
and forms sets at various stages by iterating a collection 
process. At each stage one forms all collections of sets 
formed by the collection process at all earlier stages. 
One can imagine having an infinite succession of stages. 
Then there is a following stage consisting of all collec
tions of sets formed at all the stages in the succession. 
Thus the empty set, 0, is formed at the first stage. The 
second stage gives the sets {a} and 0 and so on. A uni
verse of sets consists of all the sets formed at all stages 
by iteration of this collection process. 9 

Briefly one version of the ZFaxioms is as follows: 1 

(1) the axiom of extensionality, which says that two sets 
which contain the same elements are equal; (2) the 
existence axiom of the empty sets; (3) the axiom of un
ordered pairs, which says, given sets x and y, {x,y} is 
a set: (4) the union axiom, which says, given a set x 
there is a set containing all and only those elements 
which are members of some element of x; (5) the power 
set axiom, which says that given any set x there is a set 
whose elements are the subsets of x; (6) the axiom of 
infinity, which says that there is a set y which contains 
o and if x E Y so is x U {x} E y: (7) the axiom of foundation, 
which says that each set x has a minimal element y in 
the sense that x and y have no elements in common; (8) 
the replacement schema, which says that for each 
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formula q(x,y,p) if for each x there is a unique y for 
which q(x,y,p) holds, then for each set z there is a set 
W= {yl XE Z and q(x,y,p), where p stands for a set of 
parameters; and finally (9) the axiom of chOice, which 
says that for any set x there is a set y whose elements 
are obtained by choosing exactly one element from each 
member of x. 

The replacement axiom schema consists of an infinite 
number of axioms , one for each formula, so that Z F 
set theory has an infinite number of axioms. The axiom 
of foundation excludes any infinite descending E chains 
of the form· •• X n'l E xn ' •• E Xl E xO' 

In set theory one must distinguish between sets and 
proper classes. The general object is a class. A set 
is any class which is an element of another class. A 
proper class is a class which is not an element of any 
other class. From the intuitive construction, a set is 
any class which is generated at some stage of the col
lection process. If a class is proper, then for each 
stage of the process there is a later stage which gen
erates some members of the class. The universe of all 
sets is a proper class. Each formula q(x) of ZF set 
theory generates a class, by {xlq(x)}, which mayor may 
not be proper. 

A class is transitive if, for all Y, YEX- Y;:;X 
[capital letters are often used to denote the general 
object]. An ordinal is a transitive set each of whose ele
ments is transitive. The ordinals are well ordered by 
the membership relation; thus ex < {3 <+ Cl! E {3 for any or
dinals Cl!,{3. Each ordinal 0!={{31{3 is an ordinal and {3 
< Cl!}. 

In the intuitive construction process a new ordinal 
is generated at each stage. If Cl! is generated at some 
stage, the ordinal C/ U {(lI} = (lI + 1 is generated at the 
next stage. The ordinal (lI + 1 is the successor ordinal 
of (lI. A limit ordinal is an ordinal which is not equal to 
o and which is not the successor of any other ordinal. 
The natural numbers 0 (the empty set), 1 = {o}, 2 = 
= {1 , O}, ' , , are the finite ordinals. The set w of all 
natural numbers is the first limit ordinal. 

An important set theoretic construction generates the 
real and complex numbers from the natural numbers. 
The integers are constructed as equivalence classes of 
natural numbers and the rationals are equivalence 
classes of integers. The reals are constructed as 
Dedekind cuts of rationals (or equivalence classes of 
Cauchy sequences of rationals) and the complex numbers 
as ordered pairs of reals. 

The proper class, On, of all ordinals can be used to 
order the stages in the construction of a universe of 
sets. For example, V defined by 

Vo= 0, V" = P(V,,), 

V = u V" if (lI is a limit ordinal, 
,,<B 

where P( V,,) is the set of all subsets (power set) of V"' 
is a universe of sets. 10 

A model M of Z FC (Z F set theory with the axiom of 
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choice) is an ordered pair (M, R), where M is a class 
and R is a binary relation such that all the axioms of 
ZFC are true in M with R interpreted as the membership 
relation and M the universe of sets in M. A model M 
is transitive if M is transitive. M is standard if R is the 
the usual membership relation, i.e., if xEy<+xRy for 
all x, y in M. From now on all Z FC models considered 
here will be standard transitive models. V = (V, t=:) with 
V defined above is a standard transitive ZFC model. 

There exist many nonisomorphic ZFC models, both 
by the Lowenheim Skolem theorems and by direct con
struction. However, by Godel's incompleteness theorem 
this cannot be proved in Z FC. A stronger set theory, 
such as Kelly Morse (Quine Morse) set theory8,ll,12 is 
required. The general type of ZFC model theoretic 
expressions which are often theorems of ZFC are ex
pressions of the form "If ZFC has a (standard) model 
then' •• " or "If ZFC is consistent then ... " . 

For any class M and any formula 1>, M 1= 1> means 
1> is true in M. M 1= 1> stands for a formula in L zF,the 
language of ZF set theory, which is defined inductively 
as follows 13

; 

M 1= x E Y X E M and y E M and x R y , 

M 1='1> , .. M 1= 1> is false, 

M i= 1> V1>'" M 1= 1> or M 1= 1>', 

M i= 1> 1\ 1>' '" M 1= 1> and M 1= 1>' , 

MI=3x1> <+ 3xEM(MI=1», 

MI='I1 x1> '" '11 xEM(MI=1>). 

It is provable in ZFC that there is a formula in ZFC 
which expresses M 1= (-) for all formulas if and only if 
M is a set. 14 If M is a proper class, no single formula 
of ZFC expresses M 1= (-) for all formulas in L ZF' How
However, under most any restriction on the set of for
mulas' M 1= (-) is expressible in L ZF' For example, 
M 1= (-) restricted to any finite set of formulas or to 
the set of all formulas with"; n quantifiers or to formu
las with quantifiers restricted to some set are all ex
pressible by a formula in the language of ZF. 

A very important concept is that of absoluteness. 15 

Absoluteness has to do with properties of mathematical 
objects as seen from inside and outside various ZFC 
models. Let 1> (x ) be a formula of L Z F with x free in 1> 
and M a standard transitive Z FC model. 1> is M 
absolute if 

1>(a) »M 1= 1>(a) (1) 

holds for all a E M. If 1> is a sentence of L ZF' then 1> 
is M absolute if 1> <+ M 1= 1> holds. 

The meaning of Eq. (1) is the following. The formula 
1> determines a property of sets. A property of sets is 
M absolute if for each a in M a has the property when 
viewed inside M if and only if a has the property when 
viewed outside M. A set is M absolute if and only if its 
defining relation is M absolute. 

A formula 1> is absolute if it is absolute for all 
standard transitive ZFC models. A set is absolute if its 
defining relation is absolute. Note that absoluteness 
resembles in some ways the physical concept of invari-
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ance. In particular, it follows from Eq. (1) that if cp(x) 
is absolute, then, for every pair of standard transitive 
ZFC models M and N, if MeN, 

N \= cp(a) +> M \= cp(a) 

holds for all a E: ]\II. 

Many of the common sets and concepts are absolute. 
For example, x=y, XE:Y, xey, x is a function, x is a 
ordinal, etc., 15 are absolute. So is "x is a natural num
ber," "x is a rational number," "x is a real number" (as 
a Dedekind cut on the rationals), and "x is a complex 
number." Let cp and e be formulas. If cp and e are ab
solute, so are eVcp,cpve,' cp,3xE:y(cp), and"xE: 
E: y(cp). 15 

As an example of a property which is not absolute, 
let CP(x) be the formula of L ZF which expresses "x is the 
set of real numbers" and let M be any countable stan
dard transitive ZFC model. Then there is a set RM such 
that M \= cp(RM). But outside of M, RM is countable and 
thus is clearly not the set of R of real numbers outside 
M. Since "y is a real number" is absolute RM = R n M. 
Note also that inside M RM is uncountable (this is ano
ther property which is not absolute). There is no con
tradiction here since all 1-1 maps from w (the set of 
all natural numbers or finite ordinals) onto R M

, by 
means of which one defines the countability of R M

, are 
outside of M. 

C. Uniqueness of the scalar field 

One first notes that essentially all mathematical 
physics and most of mathematics refers to many Hilbert 
spaces, groups, algebras, etc., but to only one field 
of complex numbers, only one field of real numbers and 
rational numbers, and only one set of natural numbers. 
This is evident from references in the literature to the 
real and complex numbers. [It is assumed here that the 
scalar field for quantum mechanics is a complex num
ber field and not a real or quaternion field. ] 

The usual axiomatization of the scalar field, as an 
algebraically closed field of characteristic 0, ACF(0),3 
fails to give this uniqueness. By the Lowenheim Skolem 
theorems there are many nonisomorphic models of 
ACF(0).1G However, this axiomatization gives almost 
the best possible result for a first order theory since 
for each uncountable cardinal, A, all models of ACF(O) 
of cardinality A are isomorphic. 16,17 

There are several ways to recover the uniqueness of 
the complex number field. One way is to require that 
the field as a model of ACF(O) have cardinality 2~o. 
Then there is only one such field. [From now on, "one," 
"same," or "unique" will always mean up to 
isomorphism. ] 

Another way is to require that the complex number 
field, as a model of ACF(O), be connected and locally 
compact. Then there is only one such field. 18,19 Another 
method is by the direct construction (given earlier) 
which begins with the empty set. Each of these char
acterizations gives the same complex number field. 
Similar considerations apply to the real numbers. 

The above discussion can be formalized in ZFC. Then 
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all the relevant theorems become theorems of ZFC and 
are true in every ZFC model universe. Thus inside each 
ZFC model universe there exists a unique field of com
plex numbers of cardinality 2 ~o and which is connected 
and locally compact and is built up from the empty set. 
In particular the complex number field used in physics 
so far is this unique field in the ZFC model V. 

However, the above definitions of the complex number 
field are not absolute. Thus let M and N be standard 
transitive ZFC models and c and d sets such that, inside 
M and inside N, c and d are the respective unique com
plex number fields. In general, outside M and N, c and 
d are not isomorphic. If MeN, then this discussion can 
be carried on inside N. 

III. ZFC MODELS AS MATHEMATICAL UNIVERSES 
FOR QUANTUM MECHANICS 
A. Necessary conditions for a model 

From now on the discussion will be restricted to 
quantum mechanics. Except for Secs. Band C, the 
further restriction to observables which are questions 
will be made. Such a restriction is innessential, and it 
keeps the mathematics as simple as possible while re
taining all the essential features. 

Let M be a standard transitive ZFC model. The fol
lowing conditions are clearly necessary, but not suf
ficient if M is to be a suitable mathematical universe for 
quantum mechanics. 

(a): Let Sand Q be, respectively, collections of state 
preparation procedures and question measuring proce
dures. Let H M and B(H M) be sets such that, inside M, 
H M is a Hilbert space, and B(H M) is the set of all 
bounded linear operators over H M' Then there must 
exist maps '.IF M from S to B!j() and <I> M from Q to B!j() 
such that for all s E: Dom'.IF M and bE: Dom<I>M' inside M, 
wM(s) and <I>M(b) are, respectively, a density operator and 
and a projection operator in B!j(ML 

(b): Let t: w - RM be an increasing function inside M. 
Let (t, s, b) denote the process "carry out state prepara
tion procedure s, then carry out question procedure b 
on the system so prepared, observe outcome and dis
card system. Repeat this s -b measurement at calendar 
times t(O), t(l), .... " 

Then for each s,b, and t for which (t,s,b) is an 
infinite repetition of doing sand b at times teO), t(l) 000, 

there exists a sequence I/!tSb which must satisfy the fol
lowing requirements: (1) I/!tSbE: M and I/!tSb is random, 
(2) inside M 

}\1I/!t,b=TrM(wM(s)<I>M(b)) (2) 

holds where MI/! denotes the limit mean of I/! , (3) for 
each m the finite outcome sequence obtained by carrying 
out the first m repetitions of (t, s, b) is given by the first 
m elements of I/!tSb' 

These conditions (a) and (b) are necessary but clearly 
not sufficient for M to be a carrier for the mathematics 
of quantum mechanics. Condition (a) states the require
ment that preparation and question procedures must cor
correspond to states and projection operators in M. 
Note that "H is a Hilbert space" is not in general M 
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absolute. Thus the object H which is a Hilbert space 
in M is not in general a Hilbert space outside M. This 
will be discussed more later on. 

In regard to condition (b), it is clear that there are 
many processes which correspond to an infinite repeti
tion of doing sand b. Among other things, these pro
cesses are distinguished by when each repetition is to 
be carried out. It is assumed here that the instructions 
for s do not specify when s is to be carried out and the 
instructions for b include a time delay relative to 
preparation procedures. It is assumed that s and b 
include instructions on where they are to be done. 
Also inclusion of external fields is suppressed. 20 It 
should be clear that these assumptions are in some ways 
arbitrary and can easily be changed or relaxed without 
affecting the results of this work. The essential part t 
plays as far as this paper is concerned is as a name or 
label by means of which different infinite repetitions of 
sand b are distinguished. 

Note that condition (b) requires the mathematical 
existence of if!tsb in M. It does not say anything about or 
require that one actually be able to complete an infinite 
repetition of doing sand b. All one ever has in hand at 
any finite time is a finite initial segment of if!tSb [part (3)] 
of condition (b). 

The question arises why in condition (b) it is required 
that if!tsbE M and Eq. (2) hold in M. The reason is that 
if M is to serve as the mathematical universe for quan
tum mechaniCS, then M is also the universe within which 
one computes the mean of the outcomes of the first n 
repetitions of (t,s~b) [Le., X[n1/ltsb=L:;:~n-11/ltsb{j)) and 
requires that lim~n 1/ItSb = Tr M(W M(S)<I> M(b)) or Eq. (2) 
hold. Note, requiring if!tSb E M is the same as requiring 
the existence, in M of an infinite set of finite 0-1 
sequences 1/InE{0, 1}n for n= 1,2, '" such that m> n im
plies if!n is an initial segment of 1/Im• Note that 5, Q, w.lf> 
and <I> .II are all outside M. 

In condition (b) as given, the requirement that if!tSb is 
random is outside M, whereas one would expect that if 
M is to be the mathematical universe for quantum 
mechanics the if!tsb should be random inside M. Then all 
tests for randomness would be carried out inside M. 

The point to be made here is that for all the "usual" 
tests for randomness it makes no difference whether 
they are carried out inside or outside M. The reason is 
that their description is M absolute. This can be stated 
more precisely as follows: If T is an M absolute test 
for randomness, then, outside M, 1/1 passes T and IjJE M 
if and only if inside M if! passes T. Thus with respect, 
to these tests it is immaterial whether one requires in 
condition (b) "4!tSb is random "or" M F= if!tSb is random. " 

However, for strong definitions of randomness, there 
are "esoteric" tests for randomness which cannot even 
be defined in M if M is sufficiently "small." This point, 
which will be discussed more in Sec. VI, is why the 
requirement of randomness in condition (b) is given 
outside M. 

B. Hilbert spaces inside the and outside M 

As an aid in understanding it is worthwhile to compare 
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some aspects of quantum mechanics based in M and 
quantum mechanics based in the usual intuitive 
mathematics. 

Let sand b be state preparation and question mea
suring procedures. Then by condition (a), inside M, 
W M(S) is a density operator in B(H .II) and <I> M(IJ) is a pro
jection operator in B(H M)' For quantum mechanics 
based on the usual mathematics one also has by condi
tion (a) maps wand <I> such that w(s) and <I>(IJ) are re
spective density and projection operators in some B(Hl. 

Now one would like to know the relationship between 
wand wM and <I> and <I> M' In particular one would like to 
have the result that 

(3) 

holds outside M for all sand IJ in the respective domains 
of wM and <I>M' 

The main goal of this and the next sections is to show 
that this is always possible. That is, we shall show that 
if M 1= B(H .II) is the set of all bounded linear operators 
over the Hilbert space H M' then there is a Hilbert space 
H and operator algebra B(H) outside M as well as a 
natural correspondence from HM into H and from BM(H M) 
into B(H). We shall also show that if "T is an operator 
in BM(H)" is true in M, then the operator in B(H) which 
corresponds to T has the same eigenvalues as T. The 
main goal of this section is to prove the following 
theorem. 

Theorem 1: Let M be a standard transitive ZFC 
model and let H M be a set such that M I=H M is a Hilbert 
space. Then outside M there exists a set H and a map 
UI,{ such that H is a Hilbert space and UM is an isometric 
monomorphism of H Minto H. 

The proof will be given as a series of Lemmas. First 
the properties of H M outside M must be established. Let 
D be a subset of the complex number field C such that 
D is closed under multiplication, addition, and complex 
conjugation. A set J is a D pre-Hilbert space if J satis
fies the axioms of a pre-Hilbert space with the scalars 
restricted to D. 

Lemma 2: Let M and HM be as in Theorem 1 and C,I 
the set of all complex numbers inside M. Then, outside 
M, H M is a eM pre-Hilbert space. 

Proof: HM is a set, xEHM , x=y, and + is a binary 
function HM XHM - HM are all M absolute. 15 Thus x + v 
= z holds if and only if M I=x+ y= z for all x,y, z EHA!' 
Thus one has x + y == y + X ... M F= x + y = y + x and x + (y + 
+ z) = (x + V) + z ++ M F= x + (y + z) = (z + y) + z and x + 0 
=X'" M I=:X-+ O==x. Since M F=HM is a Hilbert space, + 
is associative and commutative on HM , and 0 is the 
additive identity element outside M. 

Similar arguments apply to scalar multiplication of 
vectors. Note that multiplication and addition of com
plex numbers themselves is absolute so /l' Y E C II <+ M 
1=/l'YEC,I[> Y*=/l<+MF=Y*==/l, etc. Thus, outside 
M, C

M 
is closed under multiplication, addition, and 

complex conjugation. 

Finally "the scalar product ( , ) is a binary function 
fromHMXHM to CM" is M absolute. Use of this with the 
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above gives the result that (x,y)= (y,x)*, (x,y+ z)= 
= (x ,y) + (x, z), (x, AY) = "-(x, y), and II x11 2 = (x,x) > 0 un
less x = 0 are all M absolute. Since HM is a Hilbert 
space inside M, ( , ) satisfies the requisite axioms out
outside M. QED 

Note that since both CM and HM are complete inside 
M, they are M complete outside M. However, they are 
not complete outside M. By CM (or H .II) being M complete 
is meant that each Cauchy sequence I/J of elements of C .II 
(or H .II) such that I/J lies in M, converges to an element 
of CM (or HM ). 

To construct a Hilbert space H from H .II, it is neces
sary to complete H M' The literature results cannot be 
taken over directly because HM is defined only over C .II 
and not over C. However, the changes needed are minor 
since CIf is dense in C [C .II contains all the rational 
complex numbers). 

To construct H, one can proceed as follows 21
: Let CM 

and H'M denote the sets of a11 Cauchy sequences, outside 
M, of scalars in CM and vectors in H M' Thus /E CM 
(or H'tt) implies that for each n,j(n) E CM [or j(n) EH MJ 
and lfn3mlfk >mlfl > mlf{k) - j(z)I < 2-n [orlfn3mlfk > m 
lfZ> m IIf{k) - /U)II < 2-n]. Note that there are many such 
/ which are not in M. 

Lemma 3: (1) / is a Cauchy sequence of elements of 
CM (or H M ) is M absolute: (2) /E CM or /E H'tt implies / 
is bounded. 

Proof: (1) By Lemma 2 and the absoluteness of arith
metic operations on the natural numbers lIf{k) - f{ll II 
< 2- n and Ij(k) - j(l)1 < 2-n are M absolute. Since W= set 
of a11 natural numbers is M absolute, the definitions of 
Cauchy convergence for any / E H'tt n M or / E C: n Mare 
M absolute [j is an infinite sequence of elements of 
HM or of CIf is M absolute]. (2) Since C is complete and 
CM = C n M, / E C"it implies that limnj(n) exists in C and 
that sUPn Ij(n) I exists in C. For /EH,: one has ilj(k)/l 
-il/(llil < II/(k) -f{llII. Thus the sequence {1I/(k)1I Ik 
E w} is Cauchy convergent and, by the above, sUPn lIj(n) II 
exists in C. QED 

Let [OJ be the set of all sequences of H: which con
verge to O. That is/E[O] Iflfn3mlfk>mll/(k)11 <2-n• 

Define/-gif/-gE[OJ. Clearly-is an equivalence re
lation. Let [j] = {glg- j} and define H to be H'MI-, the 
set of all equivalence classes of elements of H~. 

The various operations on HM are lifted to H as fol
lows: / + g is defined by (f + g) (n) = fen) + g(n) for all n 
E w and/, gEHu' For each aE C; and/EH; one simi
larly defines a '/by (a '/!(n)= a(n)/(n) for each n. By 
Lemma 2, both definitions are possible. 

One then defines addition and scalar multiplication on 
H by 

[/]+[g]=[j+g), (4) 

y-Ul=[a;,'/], (5) 

for all / and g in HM and a y in CM such that limn ay(n) 
= Y. Since C\1 is dense in C, for every yin C there 
exists such an Q1y in C'M. By standard arguments one 
shows that Eqs. (4) and (5) are well defined on H by 
showing that if/-f', g-g', and a-Q1', then/+g-/'+ 
+g' and a-/-Q1" /' for all/,f', g,g' inHM and a and 
0" in C'M. 
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By use of Lemma 2 one defines a scalar product on 
H'M as 

(f,g) = limif(n) ,g(n». 

It is easily shown by polar decomposition and Lemma 
3 that the limit exists, and, if /-/' and g-g', then (f,g) 
== (j' ,g'). Thus one defines a scalar product on H by 

([j], [g])= (j,g) (6) 

for all / and g in H"/.,. 
Lemma 4: H is a Hilbert space over C. 

Proof: One first shows that H is a pre-Hilbert space 
over C. Let Y, /1 E C, then (y+ /1)' [jJ == [Cay + al'U]' 
where ayE [Y], a!, d/1]. We define [y]=={al aE C'M and 
limn a(nl= Y}. Now « a y + a) • j)(n) = (ay + a I' )(n) 'f{n) 
== (Lemma 2) Q1,(n) 'j(n) + aJn) 'fin). So [Cay + aJ 'I] 
==[ar '/+ a!, '/J=[ay'/)+[()I!' '/]==Y'[/]+ /1.[j]. The 
proof of the other pre-Hilbert space axioms is handled 
in a similar fashion and is left to the reader. It remains 
to show that H is complete. Since the proof given by 
Yosida21 can be used without modification, it is also 
left to the reader. QED 

Theorem 1 can now be proved. Let M be a standard 
transitive ZFC model. Let HM be such that M 1= HM is a 
Hilbert space. By Lemma 3, outside M, HM is a CM 
pre-Hilbert space. By Lemmas 3, and 4 , H=H'MI-
is a Hilbert space constructed from HM • 

For each element a E HM let a denote the constant a 
sequence and [a) the corresponding element of H. Let 
UM be the map:HM-H defined by UMa=[a]. By con
struction of the scalar product, Eq. (6), onH, lIall 
= II [a) II so that UM is isometric. Fina11ya-b*O-[a) 

-[b]*[O] so that UM is 1-1. By Eq. (4) U,1f(a+!!)=U\1(a) 
+UM(b). ByEq. (5), U,1f(ya)=[ya]=[Yoli]=Y'[a]=. 
Y' U M(a) for all YE CM (is the constant Y sequence. ) Thus 
UM is an isometric monomorphism and the theorem is 
proved. QED 

This theorem thus insures the existence of a Hilbert 
space H:I- given an HM which is a Hilbert space in M, 
when no further conditions on HM are present in M. If 
further conditions are present, then different construc
tions must be used. For example, if M 'FHM =L2(R,/3(R), 
/1).11, then the corresponding space outside M is L2(R, 
/3(R), /1) which is not H:I-. 

Finally one notes the following properties of Hand 
H .II: Let B be a subset of HM inside M and let B = {[;;] I a 
E B}. Then 

Corollary 5: (1) M Fe B is an orthonormal basis set for 
HM - B is an orthonormal basis set for H. (2) M FeH .II 
is separable. H is separable. 

Prooj: (1) By Theorem 1 and the construction of B, 
M Fe (the elements of B are orthonormal and linearly 
independent) ~ the elements of B are orthonormal and 
linearly independent. Let Fin M be, inside M, the set 
of all finite linear combinations of elements of B and let 
F = {[~] I a E F}. One must show that F is dense in H. 
First for any a E HM and any n let C E F be such that M 
Fe !La - ell < 2- n• Th~n outside M, II a - c II < 2- n and 11[;;] 
- [c] II < 2-n where [cJ E F. 

For the general element [jJ of H, one has the fol-

Pau I A. Ben ioff 623 



                                                                                                                                    

lowing: For each n let mn be such that for all k;:> m n, 
II f(k) - j(mn ) II < 2- n • Since f is Cauchy, such an mn exists. 
Then II [f] - [j{i1iJ]1I 2 = limp (j(p) - j(mn) , f(p) - j(mn» 
< (2-n )2 or II [j] - Lf(m

n
)] II < 2-n• By hypothesis and the 

above proof, there js an a in F such that II a - j(mn) "_ 

<2-n. Thus lI[f]-[a]1I < lI[f]-[f(m)]1I + 1I[j(m )]-[a]1I 
< 2-n + 2-n• Since n is arbitrary, F is dense in H. 

(2) By hypothesis M ~ ::I orthonormal basis set B for 
H M which is countably infinite. The latter means that 
there exists in M a bijection h from w onto B. Clearly 
then, outside M, B is countably infinite, or from (1) 
H is separable. QED 

It should be noted that in general the implication in 
part (2) cannot be reversed. For example, if H M is non
separable inside M, and M is countable, then, by part 
(1) above, H is separable. 

C. B(JC) inside and outside of M 

For any Hilbert space H let B(j{) denote the set of 
bounded linear operators over H. A first goal is to 
prove a theorem for operators which corresponds to 
Theorem 1 for Hand H,jJ' 

One first defines a operator T on H M outside M to be 
CM bounded linear if T(a + c)= Ta + Tc, T(Ya) = y. (Ta) 
for all a and c in H M and for all A E C M' and there exists 
a JlE CM such that I (a, Tc)1 < JlI (a,c)1 for all a, c EH M' 
Then one has 

Lemma 6: Let M be a standard transitive ZFC model. 
Then 

(1) M ~ T is a bounded linear operator on HM - outside 
M, T is a C M bounded linear operator on HM • 

(2) The algebraic operations on B(j{ ,11) are M absolute. 

Proof: (1) T is a mapHM-HM is M absolute. By 
Lemma 2, addition on H M and multiplication by a scalar 
in CM are M absolute. Thus T(a+ c)= b -M ~ T(a+ c) 
= b -M ~ Ta+ Tc=b - Ta+ Tc=b. For each scalar A 
E CM' T(.>cal= b -M~ T(.>ca) = b - M ~ A(Ta) = b- AO (Ta) 
= b. So T is CM linear. 

Also by the proof of Lemma 2 (a, Tb) = r- M ~ (a, Tb) 
= r. Thus, if x is a bound for T inSide M, x is a bound 
for T outside M and T is bounded. 

(2) We must show that the defining operations for 
multiplication, addition, scalar multiplication, and the 
adjoint are M absolute. 15 By Lemma 2 and part (1) 

above: 

(a) M 1= W=S + T <+M l='<IaE. HM(Wa= Sa + Ta) eo '<I a 
EN\! (Wa=Sa+ Ta)#W=S+ T 

(b) Let AE CM' Then M ~ W= AT#M ~'<IaEH,jJ (Wa 
= A(Ta»#'<IaEHM (Wa= A(Ta» # W= AO T. 

(c) M ~ W= SoT ... M 1= '<I a E N\!(W(a) = S(T(a») # '<I a E 

EH M (W(a)=S(T(a») #W=S' T. Here we have used the 
fact that composition of maps is absolute. 

(d) M ~S= rt +> M ~ '<I a, b EHM(Ta,b)= (a,Sb) # '<I a,b 
EHM (Ta,b)=(a,Sb)#S=rt. QED 

For each Tin B(j{M) define T':H'i!-H'tJ and T:H -H by 
(T'f)(n) = T(j(n» for each nand 

624 J. Math. Phys., Vol. 17, No.5, May 1976 

T[f]= [T'f] (7) 

for each fin H'i!. By standard arguments one shows that 
if f- f', then T'f- T' f'. 

Lemma 7: For each TE B(j{ M) 

(1) T is a bounded linear operator on H, 

(2) M ~ (A= II Til) - A= II Til. 

Proof: (1) By Eqs. (7) and (4), T([j] + [g])=T([f+g]) 
=[T'(j+ g)]= (Lemma 6) [T' f+ T'g] = [T'f] + [T'g] = T[f] 
+ T[g]. Let YE C and Ily E C'i! with lima, = Y. Then by 
Eqs. (7) and (5), T(Y· [f])=T([a,jJ)=lT'ayf]= (Lemma 
6) [a" ·T'f]=y·[T'f]=y-T([f]. So T is linear onH. 
Let YEO CM be a bound for T inside M. Then, by the 
the proof of Lemma 6, y is a bound for T outside and 
II T[j] II = II [T'f] II = [limn II (T'f)(n) 112)1 /2"" y[lim

n 
IIf(n) 112)1 /2 

= yll [f]lI. So y is a bound for T. 

(2) Suppose there exists a YE C with y< A such that 
y= least upper bound for T. Then since C M is dense in 
C there exists a 6 E eM with y< 6 < A. So 6 is an upper 
bound for T. Then for all a EH M one has, outside M, 
II Tall = (T'a, T'a)1/2= II T[;:;-] II "" 611 [alII = 611 all so 6 is an 
upper bound for T outside M. Since II Ta II < 6 II a II is M 
absolute, M ~ (II Tall < 611 all for all aE.N'1 and 6 < A) 
which contradicts A being the least upper bound of T 
inside M. Thus A is also the least upper bound of T. 

QED 
These results can be combined into the following 
theorem which is the main goal of this section. 

Theorem 8: Let M be a standard transitive ZFC model 
and let B(j{M) be the set of all bounded linear operators 
over a Hilbert space HM inside M. Let H be as con
structed from H M in Theorem 1. Then the map F,{: B(HM) 
- B(j{) given by VMT= T [Eq. (7)] is an isometric 
monomorphism of B(HM) into 'B(j{l. 

Proof: By Lemma 7, the map F!I is into B(H) and is 
isometric. Let Sand T E. B(N\/) with M 1= S * T. By ab
soluteness S * T so that there is ~n a E. HM such that Sa 
* Ta or [Sa]*[Ta] which gives S[a]*T[a] or S*T. So the 
map VM is 1-1. Let M ~ W= ToS with W, T,S, E B(f/M)' 
Then for each [j]EH. W[j]=[W'f]=[(T-S)'f]=[T'(S'f)] 
=T'[S'f]=T-S'[j] or VM(ToS)=cVM(T)-VJ/(S), where 
Lemma 6 has been used. Let M 1= W= A' T with A c= CII' 
Then W[j] = [w'fl = C\· T'fl = A' [T'fl = A' T[j] or F,I(AT) 
= A • V M( T)(Lemma 6). Let W, S, T E. B(/(,\I) be such that 
M ~ W=S+ T. Then (Lemma 6) W[j]= [W'f] = [(5' + T')f] 
= [S'f+ T'f]=8[f] + T[j]= (S + T)[f] or VM(S+ T) = F\I(S) 
+ V M(T). Finally let Tt be the adjoint of T inside M. 
Th~n by Le mma 6, (Ta, Ii) = (a, rt b) for all a, Ii E. H M 

and ([j], (T)t [g]) = (T[j],[J.rl)= ([T'f],[g])=limn 
(T (j(n»g(n» = limn(f(n), Tt(g(n») = (f, Tt'g) = ([f], 
(Tt)[gJ). Since this holds for every [f], [g}ccc:H, (T)t 
=(T)t or (VMT)= VM(Tt ). QED 

Corollary 9: 

(1) M 1= T is a projection operator - V MT is a pro
jection operator. 

(2) M 1== T unitary - VM T unitary. 

(3) M 1== T self-adjoint - FliT self-adjoint. 

(4) M 1== T is a density operator - V.lfT is a density 
operator. 
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Proof: By Theorem 8: 

(1) M ~ y2 = T- (VIfT)2= VMT. 

(2) M 1= TtT= Trt = 1 - (VMT)t(VMT) = (VMT)(V MT)t = 1. 

(3) MI= T=c TT - VMT=c (VMT)t. 

(4) Let B be any complete basis set for H M inside M 
and let Tr denote the trace operation on BI}I) defined by 
TrT=L;xED(Tx,x), where D is any complete or.!.honormal 
basis set onH. Then by Corollary 5 with B={[a] laEB} 
M 1= TrMT= 1 - M 1= LEB (Ta, a)= 1 -LaEB «T[li) , [~]~= 
= 1)) - TrT=c 1. Finally, M 1=0,,; (Ta,a)"; 1 -0"; (T[a], 
[;])";1 for all aEHM• But {[a]laEH M} is dense inH so 
0,,; (T[J] , [J]),,; 1 for all [j] EH. QED 

Note that by the above result the trace operation Tr 
on BI}I) is related to the trace operation Tr M on BI,fI M) 
inside M by 

TrT=TrIfT. 

Finally, we give some aspects of the relationship 
between eigenvalues of T and of T. 

Lemma 10: 

(1) M 1= A is an eigenvalue of T - ,\ is an eigenvalue 
of T. 

(2) T[a] = A[;] for some a EH M - M 1=,\ is an eigen
value of T. 

(8) 

Proof: (1) By Lemmas 6 and 2, M 1= Ta = Aa - Ta = Aa 
- Ta= Aa - [Ta]= [Aa] - T[aJ=c A' [aJ. 

(2) T[a] = A[a] - [Ta] = [a). • a] where a. E CjJ is such 
that lima~ = A. This implies there is a Cauchy sequence 
hE H'i'.J with h - a and Ta =c a,h. Taking the strong limit 
(in H,I[ outside ,'vI), gives Ta = s-lima).h = s-lima).a=,\' a. 
Thus AE CM as s-lima).a exists in HM • By Lemmas 2 and 
6, Ta=Aa-MI=Ta=Aa. QED 

It is worth pointing out some ways in which operators 
in BI}I) which are outside the range set of V M (Theorem 
8) differ from those in VMB(H M)' For simplicity pro
jection operators only are considered. Let P= VM(p) 
and U be a unitary operator in BI,fI) which is not in 
V,\{BI,fI .II) and does not commute with P. Then in general 
UPU t is not in the range of VM • 

A more interesting difference is as follows: Let B 
be a set which, inside M, is an orthonormal basis 
set which spans HM with HM separable. Then, inside M, 
to each subset 5 of B, one can associate the projection 
operator P s with 5 spanning P sH. Correspondingly 
V\{(P s) (or P s) is a p:t::..0jection operator in BI}I) with 
P sH spanned by S = {[a] I a E 5} which is a subset of B. 

The point to be made is that there are many subsets 
of B and of B which do not lie in M. To each such 
subset 51 of B there corresponds a projection operator 
Ps in BI}I) such that Ps H is spanned by Sl which is a 
subset of B. Clearly, f6r each such 51' PS l is not in 
the range of VM as it does not correspond to any opera
tor in BI}IM)' Furthermore, there are a great many 
such operators. In particular, if M is countable, there 
are countably many such operators in the range of VM 

as, outside M, B has only countably many subsets 
which may be in M. However, there are 2 Ko subsets of 
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B outside M and thus 2l'\ 0 operators of the type PB 1 

which are outside the range of V M' Note that for all such 
operators outside the range of VM both 51 and B - 51 
are infinite sets. If either 51 is finite or B - Sl is finite, 
then Sl lies in M and PSI lies in the range of V M' 

Finally, one notes that the construction of Hand 
BI}I) outside M can be placed inside N, where N is any 
standard transitive ZFC model for which Me N. The 
reason is that all properties of sets which were required 
to be M absolute are, in fact, absolute for all standard 
transitive ZFC models N for which Me N. 

For example, Lemma 2 becomes, "Let M,N be two 
standard transitive Z FC models with MeN. Then 
M I=HM is a Hilbert space and elf the set of complex 
numbers -N 'rccHM is a CM pre-Hilbert space." Theorem 
1 is changed by replacing "outside M" by "inside N" 
with M and N as above. Similar changes occur in Corol
lary 5, Lemmas 6 and 7, Theorem 8, and Corollary 9 
and Lemma 10. 

D. Quantum mechanics inside and outside of M 

We now return to the question raised at the beginning 
of subsection B regarding the relationship between the 
maps '1'M and '1' and <I>M and <I>. '1' and <I> are the maps 
given by condition (a) for quantum mechanics whose 
mathematics is based in the usual intuitive set theory 
(denoted by QM). Note that QM=QMv, where V is the 
real universe of ZF sets. [Condition (a) for (QM) has 
been extensively developed by Ekstein. 20] 

First the natural assumption will be made that every 
state preparation procedure s and question procedure 
b in quantum mechanics based on M (denoted by QMM) 
is respectively a state preparation procedure and ques
tion measur ing procedure for QM. That is, it is as
sumed that Dom'1'M ~ Dom'1' ~ Sand Dom<I>J[ ~ Dom<I> 
~Dom<I> ~Q. 

By the results of the last two sections one can give a 
natural correspondence by requiring '1', '1' M' <I> M, and <I> 
to satisfy 

'1'(s)=c VM('1'M(S)) (9) 

for all s in the domain of '1' M and 

(10) 

for all bE Dom<I> M' Here VlI is the isometric monomor
phism of Theorem 9. By Corollary 10, V,\[('1'M(S)) is a 
density operator and V M(<I> M(b)) is a projection operator 
in BI}I), where H is related to HM by Theorem 1 and 
H M is the Hilbert space inside M for which the range of 
'1'M and <I>M lies in BI}I,lI)' 

By Eq. (8) one has from Eqs. (9) and (10) that 

Tr(\}I(s)<I>(b))= TrM(\}IM(s)<I> M(b)) (3) 

holds for all s E Dom'1' .II and bE Dom<I> .II or that Eq. (3) 
is satisfied. Thus '1', \}1M' <I> , and <I> .II satisfy the natural 
requirement that \}I(s) corresponds naturally to '1' M(S) 
and <I> (b) to <I> M(b) and the expectation values for mea
suring <I>M(b) on a system prepared in state \}I,\/(s) in 
QMM is the same as the expectation value for measuring 
<I>(b) on a system prepared in state \}I(s) in QM. 
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Furthermore, let Psb denote, inside M, the probability 
measure on B({o, 1}), the four element set of all subsets 
of {a, 1}, which is generated from s and b by >liM and <I> M, 

by 

(11) 

Then by the above Psb is also assigned to sand b, by>ll 
and <I>. Note that "Psb is a probability measure on 
B ({ 0,1 })" is absolute [proof: x is a real number 
(Dedekind cut) between ° and 1 is absolute as is x + V 
= 1 for x, y real.] Then, outside M, Psb is also a pr~b
ability measure on B({o, 1}). As a result the statistics 
for a single measurement of -It M(S) on <I>M(b) in QMM 
are the same as the statistics for a single measurement 
of >lI(s) on <I> (b) in QM. 

One can also apply a theorem of Halmos22 both inside 
M and outside M to generate the unique product measure 
P:b=~PSb and PSb ='l9 Psb inside and outside M respective
ly. By condition b) these measures gives the statistic s 
of any infinite repetition of doing sand b inside and out
side of M. The measures PSb andP~b are also related 
by a natural correspondence. This correspondence re
quires the coding of Borel subsets of {O, 1}w into the set 
of all infinite sequences of natural numbers23

,24 and will 
be gone into more in the next paper. 

In general there may be preparation and observation 
procedures in QM which are not in QMM. That is the 
containments Dam >lilt C;;; Dom>ll and Dom<I> M C;;; Dom<I> may 
be proper. This is particularly true if one adm~ts, as 
procedures, limits of sequences of other procedures. 
This is entirely consistent with the above because, as 
discussed in subsection C, the monomorphism V M of 
Theorem 9 is into and not onto, and there are many 
probability measures on B({o, I}) outside M, which do 
not exist inside M. 

IV. ELIMINATION OF Mo 

In this section it is shown that for strong definitions 
of randomeness, such as the one used elsewhere, 2 the 
minimal ZFC model Mo cannot be a carrier for the 
mathematics of quantum mechanics. 

The definition of randomness used here is as follows: 
A probability measure Pan B({o, 1}W) is correct for an 
infinite 0,1 sequence if; if for all Borel subsets B of 
{O,1}w, which are definable from P, if PB=1, then l' 
E B. A set B is definable from P if there is a formula 
Q(x, P) in the language L ZF of set theory to which a name 
P for P has been added such that'ifx(xE B +>Q(x,P)) 

holds. A sequence if; is random if there exists a product 
measure P which is correct for w. If P is correct for 
</J, one also says that </J is random for P. 

This definition accepts as random the constant 1 
sequence and the constant ° sequence. These can easily 
be excluded by requiring P to be nonatomic [p{¢}= ° 
for each singleton subset {¢} of {O, 1 }w] or, equivalently, 
0< p({1}) < 1. Such a restriction, however, makes the 
statement of condition (b) more cumbersome. 

Note that from the absoluteness of "PSb [Eq. (11)] is 
a probability measure and j~</J=psb({1})"one has that if 
</J is random and inside M, M</J=Psb({1}), then outside M, 
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P Sb is correct for 1) where Psb=?'J PSb is constructed 
outside M. 

For any set B let B = (B, E>. Define Dj(B) to be the 
set of all subsets of B which are L ZF definable from 
elements of B inside B. That is Dj(B)={CI for some 11 

there exists a formula Q in L ZF with II + 1 free variables 
such that 3 a1 """ an E B'1a (a E C +> B F Q(a, a1 ••• an))}. 
For each ordinal t3 define the structure Le = (C e, (~) 

inductively by 

if t3 is a limit ordinal. Then1,14 L = UeEonLe, where On 
is the class of all ordinals, is Godel's constructible 
universe and L is the smallest standard transitive 
ZFC model that contains all the ordinals. 

Let 0 be the smallest ordinal for which there exists 
a standard transitive Z FC model M such that 0 ci M. 
Define lYlo by 

Mo= U Le. (13) 
8<6 

Then Mo= (Mo, E> is the unique minimal standard 
transitive Z FC model. 1,25 That is, for any standard 
transitive Z FC model N, 1vIo ~ N. 

Mo has the following properties: ;\;10 is a countable set 
and /'vIa is definable1,26. That is, there is a formula q 
in L ZF such that'lfa(a E }vIa ... q(a)). Also each element of 
Mo is definable inside M. That is, for each a E ,Uo there 
is a formula q in L ZF such thap,25,26 Mo F'fy(y= a .. q(y)). 

The main result of this section is the following: 

Theorem 11: If the definition of randomness used 
here is correct, then Mo is not a possible mathematical 
universe for quantum mechanics. 

Proof: Assume the converse and let s, /, be such that 
in Mo ° < PSb( {I}) < 1, Eq. (3). Clearly such sand b 
exist. By condition (b), 1tsb ,=Mo and P'b =:/, j)Sb is cor
rect for </JtSb with Psb nonatomic. 

Now each element of 1'vIo is definable inside M O•
1,25,2" 

Thus let q be the formula such that Mo F'If x(x = Jtsb 
+> q(x)) which is equivalent to15 '1fy E ,Uo(x= 1'tsb++qMoCd), 
where qMo is the formula obtained by restricting all 
quantifiers in q to range over Mo. Let q~t be the formu
la (/11 (x):= (x E ;'vIol\qMo(x)) V(x ci ,'vI,/\):"'i' x)." Then 'If x(x 
= </JtsbO~q~to(x)) holds. Now Mo is also definable. 1

,2G Thus 
let e be the formula which defines 1\110 by 'If x(x rc: ,Un 
'"' e(x)). Let S(x) be the formula obtained from q~\lo(x) 
by replacing all'lfzEMo and3u'EMo by'lfze(z) and:! 
1Oe(1O), respectively. Then 'If x(x= >lItsb-S(x)) holds and 
thus Y'tsb is definable. Then {O, 1}'" - {1'tsbr is also defin
able in L Z F (by x E: {O, 1}w V, S(x)). Since P'b is nonatom
iC, P Sb({O,l("'-{zt sbr)=l and, by the correctness re
quirement, </Jtsb E: to, I}'" - {1 tsb}, which is impossible. 
Thus Mo is not a possible universe for quantum 
mechanics. QED 

Examination of the proof of this theorem shows that 
in essence what is proved is that if P is a nonatomic 
product measure and J is random for P, then l' ct Mo ' 

lt follows from this that Mo is not acceptable for only 
those sand b for which 0< Tr,\t (>lIMO(S)(<I>.\fO(h) < 1. If 
sand b are such that TrMo(>lIMo(~)(<I>Mo(h)=O or =1, then 
1'tsb is a constant sequence of 0 's or a constant sequence 
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of 1 's respectively and <Ptsb EO Mo. For these measure
ments, Mo is an acceptable universe for the description 
of the mathematics of the measurement and its infinite 
repetition. 

One consequence of this is that there are differences 
between classical and quantum mechanics with respect 
to the suitability of Mo. First one notes that conditions 
(a) and (b) are also necessary conditions which classical 
mechanics must satisfy provided one replaces B(/-I) in 
condition (a) by, say, the C*-algebra of bounded con
tinuous real valued functions over phase space. 

It follows from the above that in classical mechanics 
for any s EO Dom\}! M such that \}! M (s) is a pure state, Mo 

a a 
is suitable for every b EO Do mel> M • The reason is that the 
range set of eI> M is a Boolean algebra of questions and, 

o 
if \}! M (s) is pure, for every b EO Do mel> M and every infinite 
repet~tion Usb) of sand b, <PtSb is eithe~ a constant ° 
sequence or a constant 1 sequence. 

This is not true in quantum mechanics. In this case, 
if \}! M (s) is pure, then Mo is not suitable for every b 

o 
EO Do mel> Mo' It is suitable only for those b for which 
'liM (s) is dispersion free for el>M (b). o . a 

V. DISCUSSION 

It is important to recognize that the proof that Mo 
is not a suitable mathematical universe for quantum 
mechanics depends on how one defines randomness. 
This is expressed explicitly in Theorem 11 as an if
then state ment. 

For definitions of randomness stronger than the one 
used here, it is clear that the conclusions of this paper 
will still hold. The reason is that any sequence random 
under a stronger definition is random under the defini
tion used here. However, definitions which are either 
weaker than or not comparable with the one used here, 
and which cannot be rejected on some other grounds, 
must be examined individually. 

For example, consider the following definition which 
is a slight generalization of one used by Solovay. 23 

A sequence <P is lvIa-random if there exists a nonatomic 
lvIo product measure P such that, for all Borel subsets 
B of {a, 1(w, if B has a code in Mo and PB=l, then <P 
EO B. P=0P is a nonatomic ivIo measure if O<p({l})< 1 
and p EO Aio [for a description of the coding see Solovay23 

or Jech24]. 

This definition is weaker than the one used here. 27 

However, it is easy to show that28 if <P is Mo random, 
then <P i1vIo' Thus if this definition of randomness is 
correct, Mo is still not a possible mathematical universe 
for quantum mechanics. 

However, there are still weaker definitions such as 
those given by Martin Lof, 29 which avoid the difficulties30 

of definitions based on subsequence selection procedures 
and are such that one can show that sequences which 
are random in this sense exist in Mo. For these defini
tions the proof given in Theorem 11 fails, and it does 
not seem possible to exclude Mo as a possible universe 
for quantum mechanics by use of arguments based on 
randomness. 

An important difference between these weaker def-
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initions and the stronger one used here is that the latter 
includes "esoteric" properties which a random sequence 
should have. For example, the following property is 
included in the definition used here. There is a well 
ordering of the elements of the constructible universe 
L, Eq. (12), which is definable in L ZF' Since Mo 1= 
(every element is constructible)l,25 and constructibility 
is absolute,4 every element of Mo is constructible 
outside Mo. 

Let <Po be the first constructible 0-1 sequence in the 
definable well ordering which is not in Mo. Such a <Po 
exists since: (1) inside L, Mo is countable25 ,26 and {O, l}w 
is uncountable; (2) "<Po is constructible" is absolute. 
Thus <Po is definable in L ZF' Since {O, l}w - {<Po} is a set 
of measure 1 for every nonatomic product measure, the 
definition of randomness used here excludes <Po whereas 
<Po is not excluded in the definitions of Martin Lof. 

These considerations stress the importance of de
termining which definition of randomness is correct. On 
philosophical grounds, the author prefers strong def
initions of the sort used here since a random sequence 
of outcomes should not be definable even by an 
"esoteric" definition as in the example above. However, 
at present one cannot reject intermediate definitions 
such as those of Martin Lof. What is desired is a proof 
that the correct definition of randomness is at least as 
strong as (-). That is, that there exists a weakest 
possible definition. It is speculated here that such a 
proof will not be forthcoming until one develops a theory 
to treat both physics and mathematics together as a 
coherent unit rather than as two separate disciplines. 

The proof that Mo is not a possible mathematical 
universe is from a mathematical logical viewpoint, 
nothing new. There is no suggestion in the literature 
that the real universe, V, of sets, if such exists, 
is as small and simple as Mo. However, the point that 
can be made is that if there exists a universe V of sets 
as a ZFC model, which is more real than the others, 
then why V is one ZFC model and not another needs 
explaining. This work suggests that physics may have 
something to say about this problem. 
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relation between the two definitions of randomness. 

28Assume 1!J is Mo random, and </J E Mo. Then {</J} has a code in 
M ° and thus so does {O, l}w - {</J}. Let P be the Mo product 
measure which satisfies the definition of Mo randomness. 
Since P is nonatomic, P({O, l}w - {</J}) = 1 which g'ives </J E {O, l}w 
- {</J}, a contradiction. 

29p. Martin Lof, On the Motion of Randomness, Proceedings 
of Summer Institute on Proof Theory and Intuitionism, 
State University of New York, Buffalo, 1968, edited by 
J. Myhill, A. Kino and R. Vesley (North-Holland, 
Amsterda!)'l, 1970); Inform. Control 9, 603 (1966). 

30J . Ville, Etude critique de la notion de collectif (Gauthier
Villars, Paris, 1939). 
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This paper continues the study of the use of different models of ZF set theory as carriers for the 
mathematics of quantum mechanics. The basic tool used here is the construction of Cohen extensions of 
ZFC models by use of Boolean valued ZFC models [C = axiom of choice]. Let M be a standard transitive 
ZFC model. Inside M, B(HM ) is the algebra of all bounded linear operators over some Hilbert space HM • It 
is shown that with each state pin B(HM ) and projection operator 0 in B(HM ) one can associate a unique 
Boolean valued ZFC model M po' B:po is the algebra of all Borel subsets of ! 0,1 )W, the set of all infinite 0--1 
sequences. modulo sets of Ppo = ® Ppo measure zero with PpoC! 1)) = Trpo in M. Let IJIM and <PM be respective 
maps from the sets of state preparation and question measuring procedures into B(HM ). Let M =~, the 
minimal standard transitive ZFC model. It is then shown that with each state preparation procedure s E 
Dom(IJI

Mo
) and each question measuring procedure q E Dom(<PMo) and with each infinite repetition (tsq) of 

doing sand q at times teO), t(l), ... , if the definition of randomness is sufficiently strong, one can associate 
the Cohen extension Mo[I/Ir,q] ofMo by Iji,sq" Iji"q is the random outcome sequence associated with (tsq). A 
third condition, in addition to the two given in the previous paper, is then given which must be satisfied if 
a ZFC model M is to serve as a carrier for the mathematics of quantum mechanics. In essence it says that 
for each pair (tsq) and (wuk) of distinct infinite repetitions of doing sand q and of doing u and k with s, 

u E Dom('I'M) and q, k EDom(<PM). the two outcome sequences Iji"q and l)iwuk are mutually statistically 
independent. It is then shown that for a strong definition of independence, corresponding to the definition 
of randomness used previously, no Cohen extension ~[I)i,sq] of ~ can serve as the carrier for the 
mathematics of quantum mechanics. 

I. INTRODUCTION 

In the first paper, 1 hereafter referred to as I, some 
aspects were discussed of the use of different models 
of Zermelo Frankel set theory as carriers for the math
ematics of quantum mechanics. Among other things it 
was seen that for strong definitions of random outcome 
sequences, the minimal ZFC [Zermelo Frankel set of 
theory with the axiom of choice] model, Mo, cannot 
serve as a carrier for the mathematics of quantum 
mechanics. 

This paper extends the work of 1. The basic tool used 
here is the construction of Cohen extensions2

- 6 of ZFC 
models by use of the Scott Solovay technique of con
structing Boolean valued ZFC models. 4,5,7,8 Section II 
reviews the main results of L Section III gives some 
background material necessary for the remainder of 
this paper. Part A reviews some of the properties of 
Boolean valued models of ZFC. In particular the con
struction of the Boolean valued model MB from a stan
dard transitive ZFC model M and an M complete 
Boolean algebra B in M is given along with various 
properties of relations inside M. 

Part B outlines the construction of a Cohen extension 
M[G] of M from MB where G, as a subset of 8, is an 
M-generic ultrafilter on B. Part C specializes the gen
eral construction of Parts A and B to Boolean algebras 
which are measure algebras over Borel subsets of 
{O, 1}:;: the set of all infinite 0-1 sequences inside M. 
The main results of this part are given as theorems and 
lemmas since they are simple generalizations of the re
suIts of Solovay9 for Lebesgue measure on the real line, 
to arbitrary probability measures on {O, 1}:;:. The main 
results here (Theorem 5) says that to each P such that, 
inside M, P is a probability measure on J3 ({ 0, 1}:;:) there 
corresponds, outside M, a unique probability measure 
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Q on B ({ 0, 1}"'). In Part D the association between se
quences for which some measure Q is correct and M
generic ultrafilters on Bp is given. It is shown (Theo
rem 7) that if M is countable and P and Q are related by 
Theorem 5, then there is a canonical one-one corre
spondence between the set of sequences in {O, 1}'" for 
which Q is M correct and the set of M-generic nltra
filters over Bp • 

The results of Sec. III are applied to quantum mech
anics in Sec. N. In Part A quantum mechanics based 
on M with M an arbitrary standard transitive ZFC mo
del is considered. The main result, Theorem 11, says 
the following: With e~h state p and question observable 
o in Bf./-I M) where inside M, Bf./-I M) is the set of all bound
ed linear operators over some Hilbert space H M, there 
is associated a unique Boolean valued ZFC model MBpo 

where B po is the measure algebra over B ({O, 1 },~) con
structed inside M from the product measure P po =0Ppo , 

whereppo ({l}) = TrM(po). This theorem is discussed. 
Several ways of generalizing it, which may also be 
relevant for quantum mechanics, are discussed. 

In I two necessary conditions were given which must 
be satisfied if M is to serve as a carrier for the mathe
matics of quantum mechanics: (a) Every state prepara
tion procedure s and every question measuring proce
dure q corresponds, respectively, to a density operator 
1);M(S) and a projection operator iP M(q) in Bf./-I M); (b) With 
each (tsq) such that (tsq) is an infinite repetition of car
rying out sand q at time teO), t(1), '" there is associat
ed a random outcome sequence 1);t80 EM such that inside 
M, M1);t s o = TrM(1);M(s)iPM(q)). 

In Part B M is restricted to be Mo, the minimal stan
dard transitive ZFC model. Conditions (a) and (b) are 
used with the previous results to prove that (Theorem 
12) with each s E Dom(1);Mo) and q E Dom(iPMo ) such that 
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0< TrMu(<PMo(s) <l>MO(q» < 1 and with each tEMo such that 
(tsq) is an infinite repetition of doing sand q at t(O), •.• , 
for a sufficiently strong definition of randomness, there 
can be associated the unique standard transitive ZFC 
model Mo[<ptsq], where JHo[<ptsq] is the Cohen extension 
of Mo by z!;tSQ 0 

In Sec. V another condition which a model M must 
satisfy is given. It is that for any state preparation pro
cedures sand U E Dom(\}IM) with s *U and any pair of 
question measuring procedures q and k E Dom(<l>M) with 
q*" such that O<TrM(\}IM(s)<l>M(q» < 1 and 0 
< TrM(\}IM(u) <l>M(k» < 1, and for all t and WE M such that 
(tsq) and (wu!?) are respectively infinite repetitions of 
doing sand q and doing u and k, z!;tSQ and ~Wuk are mutual
ly statistically independent. It is proved that (Theorem 
15) if a strong definition of statistical independence is 
correct then no model of the type Mo[~tsQ] can serve 
as the carrier of the mathematics of quantum mechanics. 

In Sec. VI these results are discussed. Among other 
things it is noted that an important open problem is to 
determine which definition of randomness and indepen
dence is correcL 

II. REVIEW OF I 

In I, some aspects of a ZFC model as a carrier for 
the mathematics of physics as specialized to quantum 
mechanics were discussed. The following two condi
tions were given as necessary (but not sufficient) for 
a standard transitive ZFC model M to serve as the car
rier for the mathematics of quantum mechanics. 

(a) Let.s and Q denote the respective sets of state 
preparation procedures and question measuring proce
dures. Then there exist maps \}1M: e:.s -B(jI M) and <l>M: 
= Q - B(ll M) such that for each s E Dom(\}I M) e: 5 and each 
qEDom(<l>M)e:Q, M 1=\}IM(s) and <l>M(q) are respective 
density operators and projection operators in B(jI M)' 
[M 1=.(:1 means the formula 52 is true inside M.] 

(b) Inside M, let RM be the set of reals and let t: w 
-RM be an increasing function. Then for each s 
E Dom(\}IM) , q E Dom(<l>M) and t E M such that (tsq) is an 
infinite repetition of doing s followed by q [where for 
each j the jth repetition is done at time t(j)], there ex
ists a sequence z{!tSQ E{O, 1}'" such that: (1) ~tSQ EM and 
~'tsq is random. (2) Inside M 

where lJ denotes the limit mean and TrM is the trace 
operation on Bft-/ M) in M. (3) For each rn the outcome 
sequence obtained by doing the first m repetitions of 
(tsq) is given by the first m elements of ~tSq. 

(1) 

These conditions were discussed. In particular let 
QMM and QM denote, respectively, quantum mechanics 
based in M and quantum mechanics based in the usual 
intuitive mathematics. [Conditions (a) and (b) for QM 
are obtained by deleting all references to M in the 
above. ] 

The following theorem was proved: 

Theorem 1: LetHM and B(jIM) be as in condition (a). 
Then there exists outside M a Hilbert space It and the 
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operator algebra 1i{/t) and maps UM :/tM -H and 
VM: B{/IM) -B{/I) such that UM and VM are isometric 
monomorphisms. 

From this theorem a natural correspondence between 
the maps \}1M and <l>M of QMM and \}I and <l> of QM is given 
by reqUiring that Dom(\}IMK Dom(\}I), Dom(<l>M) ~ Dom(\}I), 
and 

\}I(s)= V M(\}I,iS» , 

<l>(q) = VM(<l>M(q» 

for all s E Dom(\}IM) and q E Dom(<l>M)' It follows that 

Tr(\}I(s ) <l>(q) ) = T rM(\}I M(S) <l> M(q» 

holds for all s E Dom(\}I M) and q E Dom( <l> M)' 

(2) 

(3) 

It was noted that Theorem 1 and Eqs. (2) and (3) also 
hold between any two standard transitive ZFC models 
M and N with Me: N and not just between M and the real 
world V of ZF sets. That is, toH M and B{/tM) inside M 
there corresponds a H Nand B{/-i N), such that inside N, 
H N is a Hilbert space and B{/I N) is the algebra of all 
bounded linear operators over It N, along with isometric 
monomorphisms UNM:H M -It Nand VNM:H M -It N' Simi
larly for QMM and QMN, Dom(\}IM)e: Dom(\}IN) and Dom(<l>M) 
e: Dom(<l>N). Also 

\}IN(S) = VNM-¥M(S) , 
(2') 

and 
TrN(\}I N(S) <l>N (q» = TrM(\}I M(S) <l>M(q» (3') 

for all S E Dom(\}IM) and q E Dom(<l>M)' 

Theorem 1 is used to construct the correspondences 
of Eqs, (2) and (3) only in the absence of any require
ments on H M and B{/I M) other than those given in condi
tion (a). If there are further requirements, for example 
that M'r=HMo=L2(R,i3R), /J.)M, then outside-M one re
quires thatH=L2(R,i3(R), J.l.). Then the maps UM and VM 

must be changed to correspond to this situation, 

All the mathematical results and theorems used so 
far in quantum mechanics (and in physics) can be cast 
as results and theorems of ZFC. Since they are true in 
every ZFC model, all ZFC models should be equivalent 
as carriers for the mathematics of quantum mechanics. 
This includes the real world V as well as any other 
ZFC model M. 10 

It was then shown that this may not be correcL In 
particular the following theorem was proved. 

Theorem 2: If a strong definition of randomness is 
correct, then the minimal standard ZFC model, Mo, 
cannot serve as the carrier for the mathematics of 
phYSics. 

In particular the theorem was proved, using condi
tion (b), for the following strong definition, 11,12 of ran
domness, A sequence ~ is random if there exists a pro
duct measure P=0 p oni3({O, 1}"'), the set of Borel sub
sets of {o, 1}"', with P E Mo such that P is correct for z!;. 
P is correct for z{! if for all Borel subsets B of {O, l}w, 
if B is definable from P in L Z F, the language of set the
ory andPB=1, then <pEB, 
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It was noted that the proof of the theorem also holds 
for the definition of randomness which is in essence 
that given by Solovay9 and fails for the weaker definitions 
given by Martin Lof. 13 An important open question is to 
discover which definition of randomness is correct. 

III. COHEN EXTENSIONS THROUGH BOOLEAN 
VALUED ZFC MODELS 

A. Boolean valued models of ZFC 

Here some properties of Boolean valued models of 
ZF set theory are briefly reviewed. For a more com
plete treatment the reader is referred to the litera
ture. 4 ,5,7,8 

Let M be a standard transitive model of ZFC. Let 
13 E M be a Boolean algebra which is complete in M; 
that is, for all A cB and A E M, Inf A and Sup A exist 
in B. [That is, inside M, 13 is a complete Boolean alge
bra. ] Define MB as follows. 4,5 For each ordinal (l' 

l'v1~ =0 (the empty set), (4a) 

!vii'l ={ u [11 EM and u is a function with domain 

C MIJ and range cB}, (4b) 

MIJ =u M~ if (l' is a limit ordinal, (4c) 
6<a 

,vP = U M~, 
O!EOnM 

where OnM is the class of all ordinals in M. Jv!3 is the 
class of all 13 valued functions in M which are predica
tively defined. That is, each 11 E Jv!3 is defined in terms 
of previously defined functions only. 

Let Q denote any formula in the language of set the
ory and let IIQII denote the Boolean value of Q in MB. 
That is, for each Q, IIQII EB. IIQII is defined as fol
lows. 4,5 For each 11 E MB let the rank, p(u), of u be the 
least ordinal (l' such that 11 E Mf}+l' Let u and v be ele
ments of MB. One defines lIu=vll and IIUEVIl by simul
taneous recursion on p(u) x p(v) as follows; 

Ilu Evil = .0 v(w) ·ilw =ull, (5a) 
wEDomv 

111l=d= n (u(w) => Ilw Evil) 
wEDom(u) 

x n «z) => liz E ull) . (5b) 
<EDom(v) 

In these expressions L: and TI denote respectively the 
least upper bound and the greatest lower bound in 13 • 
Dom(u) = domain of u,. denotes the Boolean "and, " and 
b => c = b" + c, with + the Boolean" or" and 1 the Boolean 
negation, denotes the Boolean "implies." Expressions 
(5) are the Boolean equivalents of U E v -3 W (w E VA W 

=u) and II =1' -'fIW(WE ll-W E 1')/\ 'fI z(z E V -z E u) of 
ordinary two valued logic. 

For any formulas Q and Q' of L ZF one has the follow
ing4,5; 
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(6a) 

(6b) 

ilQvQ'1I = IIQII + IIQ'II, (6c) 

IIQ - Q'II == IIQII ==> IIQ'II, (6d) 

il3uQII ==LIIQ(u)lI, (6e) 
u 

II 'fIuQ II ==TIIIQ(u)ll, (6f) 
u 

where L: and n are over all U E M. 

From these definitions, many properties can be ob
tained, 4,5 and a few are given here. One has u E Dom(v) 
-v(u)~lluEVII, Ilu==ull==ltheunitofB, Ilu==vll.Q(u)11 
~ IIQ(v)ll, 113UEV(Q(u»11 ==L:uEDOm(V)V(u) .IIQ(u)ll, and i3 
lib' u E v(Q(u» II == TIuEDOm(V)V(u) => II Q(u) II for all u, v E M 
One has the maximum principle8,4 which says that if a 
formula is pf the form 3 xQ(x) then there exists an ele
mE;,nt v E Mjj such that IIQ(v) II = 113 uQ(u) II, v is unique if 
Mfj is separated (see belowL 

An element v E MB is extensional if for all u E Dom(v), 
v(u) = IIUEVII. 4 Note that in general u(t"Dom(v) does not 
imply Ilu E v II = 0. Also one can have Ilu = v II = 1 with u 
"* v. A Boolean valued structure MI3 for which Ilu = v II 
= 1 implies u = v is called separated. One can always 
COJ,lstruct a separated structure MI} from MB by letting 
M~={[v]1 vEM} with [v]={ullIll=VII =1 and u is of mini
mal rank}. E and = are lifted onto M~ by defining II[u 1 
E[v]II=lluEVII and II[u]=[v]II=llll=vll forallu,vEMIJ. 
For each formula Q one has then IIQ(u1 •• ,un ) II 
= IIQ([u1 ]· •• [un)) II. 

Let:ME = (MI3 , E, =) with E, = defined as in Eq. (5). 
One says that a formula Q is "true" in MB or "13 valid" 
in:ME if IIQII = 1. As in the 2 valued case this is denoted 
by:ME I=Q. Ni3 is aB valued model of ZFC. That is 
all axioms (and theorems) of ZFC are 13 valid in MB. 

There is an embedding of Minto MB defined as fol
lows,4,5 Let M2 be defined by Eq. (4) with the two ele
ment Boolean algebra 2 ={ 0, 1} replacing B. JvJ2 is the 
class of all functions in M which have values in 2. Let 
it be the class of all functions in Iv1 which have value 1 
only. One clearly has ,VI c M2 eM. There is a natural 
isomorphism between M and it given by the E recur
sion, 4,5 

0=0 (the empty set in M), 

Dom(:~) =tv [y EX}, 

-~(v) = 1 for all Y E Dom(x). 

One has IIX=:;II ==1-;==; 11;'==;11 ==O-x*y IlxEylr 
v v -, - , 

=l-xEY, and IlxEyll=O-XEY for allx,YEM. 

(7a) 

(7b) 

Inside M the (standard) natural numbers are 0, i, .. " 
ii, .. " where 0,1, .. " n are the natural numbers. That 
is, let Q(x) be the ZF formula which says "x is a natural 
number." Then IIQ(u)11 =L:nEw 111~=ull and IIQ(n)II=1 for 
each nEW. Similarly for each real number r in M one 
has; in MB. Similar constructions hold for other ob
jects such as 0-1 sequences, etc. 

MI3 also contains many nonstandard objects. 14 For 
example,4 let bl. be the complement of some element 
b EI3 and define v by v = b. n'i + b".n with m "*n, That is, 
v(k) = b. m(k) + b". n(k) for all!? < max(n, mi. Inside MB v 
is a natural number as II Q(v) II = 1. But v corresponds to 
neither n nor m of M. 
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Inside -M3 one can express "u E M~' by a formula QM(U) 
whose4

,5 Boolean value is given by IIQM(u) II =bXEMIIX=UII. 
The sum in this can be limited to range over all x for 
which x E M§(u), Eq. (4), i. e., all x with rank.:;; rank u. 
Note too that for the v defined above IIQM(V) II = 1 or 
M/3 1= v EM holds. If B is nonatomic [which is the main 
type of interest here}, then MB also contains many ele
ments which, inside M/3, are not elements of M. For 
example, let g be the function defined by Dom(g) 
={b 1 b EB} and g(b) = b for each b EB. Then one has4 ,5 

IIQM(g) II = 0 if and only if B is nonatomic. 

Another example which will be referred to later is de
fined as follows: For each nEW and j E{ 0, 1} let (~,j) v 

denote the function whose domain is (~,]) = {{tl} v, {n,}} ), 
and whose range set is {l}. That is, "(n, J) v is an ordered 
pair in M of natural numbers nand j E {O, 1}" is B valid. 
Define 1jI as follows: 

Dom(ljI) ={(~,j) v I nEw, j E{ 0, 1}}, (Sa) 

1jI«~, 0) v) = (ljI«n, i) V»l. (Sb) 

Then one can show that 111jI is an infinite 0-1 sequence 
II =1 and IIQM(ljI) II =0 if and only if 

D ljI«n, ¢(n» v) = 0 (9) 

for each nE wand for each ¢ E{O, 1}~. {Proof: 111jI is an 
infinite 0-1 sequence II = 1 follows from II(n, 0) v E 1jI 
y (t'i, i) v E 1jI11 = 1 for each nand II(n, 0) v E 1jI11 (~, i) '" E 1jI11 
= 0 for each n. Next IIQM(ljI) II = LEMIIX = 1jI11. By Eq. (5b) 
and the definition of QM and x, IIX = l/JII = DYExIIY E 1jI11 
. D(n,j )EwX (O,l ) (ljI«iU) "')1 + x«n,]) "')). By Eq. (5a) II)! E 1jI11 

= 0 unless YEW x{ 0, 1}. Thus Ilx = 1jI11= D(n j )E,fljl«n, J>"'l 
. D(n,n<tA«n,jn 1

• From Eq. (Sb) one ha~ Ilx = 1jI11 = 0 
if x such that (1) for some n, (n, 0) E X and (n, 1) E x, or 
(2) for some n, (n, 0) ri x and (n, 1) ri x. Thus, IIQM(ljI) II 
= L 0E {O,l/X} II¢ = 1jI11 = 0 if and only if Eq. (9) holds for 
each ¢ E)O, 1}~.} 

Thus one can see that there are many elements in ME 
which, inside ME, do not belong to M. Recall that, by 
the construction of MB, MBcM. There is no contradic
tion here since ME c M is a statement outside ME and 
M C ME [both containments are proper} is a statement 
inside ME. 

MB also has the following property. Let 7T be any auto
morphism of B. 7T induces an automorphism n of M 
given by4,5 Dom(nu) ={nv 1 v E Dom(u)} and 

(nu)(ITv) =7T(U(V» 

for all v E Dom(u) and for all It EM. 

The construction of ME from M can be iterated. 8 That 
is, let C be such that MB I=C is a complete Boolean 
algebra. Then inside ME one can construct MB)C, which 
is also a Boolean valued ZFC model. This construction 
can be iterated into the transfinite. B 

So far the discussion in this section has been carried 
on outside M. It can, with minor changes, be carried 
out entirely inside M. 5 From here on, though, the dis
cussion cannot, in general, be carried out inside M. 

B. Cohen extensions 

Let M be a standard transitive ZFC model and, in-
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side M, letB be a complete Boolean algebra. An M
generic ultrafilter C on B is a nonempty subset of B
{o} such that (1) is bE C, and C EB and b.:;; c, then C 

EC, (2) if bEC and CEC, then b'CEC, (3) for each b 
E C, either b or b1 E C, and (4) for each subset D of C, 
if DE M, then lID E C. That is, C is an M-complete 
ultrafilter on the positive elements of B. 

In general C is not in M and if B is nonatomic in M, 
C is never in M. 5 Also, if B is countable, then there 
always exists an M-generic ultrafilter on /3. 4 Thus one 
can always ensure the existence of M-generic ultra
filters on B by requiring M to be countable. 

The Cohen extension M[C} of M by C is defined as 
follows 5: For each ordinal Q! in M one defines an inter
pretationY G", of M", [Eq. (4)] as follows: 

..9 GO (O) =0, (lOa) 

if Q! =13 + 1, then for each u E M~ 

..9G",(u)={..9Ga(V)lvEDom(u) and U(V) EC}, (lOb) 

and if Q! is a limit ordinal 

Then!J G is defined as 

!J G = U !J Ga, 
aEOnM 

(10c) 

(10d) 

where OnM is the class of all ordinals in M. Y G is called 
the interpretation of MB [Eq. (4)} by c. 5 Finally M[C] 
is defined as the range class of Y G' That is, 

M[C]= U {9Ga(V)IVEM,f}. (11) 
"'EOnM 

M[C] has some interesting properties and some are 
given here briefly. F or any x E M[ C] let x denote a name 
for x in MI3. That is, .9 G(x) = x. One has that Me;; M[C] 
[proof:!J G(x) =X for each x E M] and G E M[C} [proof: 

!J 0<9) =C, where 9 was defined in part A]. 

A very important property of M[G] is that for any 
formula Q of L ZF 

M[G] 1= Q(~ '" an) -IIQ(~ .. ' a,)11 E C (12) 

holds for each ~ ... an E M[C]. From this and the fact 
that MB is a Boolean valued ZFC model, one has the 
result that M[C] is a ZFC model. M[G} is also a stan
dard transitive model if M is, and is the smallest mo
del such that Me;: M[C} and C E M[C}. M[C] is countable 
if and only if M is, and has the same ordinals as M. 
Every cardinal of M[C] is a cardinal of M. If B satisfies 
the countable chain condition in M [i. e., in M every 
subset of /3, of pairwise disj oint elements is at most 
countable], then M and M[G] have the same cardinals. 4 

C. Specialization 

The following is in essence a simple extension of the 
work of Solovay9,5 to include different probability mea
sures. Let M be a countable standard transitive ZFC 
model and inside M let{O, 1}~, B({o, 1}~), and P be re
spectively, the set of all infinite 0-1 sequences, all 
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Borel subsets or{O, 1}~ and a probability measure on 
B({O, 1}~), LetB be the measure algebra15 Bp =B({O, 1}~)/ 
9 p, where in M 9p is the ideal of all Borel sets of P 
measure O. It is known4 that B p is a complete Boolean 
algebra which is nonatomic if and only if P is nonatomic 
[p is nonatomic if P{¢}=O for each zpdo, 1}~ and a 
Boolean algebra B is nonatomic if for each b EB - {a} 
there is a b' such that 0 < b' < b.] 

One can now construct, by Eq, (4), the Boolean valued 
ZFC model MBp in M. To proceed further, it is neces
sary to relate Borel subsets of {O, 1}~ and probability 
measures inside M to the corresponding objects outside 
M. This can be done by a coding of the Borel sets into 
wW, the set of infinite sequences of natural numbers. 9 

To construct the codes, one first notes that the Borel 
subsets of {O, l}w can be defined as follows by induction 
on the ordinals5

: 

Bo={BnilnE:w and ido, 1} 

and Bni ={1' I 1'(n) =i}} 

For each odd ordinal a 

B" ={BIB={O, l}w - B' where B' E:Bs for some 13 < a. 

For each even ordinal a 

B" ={BI B=UBm where for each rn E W, 
m 

B({o, l}W) = U Bo;, 
0; <Wi 

where Wi is the first uncountable ordinaL 

The codes and their corresponding Borel sets are 
constructed as follows 5 ,9: 

Co={jlfE: wW,j(O) =0 andf(2)E:{0, In (13a) 

and for each f E: Co the Borel set coded by f is given by 

Bf ={¢ 11'([(1» = f(2)}. 

Let T: WW - WW be defined by (Tj)(j) = f(j + 1) for each j, 
Then, if a is odd, 

Co; ={jlf E: w, f(O) = 1 and 

Tf E: Cs for some i3 < a} 

and for each f E: C" 

B f ={O, l}w - BTf. 

(13b) 

Let J be a one- one map of w x wanta w - {o} [for exam
ple, J(m, n) =(2m + 1)2n] and for eachfand m let fJm be 
the sequence defined by fJ men) = f(J(rn, n) for each n, Let 
13 : w - a be a sequence of ordinals all < a. If a is even, 
define C" by 

C" ={j\f E: w, f(O) = 2 and fJ mE Cs } 
m 

and for eachfE: C" 

Bf=UBfJm • 
m 

Finally define C by 

C= U C" 
Q: <Wl 
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(13c) 

(13d) 

From the above it is clear that the map f - Bf is a map 
from Canto B ({ 0, I}"') which preserves the structure. 
The map is not 1-1 since a Borel set can be constructed 
in different ways, Also each f encodes its unique de
composition down to the elements of Co, the generator 
seL 

The reason that one works with codes rather than the 
Borel sets is that, unlike the Borel sets, the codes are 
absolute. For example f E: wW, f(O) = 0 and f(2) = 1 is 
absolute but B f ={ 1'1 ¢([(1» = 1} is a different set inside 
M than it is outside. In general one has the following: 
"f is a code" is absolute and the structure of f is ab
solute. That is, "f is a generator code, " "f codes the 
complement of the set coded by Tf, " and Hf codes the 
union of the sets coded by fJ m for 111 = 0, 1, . , ." are all 
absolute. 5,9 

The natural correspondence from the Borel subsets 
of {O, 1}~ inside M into the set of Borel subsets of {O, 1}'" 
outside M is given by the correspondence 

(14) 

for each code fin M, Bf and B f are the Borel sets coded 
by f which are in M and outside 1'1'1 respectively, Since 
"1' is an infinite 0-1 sequence" is absolute Bf = B f 
n{o, 1}~. 

The correspondence from probability measures inside 
M to those outside M is given by the following theorem. 
First some preliminary definitions and lemmas are 
needed. Let a be an even, countable ordinal. A code 
f E: C" is n finite if for all m? 11 fJ m = fJn' Let f be any 
code in C,,' a even. Define for each 1/ the function 
fn E: W'" by /"(0) = 2, for each 111 -:s n, f; m = fJ m, and f; m 

=fJn for each m >n, fn is called the /Z constant code of 
f. 

Lemma 3: (1) "f is n finite" is absolute. 

(2)fE:C"-/"E:C,, for eachn. 

(3) '~fn is the n constant code off" is absolute. 

Proof: (1) f is a code is absolute5
,9 as is the definition 

of J, 13 [Eq, (13c)], andfJm=fJn' 

(2) Obvious from the definition of /" and C". 

(3) Follows from 1 and the fact that the structure of 
the codes is absolute, QED 

Lemma 4: Inside M let S be a subset of the real line 
such that supMS exists. Then outside M, sup Sexists 
and sup S = SUpM S. Similarly, if infM S exists in M, then 
outs ide M, inf S exists and inf S = infM 5. 

Proof: Since "5 is bounded" is absolute (for all mo
dels N such that N~ AI) sup S exists if and only if M 

l=supMS exists. Clearly sup S-:s supMS. Suppose sup S 
< supMS. Then there exists a rational number t such 
that sup 5 < t < supMS or 'fI r E: S (r < t). Since every ra
tional number is in M and 'firE: S (r < t) and t < supMS are 
absolute, one has M 1='fIrE S (r < t) At < supMS which is 
a contradiction. A similar proof holds for infM Sand 
inf S. QED 

Theorem 5: Let M be a standard transitive ZFC mo
deL For each P E: M such that M I=P is a probability 
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measure on B ({o, 1}~), there is, outside M, a unique 
Q such that Q is a probability measure on B ({ 0,1 }W) 
given by 

QBf =PB1 (15) 

for each code f c=: M. 

Proof: Inside M define a function q on the set CM of 
codes by 

qf= PB1 (16) 

for all f E C M
• Then from the definition of codes one 

has (a)fECo-O~qf~l, (b) Q odd-qf=1-qTf, for all 
fEC~, (c) Q even-for allfc=:C~, qf=surfLqf"ln 
= 1,2, "', where fn is the n constant code for j}. 

Outside M, define an auxiliary function q' on CM 

= C n 11,1 as follows: (H q is a function on the codes of M" 
is absolute). For eachfc=: Co (Co is absolute) let q'f=qf. 
If Q is odd, let q'j=l-qTffor eachfE:C~. 

Now q=q' on Clf. Proof: For Q=O and Q odd, q'=q 
on C~ is immediate from the absoluteness of the struc
ture of the codes. For Q even one has by Lemma 3 that 
{qfn 1 n = 1, 2, ... } is the same set of real numbers out
side M as inside. From Lemma 4 surfLqf"ln= 1,2,"'} 
= SUpM{ qf" 1 n = 1, 2, ... } so that q' = q on C~. Thus out
side M, q=q' on CM

• 

Outside M let J be the set of all Borel subsets of 
{O, l}w with codes in M. Define P' on] by 

P'Bf=q'f 

for each code f in M. By the above 

P'Bf =PB1 (17) 

for each f in ]'vI. Since" e codes the union of the Borel 
sets coded by f and g' and" e codes the complement of 
the Borel set coded by f" are absolute, 5 ] is a field of 
Borel sets containing the sets Bn! ={ ¢ 1 ¢(n) = i} for all 
nEW and i E {O, 1}. 

Now we claim that P' is a probability measure on]. 

Proof: First O~P'Hf~ 1 for each/ECM. Next, let B f 
and Hg in) be such that Bfn Hg=O. Then by the absolute
ness of "e codes the intersection of the Borel sets coded 
by f and g' and" e codes the empty set'" one has 
P'(BfU Hg) =p(B1u H:) =PH1 +PB: =P'Bf +P'Bg• So 
P' is additive on J . 

Next we show P' is regular on]. By the definition of 
outer regularity one has M I=P is outer regular - M 1= 
for all codes / P B1 = inf{P( U) l U open and Iif c U} - M 1= 
for all codes / (qj = inf{qe l e codes an open set and fC e}. 
Here Eq. (16) has been used and 'Ie e" denotes "the 
set coded by f is contained in the set coded bye". Here 
{O, 1}~ is considered as a topological space with the 
usual product topology. 

Since" e codes an open set" and 'Ie e" are both 
absolute, ' ,9 one has, by Lemma 4 and the definition of 
P' from q, 
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M I=q/=inf{qele codes an open set andfe e}-, 

qj=inf{qele codes an open set andfee}-

P'f = inf{qe 1 e codes an open set and fC e}. 
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By the definition of] one then has M l=P is outer re
gular -P' is outer regular on]. Since, inside M, P is 
outer regular, one has the result that P' is outer regular 
on] . 

Application of the same argument for inner regularity 
(HC e is compact" is absolute5 ,9 gives the result that P' 
is regular on J . 

Finally application of a theorem of Alexandroff out
side M 16 ({ 0, l}W is compact in the product topology) 
gives the result that P' is countably additive. Thus P' 
is a probability measure on] . 

Application of the Hahn extension theorem16 gives the 
result that (outside M) there exists a unique probability 
measure Q on B ({ 0, l}W) which agrees with P' on]. Thus 
Q is the desired measure and the theorem is proved. 

QED 

Corollary 6: Let M, P, and Q be as in Theorem 5. 
Then: 

(1) For each code/c=:M, QBj=0-MI=PB1=0. 

(2) Q is a product measure - M 1= P is a product 
measure. 

Proof: (1) is immediate from the theorem [Eq. (15)], 
and (2) follows from the theorem and the fact that the 
property of being a product measure is defined on cy-
linder sets only, all of Which have codes in M. QED 

D. Sequences and ultrafilters 

Let M be a standard transitive ZFC model. Outside 
M let Q be a probability measure on B ({ 0, 1 }Ol). Q is 
M-correct for a sequence <pE{O, l}W if for each Borel 
set Hf with code f E: M, QB f = 1 -1jJ c=: B f• The next theo
rem extends a result of Solovay5,9 to arbitrary proba
bility measures in M. Note that if Al is countable, then 
there exists ~, for which Q is M-correct. 

Theorem 7: Let M, P, and Q be as in Theorem 5 with 
IvI countable. Let Bp be the measure algebra constructed 
from P and {O, 1}~ in M. Then there is a canonical 1-1 
correspondence between the sequences ijJ c=: {O, l}W, for 
which Q is IvI correct and the set of AI-generic ultra
filters on!3 p given by 

(18) 

for each codefE:M. bf is the element ofB p which con
tains B1, the Borel set in lvl which is coded by f. 

Proof: (1) -: Let Q be 11'1 correct for <p and define G 
by Eq. (18). First, G is well defined. For let Bg and Hh 
be such that Q(Bgtl.Bh) = ° with f{ and hE lvI. Then, since 
Q is NI correct for <p, i/J E: Bg - <p c=: Hh • By Corollary 6, 
PCB: tl.B;{) = ° sO B: E: bh - H~ E: bh • Thus IJg = bh • 

The proof that G is an ultrafilter is immediate from 
the definition of an ultrafilter and is left to the reader. 

To show that G is M-generic, one can proceed as 
follows: Let D' be a subset of Bp in M such that D' c G 
and D' E: M. Since Bp is complete in }lvI, rID' E:Bp • It 
must be shown that DD' c: G. 

Claim: There is a countable subset DC D' with Dc M 
such that I1D = DD'. For, let D'i be the set of comple-
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ments of elements of D'. Then there is a countable sub
set DJ. of D'J. such that11 L,DJ.=L,D'J.. But this gives 11 IlD 
=flD'. 

Next, let C~ EM be a set of codes such that, for each 
bED, C~ contains exactly one code out of VI B7 E b}. 
Clearly C~ is countable. For each code / E C~ let OIl be 
the least ordinal sueh that / E C~I [Eq. (13)]. 

Let {3' be the smalh~st ordinal such that OIf < {3 I for 
each / E cZ. If {3 I is even, choose {3 = {3 '+ 1; otherwise 
set i3 = {3'. (3 is countable. 18 Let g: w - C~ be an enumer
ation of the codes in cN. Since D is countable in M and 
C~ E ]1:/, such a g exists in AI. 

By construction of the codes there exists a code 
hE Ca such that [Eq. (13)] h(O) = 1, (Th)(O) = 2, (Th)Jm(O) 
= 1, and T(Th)Jm=g(rn) for each rn E w. By construction 
h codes (u mH:tml = n mJ:j:UI1) and thus bh = Dmbg(m) = DD. 

Since the construction of the codes is absolute, out
side M, h also codes the intersection of the Borel sets 
coded by gem) for m = 0,1, .. '. Now bg(m) E G for each 
m-i/JEBg(m) for each nz-i/JEnmBIf(m)-i/JEBh-bhEG 
- DD E G _[W' E G. So Gis 1l1-generic. 

(2) -: Let G be an M - generic ultrafilter on!3 p and 
define ~'by Eq. (lS). 

First the definition is shown to be consistent. Since 
G is an ultrafilter, one has for any codes /, gE M: 

(a) i/J E B f - bf E G -b~et G -i/Jet ({O, l}w - Bf ). 

(b) i/J E Bf and i/J E Bif - bf E G and bg E G - bf • bg E G 
-~)EBfnBg. 

(c) i/JE Bf and Bfe;, Bg-bf E G and bilE G -i/JEBIf' 

(d) Let D be any subset of Bp such that DE M. Then 
DD EBp and, by the argument of part (1), there is a 
Borel set B'M E DD in M with code in M. Outside M let 
ED ={Bfl/E Ct;}, where cZ is defined as in part (1). Then 
i/JE Bf for each/E cZ -bfE G for each/E cZ -De;, G 
- flD E G -i/J E B' = n ED, where outside M, B' has the 
same code that E'M does inside M. 

Finally, inside M, let Cf = set of all eodes of Borel 
subsets of {o, 1}~ which are sets of P measure 1. Then 
one has, outside M, QEf = 1 for each/E C~I, where Q 
is the probability measure constructed from P by Theo
rem 5. Since, in M, bf =l for each/ECf and lEG one 
has, outside M, i/J E B f for each / E cf. Thus Q is M-
correct for i/J. QED 

Corollarv S: Let Q, P, and M be as in Theorem 7. 
Let G and i/! be related by Eq. (lS) and let Q be M cor
rect for ~). Then 

(1) i/J E M[G] and 

(2) M(G] is the smallest standard transitive ZFC mo
del N such that Me;, Nand i/J E N. 

Prooj: (1) By the definition of M[G] of Eq. (11) and 
the discussion, GEM[G] and, inside M(G], Gis al),I
generic ultrafilter on Bp • 5 Define i/J' inside M[G] by 
i/J'(n) =i-b ni EG. Clearly i/J' is well defined and i/J' 
E M[G]. Since the definition of i/J' is clearly M[G] ab
solute, one has i/J'(n) =i -bnl E G outside of M[G]. But 
Eq. (lS) gives i/J(n) = i - bn! E G for each nEW and i 
do, 1} so that i/J=i/J' and thus i/JEM[G]. 
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(2) LetNbesuchthati/JENandMCN. Define, inN, 
G/by bfEG'-i/JEB'f for all codes/in M. Clearly G' 
EN. Also, since N is transitive and" i/J is a 0-1 se
quence" is absolute, B: = Bf n N. Then the N absolute
ness of the definition of G' , Eq. (lS), and i/JEN gives, 
outside N, bfE G' -i/JE B7 -i/JE Bf-bfE G for all/EM 
or G' = G. Thus G E N which gives M[G]C N. Finally, 
by part (1) i/JEM(G]. QED 

It is clear from this corollary that M[i/J]=M[G], where 
M[i/J] is the smallest standard transitive ZFC model N 
such that MC Nand i/J EN. Also, an alternate way to 
prove i/JE M[G] is to exhibit the element in the Boolean 
model MBp which equals i/J under the map.9 G defined by 
Eq. (10). In particular let I/! satisfy Eq. (Sa) with 
I/J«n, i) v) = bni for each nEW and i E {O, 1}. Then one can 
show that I/J satisfies Eqs. (Sb) and (9) and thus that II I/J 

is an infinite 0-1 sequence 11= 1 and III/! et Mil = 1. Then 
by Eq. (12) M[G] I =.9G(i/J) is an infinite 0-1 sequence 
not in M. By Eqs. (10) and (lS), (n, i) E.9 C<I/!) -I/J«n, i) v) 
E G-b nl E G -i/! E Eni -(n, i) E i/J. So i/J=!J c(l/!) and thus 
<PE M[G], 

Many of the theorems and discussions of the Sec. III 
are given as comparisons and correspondences "inside 
M" and "outside M" in the informal mathematics. Alter
natively the theorems and discussion can be given as 
comparisons and correspondences for "inside M" and 
"inside N, " where N is any standard transitive ZFC 
model such that M C N. In this case one replaces" out
side M" in the theorems, proofs, and discussion by 
"inside N." For example Theorem 5 becomes: Let M 
and N be standard transitive ZFC models such that 
MCN, For each P EM such that inside M "p is a pro
bability measure on B ({ 0, 1 }~)" there exists, inside N, 
a unique Q such that Q is a probability measure on 
B({o, 1}~ given by QBr =PB1 for each code/EM. In 
particular one can set N = V where V represents "the 
real universe of Z FC sets, " i. e., that part of the intui
tive mathematics which is axiomatizable in ZFC. 

Finally a theorem is given which relates the definition 
of randomness, used in I and given in Sec. II, and the 
definition of M-correctness given above. Recall from 
Sec. II that a probability measure Q is correct for a se
quence i/J E {O, l}W if, for all Borel subsets B of {O, l}w, 
B is definable from Q in L ZF and QB = 1, then i/J E B. 
The following theorem generalizes a result of SOlovay19 

to arbitrary probability measures on!3({O, l}W), 

Theorem 9: Let Mo be the minimal standard transitive 
ZFC model and let Q be any nonatomic probability mea
sure on!3 ({ 0, 1 }W) which corresponds to some measure 
P in M 0, by Theorem 5. Then Q is correct for i/J - Q is 
Mo-correct for i/J. 

Prooj: Let B f be any Borel subset of {O, l}w with code 
fin Mo and such that QBf = 1. If one can show Bf is de
finable in L ZF then, by the definition of Q being correct 
for i/J, one has i/J E B f and thus Q is }\,fo correct for i/J. 

To construct the required formula, one notes that 
since every element of Mo is definable inside Mo, 20 there 
is a formula 8 such that Mo I="YLY=/- 8(y». Let 0' be 
the formula given by 0' (z) =' (z E Mo ::> OMO(Z) v (z et MoA Z 
;/,z), where OMO(Z) is obtained from 8(z) by relativizing 
all quantifiers to Mo. Then3 8Mo (z)-Mol =8(z) and one 
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has the result thatYz(z=!-e'(z)) or that e' defines! 
from M o' 

But Mo is also definable [for example, by the formula2o 

qo(x) "OSTMzF(x) I\<Yz(STMzF(z) -x~ z), where STMzF(x) 
is the formula in L ZF which says that4 x is a standard 
transitive ZFC model]. Let q(x) be the formula 
3 y (x c=- Y II. q oC}') which expresses xc=- Mo. Then replace
ment ofYxc=-1I10, 3xc=-Mo, and zc=-Mo in e'(z), where x 
is any bound variable in e'(z), by Yxq(x), 3xq(x), and 
q(z), gives a formulaq'whichdefines!by Yz(z=! 
-q'(z)). 

Let S(¢) be the formula 3 zq'(z) 1\ "z is a code and 
¢ lies in the Borel set coded by z." From Eq. (13) it 
is clear that the expression in quotation marks is de
finable,9 Thus B f is definable by S(¢) which is thus the 
required formula, QED 

Recall that a sequence I/J is random [Mo-random] for 
Q =:>') P a product measure if Q is correct [Mo-correctl 
for I/J. 

Corollary 10: Let Q =0; P be a product measure on 
B ({ 0, l}W) with p r:= Mo. Then I/J is random for Q -I/J is 
M o - random for Q. 

Proof: Immediate from Theorem 9. 

IV. ZFC MODELS AS CARRIERS FOR THE 
MATHEMATICS OF QUANTUM MECHANICS 

A. Boolean valued ZFC models, states, and 
observables 

QED 

Let M be a standard transitive Z FC model and let M 
be the carrier for the mathematics of quantum mechan
ics. Then by condition (a), Sec. II, there is, inside M, 
an operator algebra B(j/ M) over a Hilbert space H M such 
that each state preparation procedUre and question ob
serving procedure correspond, under the maps >JIM and 
<p.I!' to a density operator and projection operator in 
lJ(j/;). 

We now work inside M, Let p and 0 be respectively 
a density operator and projection operator and let PPG 

be the probability measure onB({O, 1}), the four element 
set of all subsets of {O, I}, defined by 

ppo({lt) = TrM(po). 

Let Ppo=~ PPG be the unique product measure on 
B({o, 1}~), the set of all Borel subsets of{O, 1}"', and 
which is generated from ppo. Let y PO be the ideal in ivl 
of Borel subsets of{O, 1}~ of P po measure 0, and let 
i:;po"'B({O, l}~O)/ypo be the measure algebra of equivalence 
classes of Borel subsets of {O, 1}~ mOdulo subsets of 
Ppo measure 0. In M, Bpo is a complete Boolean algebra 
which is nonatomic if and only if ° < Ppo < 10 

Theorem 11: With each state p and question obser
vable 0 in B(j/ M) there is canonically associated a uni
que Boolean valued ZFC model M Epa, 

Proof: MEpo is constructed in M by the prescription 
of Eq, (4) from i:;po. It is clearly unique since Bpo is 
unique, Since 8 po is complete one has the result that 
M Bpo is a Boolean values ZFC model. QED 

Note that if p lies entirely within an eigenspace of 0, 

then Ppo({1}l = ° or = 1 and Bpo reduces to 2, the two ele-
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ment Boolean algebra {O, I} and the theorem becomes 
essentially trivial. The reason is that (see Sec. IlIA) 
M2 differs inessentially from the model M'" {x I xc=- M} 
which is isomorphic to M, 

Thus, if p is a pure state in classi.cal mechanics, 21 

theorem 11 is trivial for all questions. In quantum 
mechaniCS, Theorem 11 is trivial for only those 0 which 
commute with p (for p pure), 

Note that the construction of MEipo depends only on the 
measure Ppo and not on p and 0 separately. Thus, if 
p,p',o, and 0' are such thatppo='pp' o" then 1\,[Bpo 
'" ]vIBp' o· . 

Theorem 11 can be extended in many ways which may 
well be relevant for quantum mechanics, We shall only 
briefly indicate some of these here and leave more de
tailed investigations to future work. The essential point 
is that the only requirement on B, in the construction of 
MB from M, is that it be complete in M, 

For example the construetion of M from B is not 
limited to infinite repetitions. It applies to any sto
chastic process on {O, l}W, finite or infinite, Note that 
the theorems and results of Sec. III were given for allY 

probability measure onB ({O, 1}~) in M, not just product 
measures, In the case of 11 repetitions, i:; =P({O, 1}M) the 
set of all subsets of {O, 1}M, in Eq. (4). In the general 
infinite case B p = B ({ 0, 1 }~) Iy p, where P r:= Al is a pro
bability measure on B ({ 0, 1}~), 

As another example, one has for each projection op
erator b, the four element Boolean algebra, B b 

={O, b, b\ I} of elements of B(j/M), where ° and 1 are the 
zero and unit operators and 1/ = 1- b. 8 is obviously 
complete so one can by Eq. (4) associate M Bb with b. 

More generally let B be any complete commuting sub
algebra of the projection operators in B(j/ M)' Then by 
Eq. (4) one can associate the Boolean valued model 
ME with M. Note that in both these cases as well as in 
the case covered in Theorem 11 one can "lift" a state p 

onto the Boolean algebra, Thus one can talk about "the 
probability tha t Q is true" for any Z F formula Q, 22 

As another example let L be a quantum logic 23 in ;U, 

That is L is ;?, countably-complete orthomodular lattice 
of sets in M. For example L can be the lattice of all 
projection operators in B(II M} in M. Since L is not 
Boolean, one cannot construct a Boolean valued universe 
directly from L by Eqo (4l. However, one can proceed 
as follows 4 •5 

The partial ordering of L induces a topology of L with 
basis sets [Z] ={z' Il' ~ l} for each 1 in L. A subset iJ of 
L is re gular open if /J = (b-) 0, where b- is the closure of 
/) and 1)° is the interior of bo Let 15 L be the Boolean alge
bra of. all regular open subsets of L where /) • /)' = b " b', 
b + Ii' = (b U /)')-0, and bl 

= (L - b)O, Since BL is complete 
in M, one can use Eq. (4) to construct a Boolean valued 
ZFC model M8L from Lin M. 

In this manner one can assign one Boolean valued 
Zl"C model to the whole logic rather than assigning a 
S'f!parate one to each complete Boolean subalgebra of 
L as in the previous examples, This construction, ap
plied to partially ordered sets, is also the method by 
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which one shows the equivalence of the construction of 
Cohen extensions of M by the method of Boolean valued 
models and the construction by the method of forcing 
which uses, directly, partially ordered sets. 2,4,5 

B. Cohen extensions of Mo and infinite repetitions 

Let Mo be the minimal standard transitive ZFC mo
del. Recall from I that from conditions (a) and (b) 
(given in Sec. II) and a strong definition of randomness 
(the one given here in Sec. II), Mo was shown not to be 
suitable as a carrier for the mathematics of quantum 
mechanics, in that no infinite outcome sequence belonged 
to Mo. Here condition (a) only will be considered as 
holding in Mo. Then condition (b) will be used outside 
Mo [L e., by dropping all references to M in condition 
(b)] to extend Mo. 

The results of the previous sections can be combined 
into the following theorem: 

Theorem 12: Let 'lrM and <PM be as in condition (a) and o 0 
assume that the definition of randomness given in Sec. 
n is correct. Then to each state preparation procedure 
S E Dom('lrM ) and question measuring procedure q o 
EDom(<PMO ) such that 'lrMO(s) is not dispersion free for 
<PMO(q), and to each t: w -R in Mo such that (tsq) corre
sponds to an infinite repetition of carrying out s followec 
by q, there corresponds a unique standard transitive 
ZFC model Mo[<pts.], where <Pts. is the random outcome 
sequence associated with (tsq) by condition (b). Mo[<pts.) 
is the smallest standard transitive Z FC model N such 
that Mo~ Nand <Pt5O EN. 

Proof: Inside Mil let P50 be the probability measure on 
the set of all subsets of {O, I} given by P5O({1}) 
= TrMo('lrM (S)<PM (q» and in Mo letPs.=0Ps. be the pro
duct prob~bilit/ measure constructed from P 50' Since 
'lrM (s) is not dispersion free for <PMO(q), p s• is nonatomic. 

o . 
By Theorem 11, one has the umque Boolean valued ZFC 
model M~s., where B s. is the nonato~ic measure alge
bra constructed from B({o, 1}:;:0 and p s •• 15 

Outside Mo let Q50 be the probability measure on 
B({O, l}W) which corresponds to P50 according to Theo
rem 5 and Eq. (15). By Corollary 6 Q", is a nonatomic 
product measure and in fact Q50 =0 P50 since "p5O is a 
probability measure onB({O, 1})" is absolute. By con
dition (b) applied outside Mo and the definition of random
ness given in Sec. II, there exists an outcome sequence 
<Pts. such that Qs. is correct for <Pts •• By Theorems 9 
and 7 there is a unique Mo-generic ultrafilter Ctso on 
Bs. given by Eq. (18). By Eqs. (10) and (11) one defines 
Mo[Ctso ] which, by Corollary 8, =Mo[7fitso) and is the 
smallest standard transitive ZFC model N such that 
Mo~N and <PtsoEN. 

There are several aspects of these results worth 
noting. First Theorem 11 holds for any standard transi
tive ZFC model, whereas Theorem 12 holds only for 
those models M for which Theorem 9 (with M replacing 
Mo) holds. Furthermore, Theorem 12 clearly depends 
on which definition of randomness one uses. For defi
nitions for which Theorem 9 holds, such as that of 
Solovay9 (generalized to arbitrary product measures on 
{O,l}W), Theorem 12 holds. For weaker definitions such 
as those of Martin Lof,13 <Ptsb E Mo and Theorem 12 fails. 
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If sand q are such that >¥MO(S) is dispersion free for 
<PM (q), then either Pso({l}) = 1 or Psq({l}) = ° and for each 

° infinite repetition (tsq), <Pt5O is the constant 1 sequence 
or the constant ° sequence. In this case B50 is two ele
ment Boolean algebra {O, 1} and the only possible M 0-

generic ultrafilter onB5O is {1}, which lies in Mo. Car
rying through the construction of Eqs. (10) and (11) 
gives one Mo again with <Pt5O E Mo, so that Theorem 12 
becomes triviaL 

The difference between claSSical and quantum mechan
iCS, noted before in I, appears here again. For classi
cal mechanics based on Mo, CMMO ' the range of <PMO is 
a Boolean algebra. Thus for each pure state >¥MO(S) in 
eMMo' Theorem 12 is trivial and the construction does 
not lead outside Mo for all question procedures q. This 
is not the case of QMMo' where, for each s such that 
>¥MO(S) is pure, there exist question procedures q such 
that ['lrMO(S)' <PMO(q)) * ° [Le., >¥MO(S) is not dispersion 
free for <PMO(q)]. 

Theorem 12 as given refers to infinite repetitions of 
measurements which generate probability measures on 
B({O, l}W) in Mo, which are product measures. However, 
the results of Sec. III are not so limited. Thus these 
results can be used to give extensions of Theorems 11 
and 12 which apply to general stochastic processes in 
quantum mechanics and not just infinite repetitions. 
Examples of these are sequences of successive mea
surements on the same system, Of course, conditions 
(a) and (b) must be extended to include such processes. 

V. ELIMINATION OF ZFC MODELSMo [1/Irsq1 

The arguments used in I to exclude Mo as a possible 
mathematical universe for quantum mechanics cannot 
be used directly to exclude the models Mo[<J!t5O)' The 
reason is that condition (b), which requires that <J!t5O be 
random and <J!tSqEN, clearly holds if N=Mo[<J!t5O]. [The 
failure of condition (b) for N = Mo is the essential part 
of the proof of Theorem 2. ] 

However, the arguments can be extended to include 
the models Mo[ <J!t 50]' and it is the aim of this section to 
show that no ZFC model Mo[<J!t5O] can serve as the mathe
matical universe for quantum mechanics. 

One must consider here another necessary condition 
a ZFC model M must satisfy if it is to serve as the 
mathematical universe for quantum mechanics. Let s 
and u be two different state preparation procedures, 
and let q and k be two different question measuring pro
cedures, and let <J!tStl and <Pwuk be the respective outcome 
sequences associated with the infinite repetitions 
(tsq) and (wuk) of dOing sand q, and u and k. 

Intuitively one requires that it be impossible to pre
dict any outcome of carrying out u and k, given prior 
knowledge of the state >¥M(U) and observable <PM(k). This 
is taken care of by requiring that <J!wuk be random (i. e. , 
that Puk be correct for <J!wuk)' However, one also re
quires that it be impossible to predict any outcome of 
carrying out u and k given the additional prior knowledge 
of <J!t5O for any infinite repetition (tsq). Similarly one re
quires that it be impossible to predict any outcome of 
doing sand q given prior knowledge of <J!wuk' In a word 
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one requires that 1/ItSq and 1/Iwuk be mutually statistically 
independent. 

On intuitive grounds, then, this requirement of inde
pendence should be included as another condition which 
a ZFC model M must satisfy if it is to serve as the 
mathematical universe for quantum mechanics, That is 
one has the following necessary condition (c): 

(c): For each pair sand u of different state preparation 
procedures in the domain of W M and for each pair q and 
k of different question measuring procedures in the do
main of 4>M and for each infinite repetition (wuk) of do
ing u and k and for each infinite repetition (tsq) of doing 
sand q, the outcome sequences 1/Iwuk and 1/It8O' which are 
associated with (wuk) and (tsq) by condition (b), are 
mutually statistically independent. 

In keeping with the definition of randomness used here, 
the following definition of independence is reasonable. 
A sequence 1/IE{0, l}w is independent of a sequence 1/1' if 
1/1 is not definable from 1/1'. That is, for no formula Q in 
L Z F, the language of Z F set theory does 'r/ x(x = 1/1 
-Q(x, 1/1')) hold, 1/1 and 1/1' are mutually statistically in
dependent if 1/1 is independent of 1/1' and 1/1' is independent 
of 1/1. 

A product probability measure Q =@ P on B ({ 0, l}W) 
outside Mo is an Mo product measure if p E Mo' Also one 
says that 1/1 is random for Q if Q is correct for 1/1 (Sec. 
n). 

Lemma 13: Let Q =@ P be a nonatomic M o product 
measure and let 1/1 be random for Q, Let M o[1/I] be the 
smallest standard transitive ZFC model N such that 
MosN and 1/1 EN (Sec. III, Corollary 8). If 1/1' is statisti
cally independent of 1/1, then 1/1' ri M o[1/I]. 

Proof: Assume the converse, i. e., that 1/1' is statis
tically independent of 1/1 and 1/1' E M o[1/I]. 

(1): There exists a formula e(x, I/!,Mo, c) which defines 
I/!' from I/!, Mo, and some c E M o, i. e., 'r/ x(x = I/!' 
- IJ(x, 1/1, Mo, c). To see this, one first notes that, by 
Corollary 8 and Eqs. (10) and (11), there is some d 

E M~P (in M o, P =@p) such thatJl GI/J(d) = 1/1'. In particular 
JI G I/Jr+l (d) = 1/1', where y = rank d = least ordinal such that 
dEM~!.l [Eq. (4)] and Go is defined onBp by Eq. (18L 
It is clear from Eqs. (4) and (10) thatJl G"r+l is definable 
from P, Mo, I/!, and d (as a function on M~fank(d)+l)' Let 
Q1(X, Mo, 1/1, P, d) be the formula which defines JI GliJI'ankil 

[by'r/ x(x = JI GI/Jrank(d )+1 - Q1 (x, 1'1'1 0, 1/1, P, d)]. 

Let c be the ordered pair (d, P) 0 Then3 ,5 c = (d, P) 
inside Mo. Then:3 y«l(c), x) E y A Ql(Y, Mo, 1/1, r(c), l(c))) 
is the desired formula IJ(x, 1/1, M o, c), where l(c) and r(c) 
denote the respective left hand and right-hand elements 
of c. 

(2): By the same argument as was used in the proof of 
theorem 9, there is a formula Q' (y) in L Z F which de
fines c [Le" 'r/ y(y=c-Q'(y))], Thus the formula 
Q~o(x, I/!) "':3 y(IJ(x, I/!, Mo, y) 1\ Q'(y)) defines I/!' from I/! and 
Mo. Let IJo(x, I/!) be the formula obtained from Q~o(x, 1/1) 
by replacing each occurence of w=Mo by qo(w) (see 
proof of Theorem 9) and each occurrence of WE Mo by 
:3 z(w E Z A qo(z)), where w is any variable, other than 
x, in Q~o(x, I/!). Then eo(x, I/!) defines 1/1' from I/!. 
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But this contradicts the statistical independence of I/!' 
from I/! 0 Thus 1/1' ri Mo[l/!]. QED 

Corollary 14: Let 1/1 and I/!' both be random for non
atomic Mo product measures and let I/! and I/!' be mutual
ly statistically independent. Then I/!riMo[I/!'] and I/!' 
ri Mo[l/!]. 

Proof: Immediate from Lemma 13 and the definition 
of mutual statistical independence, QED 

In Theorem 12 it was seen that with each s E Dom(w MO) 
and q E Dom(4)Mo) for which WMO(s) is not dispersion free 
for 4>M O(q), (i. e" ° < P8O({1}) = TrMo(W Mo(S)4>M/q)) < 1) 
and with each t E M 0 with t: w - RM ° (inside Mo) such that 
(tsq) is an infinite repetition of doing sand q at times 
t(O), t(l), •.. there is associated a unique standard tran
sitive ZFC model Mo[l/!t8O], where I/!t8O is the random 
outcome sequence associated with (tsq). 

Now consider Mo[l/!t8O] as a possible carrier for the 
mathematics of quantum mechanics. If Mo[1/It8O] is satis
factory, then conditions (a), (b), and (c) must hold for 
QMMo(l/Jt8O)' i. e., quantum mechanics based in Mo[l/!tsq]. 
By Theorem 1 and Eqs. (2a) and (3a), 

Tr M o("t 80 )(WM o(I/Jt 80 )(s') <PM o("t Sq )(q')) 

= TrM O(W,Ifl)(S') <PM uk!')) 

(19) 

holds for each s' E Dom(wMI)) and q' EDom(<l>,Ifo). 

Let u '* s be a state preparation procedure in Dom(w M) 
and k'*q be a question measuring procedure in Dom(<PMu) 
such that WMo(u) is not dispersion free for <PMo(k). Then 
by the above uEDom(wMO[Ot8O)) and kEDom(<PMo(Wt8O)) and 
the measure P u~ =CS Puk in M o[ I/!t 80] is a nonatomic product 
measure on B ({ 0, 1}~ o(Ot 80))' A Iso for each WE M 0 such 
that, inside iVIa, w: w -RMO is increasing, one has, by 
absoluteness and 1vlosMo[1/It8O]' that wEMo[l/!t8O] and, in
side iV1 0[<pt8O], w: w -RMO[ot8O) is increasing. 

For each WE jvlo with W: w - RMo such that (wuk) is an 
infinite repetition of doing 11 and l?, one has from condi
tions (a) and (b) for QMMo(ot8O) that <Pwuk is random for 
P uk and I/!wuk E Mo[<pt.sq]. By the construction, and Eq. (19), 
in QMMo(l/Jtso)' (tsq) is an infinite repetition of carrying 
out sand q, P 80 is a nonatomic product measure, and 
1/It8O is random for P80 with <Pt.sq EMo[1/It8Ot 

By condition (c) I/!wuk is statistically independent of 
<Pt8O' Thus, if the definition of statistical independence 
given here is correct, then by Lemma 13 <Pwuk ri 1V1 u[<ptso], 
which is a contradiction. Thus condition (b) is violated 
and M o[1/Itso] cannot serve as the carrier for the mathe
matics of quantum mechanics. Exchanging (tsq) and 
(wuk) gives the result that MO[I/!wuk] also cannot be a 
carrier. 

Thus the following theorem has been proved, 

Theorem 15: Let the definitions of randomness and 
statistical independence given here be correct. Then 
for each s EDom(wMO) and q EDom(<PMO) and t: w -RMO 
with t E Mil such that (tsq) is an infinite repetition of 
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doing sand q, Mo[</!t.sq] cannot be a carrier for the mathe
matics of quantum mechanicso 

VI. DISCUSSION 

The exclusion of ZFC models of the type Mo[</!t.sq] as 
possible carriers for the mathematics of quantum 
mechanics, clearly depends on the strength of the defi
nition of statistical independence which is used. This 
fact, which is expressed explicitly in Theorem 15, is 
similar to the situation which obtains for definitions of 
randomness as discussed in To 

In fact, for each definition of randomness, one has a 
corresponding definition of statistical independenceo For 
example the definition of randomness used by Solovay, 9 

generalized to arbitrary product measures and applied 
to Mo is as follows: A sequence </! is 5-Mo random if 
there exists an M 0 product measure Q on 8 ({ 0, 1 }W) such 
that for all Borel sets B if B has a code [Eq. (13)] in 
Mo and QB = 1, then </! EO. Bo The corresponding definition 
of statistical independence is as follows: A sequence </! 
is 5-M 0 statistically independent of a sequence </!' if the 
Borel set {</!} has no code in M o[</!'). (Note that if </! is 
5-M o[</!'] random for a nonatomic measure, then </! is 
5-M 0 random and </! is 5-I"'10 statistically independent of 
w'. ) 

These definitions of statistical independence and ran
domness are weaker24 than the definitions used here. 
However, they are sufficiently strong so that Theorem 
2 and 15 hold for them also. That is, for these defini
tions, neither Mo nor Mo[</!t.sq], where (tsq) is any infinite 
repetition in QM MO and P.sq is nonatomic, are suitable as 
carriers for the mathematics of quantum mechanics. 

One can also give definitions of statistical indepen
dence which correspond to the two definitions of ran
domness given by Martin LOf. 13 These definitions are 
too weak for Theorems 2 and 15 to hold as, inside Mo, 
there exist Martin Lof random sequences. Also the cor
responding definition of statistical independence can be 
applied inside Mo. 

As noted in I an important open question is to investi
gate whether or not the definition of randomness must 
be at least as strong as (-). Here one sees that this 
question also includes the definition of statistical inde
pendence. Thus one would like to be able to prove that 
the definitions of randomness and statistical indepen
dence are at least as strong as (-L 

It is speculated that such a proof will not be forth
coming until one axiomatizes physics and mathematics 
together in one coherent theory instead of treating them 
separately, as has been done so far. Such treatment 
will probably include the observer more intimately than 
has been done so far 0 In this connection note that one 
can regard the different definitions of randomness and 
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independence as corresponding to different predictive 
powers of an observero 

Finally one notes that in the usual ZFC model V there 
exist sequences which are random and statistically in
dependent for any of the above definitions. Thus one 
might argue that one should just take QMv, i. eo, quan
tum mechanics based on the real ZFC world V (as has 
been implicitly done in all of physics so far) and ignore 
quantum mechanics based on other Z FC models M. The 
point to be made is that why the real ZFC world (as
suming that such exists) is V and not some other model 
M needs explaining. An implicit point of this and the 
preceeding paper is that such an explanation may be 
forthcoming only from a coherent theory of physics and 
mathematics 0 More explicitly, it has been shown here 
and in I that randomness and statistical independence 
may have a direct bearing on this problemo 
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In this work we show that it is impossible to introduce a third-rank tensor potential that preserves the 
conformal covariance of the mass zero spin-2 field equations in the Coulter-Weinberg scheme. 

1. INTRODUCTION 

The description of a field of zero mass and spin 2 
and of their electromagnetic and gravitational interac
tions has been the object of a large number of 
researches. These researches take as a starting point 
a Lagrangian formulation, as in Fierz and Pauli's 
original work, 1 or they use the irreducible unitary rep
resentations of Poincare's group,2 as in Weinberg's 
works. 3 

From Weinberg's research, Coulter4 develops a 
formulation for the field of zero mass and spin 2, the 
equations of which are expressed according to the ten 
"physical components" of the free field. 

By writing these equations in a form manifestly 
covariant under the Lorentz group, it is easy to see 
that they are also formally covariant under the group 
of conformal transformations. It is convenient to em
phasize that this group is the one of largest dimension 
that preserves the nullity of the element of lineS; this 
gives place to a symmetry in the Minkowsky space re
quired to the particles of zero maSS. 

The introduction of potentials according to which the 
physical components of the field can be written, a 
necessary step for the study of the interacting field, 
presents some difficulties. 

In this work a negative answer is given to the exis
tence of suitable potentials of the field that preserve the 
conformal covariance according to Coulter's scheme. 

2. NONEXISTENCE OF A SATISFACTORY THIRD 
RANK TENSOR POTENTIAL 

In the Lorentz manifestly covariant formulation of the 
field of zero mass and spin 2 developed by Coulter, 4 a 
fourth rank tensor Rltvl..u that verifies the Weyl's tensor I 

conditions is used: 

RItV/"U=-RItVUI..> RItVAU=R/..u",v, (1) 

RIt/.. '" 7)va Rj.tv/"u = 0, (2) 

Ej.tv/"uR ItVAU = o. (3) 

The dynamics of the field in interaction is given by 
the equation 

o ItRj.tVAU = Kf)VAU' (4) 

where f)VAU is the source of the field and K is a coupling 
constant. 

In his paper Coulter found the conditions for the 
covariance of these equations under C+, the connected 
component of the conformal group C. These conditions 

are ox'" i3x~ i3xr axe 
R~vAu(X/)=f)-l ox/j.t ax'v ax'A ox/u R"'~ro(x), (5) 

(6) 

He also showed that the results obtained fail all in 
the preservation of the conformal covariance when it 
is written Rj.tVAU in terms of: (1) a second rank tensor 
potential; (2) a symmetrical second rank tensor poten
tial; (3) a third rank tensor potential symmetrical in the 
last two indexes, containing the sum of the irreduc ible 
representations (i,i),(%,~), (~,~),(~,1) and (t,il. 
Nevertheless, there could be a number of other 
possibilities. 

We prove that the result is equally negative, if we use 
another potential of third rank H",VA' antisymmetrical in 
the last two indexes and satisfying the condition E/J.VAPH j.tVA 

= O. This tensor has 20 independent components, which 
transform according to the representation (%,~) EB (t, t) 
EB(~,i), this being the minimum number of irreducible 
representations that can describe the spin 2. 6 

This sequence of negative results leads us to formulate the problem in a general way. For that it is necessary 
to write R/J.VAU as a function of a third rank tensor T"VA without any condition "a priori"; the development takes the 
following form: 

R"VAU=a(0/J.TvAU + 0I..Tultv - 0ItTVUA - o/..TuVIt + 0UTAVIt + 0vTltul.. - OUTAItV - OVTItAU) 
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+ t(a + b )[1),,~ (ovTPpa + 0aTPpv) -1)VA (0" TP pa + 0aTPp) + 1)va(o" TP pA + O~ TP p,,) -1)"a(OVTPPA + 0A TP PV)] 

+ t(c - a)[1) "A (Ov TP ap + 00TP Vp) -1)VA (0" TP op + 0aTP "p) + 1)VO(O" TP AP + a~ TP "p) - 1) "aCovT\p + il!. TP vpl1 

The expression (7) verifies (1) and (2), being a, b, and c undeterminate constants. The restrictions (3) supply 
the condition 

Tv!.o + TOVA + T!.av - Tvo!. - Ta!.v - T!.va= O. 

To transform R"v!.a covariantly under C· and according to (5), it is necessary to satisfy the following 
equations: 

It is well known how every tensor can be decomposed as the sum of irreducible representations. 7 For the case 
of T j.£vl. there results: 

00 01 Jf 11: ¥ 
T "VA = T j.£vA + T j.£VA + j.£vA + 1)"A v + 1)"v A + 1) "VaA + 1)j.£Aav + 1)vAa j.£ + E"vAp bP , 

00 M 

where T"vA is completely symmetrical and of null trace, belonging to the representation (%,%); T"v). is antisym-

(7) 

(8) 

(9aJ 

(9b) 

(10) 

metrical in flA, of null trace, and it vanishes when it is completely antisymmetrized, belonging to the rep
sentation (t, %) EB (%, t), Tj.£VA is antisymmetrical in flv, of null trace, and it vanishes when it is completely anti
symmetrized, belonging to the representation (L%)EB(%,t). The terms which contain the 4-vector ¥,,' f", a", and 
bP belonging to the representations (t, t), being E "VAP completely antisymmetrical with E0123 == + 1. 

Introducing the decomposition (10) in Eq. (9b) we find that the verification of the latter imply total antisym-01 02 
metry of T "VA and T "VA' losing in this way the representation of the spin 2. We would like to pOJ,p.t out that Eqs. 
(8) and (9) are satisfied for the irreducible parts which contain the 4 -vector a" and the tensor T "VA but 2!hey, by 
themselves, do not represent the spin 2. Besides, (8) and (9) imply the nullity of the terms in ¥~ and Tv, and of 
the term E"v~pbP. Therefore, it is demonstrated that it is not possible to write R"vAa as a function of a third rank 
tensor potential satisfying the covariance under the group C., according to Eq. (5). 

We have arrived at the conclusion that the formulation of Ref. 4, although it keeps a close analogy with elec
tromagnetic theory, it loses it when one develop the theory in terms of a potential. In the spin 2 and vanishing 
mass case there does not exist a potential whose transformation law under C· leads us to the right transforma
tion law (5) for the tensor R"vAv, whereas the transformation law under C· for the electromagnetic potential A" is 
consistent with the corresponding transformation law for the field strength tensor F "V' 

This fact does not allow the description of local interactions of the field with others, since, for doing so, 
introducing an appropriate potential with which to write the terms of the interaction is unavoidable. 
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Dirac's charge quantization condition is derived by means of a canonical quantization procedure of an 
enlarged classical phase space in which the interaction constant is a dynamical variable. The charge 
quantization condition follows by imposing a superselection rule. The method avoids string singularities and 
does not depend on spherical symmetry. The charge quantization condition is due solely to the topology of 
the enlarged classical configuration space. 

1. EOUATIONS OF MOTION 

The nonrelativistic equations of motion for a particle 
of mass m and charge e moving in the field of a magnet
ic monopole of magnetic charge g fixed at the origin are 
given by the Lorentz force law 

(1) 

(We use units throughout this paper in which c = n= 1. ) 
The equations can easily be integrated because of the 
existence of enough first integrals or constants of the 
motion. We find that 

T=~mv2, J=L+j, and L (2) 

are constants of the motion, where L=rXp, p=mv, is 
the orbital angular momentum and j = - egr / r is the 
angular momentum in the electromagnetic field due to 
the superposition of the electric field of the charged 
particle and the magnetic monopole field. 1 The total 
angular momentum is J. The magnitude L of orbital 
angular momentum is a constant of the motion since L 
and j are orthogonal. Because (r / r) • J = - eg, the mo
tion of the charged particle is restricted to the surface 
of a right-circular cone. 2 

2. VECTOR POTENTIAL AND HAMILTON'S 
EQUATIONS 

A Hamiltonian for the equations of motion (1) is given 
by 

H = (1/2m)(p - eA)2, (3) 

where p = mV + eA is a canonical momentum and A is 
a vector potential for the magnetic monopole field B 
= gr / r3. The problem is that a global vector potential 
A on iiI = R3 - {o};:: R X 52 does not exist. In the language 
of differential forms, 

F= Ex dyl\ dz + By dz 1\ dx + Bz dxl\ dy =g sinede I\d¢ 
(4) 

on M is closed but not exact. In order to quantize the 
motion of the charged particle, it has been customary 
to introduce a vector potential which is singular along 
a "string" or "strings" emanating from the origin and 
extending to infinity. For example, Schwinger3 chose 
a vector potential given by 

A_L[(_Y _-y )dX_(_X _~)dl 
- 2r r - z r + z r - z r + z YJ 

= -gcosed¢ . (5) 
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There are two strings for this singular potential, the 
positive and negative z axis. The quantization proceeds 
by canonical quantization using this Singular vector po
tential in (3), At this point the nature and meaning of the 
string singularities must be carefully examined. It is 
found that the string singularities correspond to strings 
of magnetic dipoles or, equivalently, semi-infinite 
solenoids,4 and the singular field on these strings must 
be subtracted in order to obtain a theory of magnetic 
monopoles rather than a theory of semi-infinite 
solenoids. 5,6 A rigorous mathematical treatment of this 
problem has been given by Hurst, 7 who showed that a 
charge quantization condition (J.l = eg is quantized) is 
obtained if and only if rotational invariance is imposed 
on the quantum mechanical Hamiltonian. Rather than 
creating problems at the outset in the classical theory 
by introducing a singular vector potential and then 
having to deal with the Singularity in the quantum theory, 
it would be desirable to have a canonical quantization 
procedure that avoided string singularities altogether. 
The main purpose of this paper is to show that such a 
procedure exists. 

3. NONCANONICAL SYMPLECTIC STRUCTURE ON 
T*M 

In the classical theory string singularities may be 
avoided in two ways. One way is to avoid the use of a 
vector potential. This can be done by choosing 

(6) 

as the symplectic 2-form on 1'*M, where wM is the 
canonical symplectic 2-form on 1'*M, i.e., wM=dxl\dpx 
+ dyl\dpy + dzl\dpz and T M: 1'* M - M is the cotangent 
bundle prOjection, and by taking 

(7) 

as the Hamiltonian. The upper star on T M denotes the 
"pull-back" map. Here p is not a canonical momentum 
but is mV. Hamilton's equations for this Hamiltonian 
and symplectic structure are equivalent to the Lorentz 
force law equations. 8,9 The Hamiltonian jj is a constant 
of the motion and is the kinetic energy of the charged 
particle. The total angular momentu~ J is a constant 
of the motion since J commutes with H, the Poisson 
bracket being computed with W F • 10 Also {Jx,Jy}=Jz 
and cyclic permutations of x, y, z. In fact, J is the 
infinitesimal generator of the rotation group SO(3) acting 
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on 1'* M and leaving W F and H invariant, i. e. , 

(dJ)#=Y()z-Z()y+P/lp -Pz()p, 
z y 

(dJ) # = zOx - x2 z + P/\" - P/Jpz ' 
t8) 

(dJ)#=xGy-Yo"+P,,f'!p -Pyf'!p, 
y x 

where # is the "index raising" operationlO with respect 
to wF • 

A quantization procedure based on an algebra of ob
servables, where the commutation relations are ob
tained from the Poisson bracket structure in (1'*M,wF ), 

has been given by Lipkin et al. 11 By a general procedure 
called prequantization, 12 Greub and Petry13 are able to 
write a Schrodinger equation for a cross section in a 
certain complex line bundle. The prequantization con
dition is just Dirac's charge quantization condition. This 
approach is also described by Wu and Yang14 in terms 
of a gauge field theory with structure group U(l). We 
now consider the second way in which string singulari
ties in the classical theory may be avoided. This will 
lead to Dirac's charge quantization condition as a super
selection rule. We will be dealing with principal fibre 
bundles rather than the associated vector bundles. For 
the connection between these two approaches, see 
Trautman. 15 

4. A FOUR-DIMENSIONAL CLASSICAL THEORY 

The equations of motion for the charged particle can 
be obtained from the geodesic equations in a four-dimen
sional Riemannian (or pseudo-Riemannian) manifold 
(B,gB)' where B is a principal fibre bundle with base 
space 11,/1 and one-dimensional structure group G and gB 
is a Riemannian metric on B invariant under translations 
in the fibers. This is analogous to Kaluza's five-dimen
sional theory of relativity, 16 in which the equations of 
motion for the charged particle are obtained from the 
geodesic equations in a five-dimensional pseudo
Riemannian manifold. 

Let B=R1_{0}::::R X 53 and let Xl be left-invariant 
vector fields on the Lie group 53, group manifold of 
SU(2), that satisfy 

[Xu X 2 ] = - X3 (9) 

and cyclic permutations of 1,2,3. Let wi be the dual left
left-invariant I-forms, i.e., w i (X j )=61

j" Then dw3 

= WI w2 and cyclically. Define a Riemannian or pseudo
Riemannian metric gB on B by 

(10) 

where r is the radial coordinate on R4 - {O~ and K is a 
nonzero constant. We note that this metric is the 
asymptotic limit of the NUT metric in case K = - 1 and 
g=2l, where l is the NUT parameter. The NUT metric 
represents the gravitational field of a source with both 
mass and dual (or magnetic) mass. 17 Dowker 17 has 
pointed out the analogy between the work of Misner 18 

on the NUT metric and the work of Hurst" on the 
magnetic monopole. We carry the analogy even further 
in considering the equations of motion. For our pur
poses K is arbitrary but nonzero. We note that metric 
(10) has the same symmetry as the Lagrangian for the 
symmetric top. 19 
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Let G = Sl be the one-parameter subgroup generated 
by X3 and let G act on 53 and hence B by right multi
plication. Then B is a principal fibre bundle with base 
space B/ G = M and structure group G and X3 is a funda
mental vector field. 20 B(M, G) is the Cartesian product 
of R with the Hopf fibering of 53 over 52. 21 Now L X3 g B 

= 0, and so g B is invariant under the action of G on B. 

We follow Sniatycki and Tulczyjew's9 formulation of 
Kaluza's theory. Define a I-form w on B by 

(11) 

where X is any vector field on B. We see that w=gw3
• 

Since w is a contraction of gB ($) X 3, LX3W = O. Thus w is 
a connection I_form20 on the principal fibre bundle 
B(M,G). The connection I-form w takes values in the 
Lie algebra ~of G, which is the set of real numbers. 
The vector fields Xu X 2 , and or are horizontal and X3 

is vertical. Since LX3=ix3d+dix3 and iX3 w=w(X3)=g, 
iX3 dw = O. This implies that there exists a unique 2-
form F on M such that 

dW=1T* F, (12) 

where 1T: B - B/ G is the fibre bundle proj ection. 

In Euler angle coordinates defined by q = q 0 + iq1 + jq2 

+ kq3 = rexp(kcp/2) exp(j e/2) expkljJ/2), 

Xl = sinljJoe - cscecosl/Jf'! <I> + cot e cosljJf'!", , 

X 2=cosljJf'!e + cscesinljJo<t> - cotesinljJo., 

X3= -0"" 

WI = sinljJ de - sine cosljJdcp, 

w2 = cosljJde+ sine sinljJ dcp, 

w 3 = - dljJ - cosedcp, 

(13) 

and 1T: R xSJ - R XS2 is given by (r, e, cp, 1jJ)~(r, e, cp), 
where e and cp become spherical coordinates on 52. A 
calculation shows that F is given by (4). Although F is 
not exact on M, 1T* F is exact on B. 

Let gM be the Riemannian metric on M defined by 

gM(1T*hX,1T* hY)=gB(hX,hY), (14) 

where hX and h yare the horizontal parts of the vector 
fields X and Yon B. A calculation shows that gM is 
the Euclidean metric on M, which in spherical co
ordinates is given by 

gM=dr+r(de2 +sin2 edcp2). (15) 

We decompose gB as follows: 

gB(X, Y)=gM(7J*hX,1T* hY) + KW($) w(vX,vY), (16) 

where vX and v Y denote the vertical parts of X and Y. 
A decomposition of the Taub-NUT metric similar to 
this was used by Hawking and Ellis22 to explain its 
global properties. The geodesic equations in (B,gB) 
are related to the Lorentz force law equations in (M, 
gM' F). In fact, we will show that the set of all geodesics 
in (B,gB) in some sense represent the set of all orbits 
in (M,gM,F) for all values of the charge e. We should 
think of the fibre Sl as being the dimension of charge. 

Let p= 1'* B and let wB be the canonical symplectic 
2-form on P. A Hamiltonian H: P-R for the geodesic 
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equations in (B,gB) is given by 

H(OI)= (1/2m)gli1(0I, 01), (17) 

where gB -1 is the contravariant metric tensor and 01 E P. 
The action of G on B lifts10 ,23 to an action of G on P and 
this action leaves wB and H invariant. A theorem of 
Marsden and Weinstein23

,24 on the reduction of symplect
ic manifolds with symmetry now applies, and we obtain 
a reduced symplectic manifold in which this symmetry 
is divided out. 

The momentum P(X), where X is a vector field on B, 
is a function on P= T* B defined by 

P(X)(OI) = 01 (X(b)) , (18) 

where OIEP, TB(OI)=b, and TB: T*B-B is the cotangent 
bundle projection. A moment23 ,24 'l': P-@* for the ac
tion of G on P is given by 

where ~ E @ and 01 E P. The moment 'l' is equivariant 
with respect to the co-adjoint action of G on@* and 
every value in@* is a regular value of >Ir. We have 
that 

(19) 

(20) 

The isotropy group G" is the subgroup of G which leaves 
JlE@* fixed. Here G" = G. The isotropy group G" leaves 
'l'-I(Jl) invariant and, since it acts freely and properly 
on 'l'-I(/l) , P" = 'l'-I(/l)/G" is a manifold. 

The Marsden-Weinstein theorem states that there 
exists a unique symplectic 2-form w" on P" such that 

(21) 

where 7T,,: 'l'-I(Jl) - 'l'-I(Jl)/ G I> is the projection onto PI> 
and il>: 'l'-I(Jl)- P is the inclusion map. Since H is in
variant under the action of G, the flow of XH=(dH)#, 
the Hamiltonian vector field of H, induces a Hamilto
nian flow on PI> with Hamiltonian ii gi~en by iio 7T I> 
= Hoi 1>' The reduced ph~se space is (PI>' W,.) and the 
reduced Hamiltonian is H. 

Let (3 E T!M and let b E B such that 7T (b) = m. Define 
01 E Tt B by 01 (hX) = (3( T7T 0 hX) for any X E T bB and 
0I(X3(b)) = Jl. T7T is the tangent of 7T. lO ,23 Then OIE'l'-I(/l). 
The mapping f: T* 1'v[ - PI> defined by {3-+[ 01] is well de
fined, where [01] is the corresponding equivalence class 
in PI>' For Jl=eg, f:(T*M,wF)-(PI>'w,,} is a symplect
ic diffeomorphism, i. e. , f is a diffeomorphism and 
f*w" = wF, and jj + e2/2mK=H of. 

The power of the Marsden-Weinstein reduction 
theorem is that it is global. In Euler angle coordinates 

H=_I_ [p2 + 1... (h2 + (prJ> - cosB PlY \+p~ ] (22) 
2m r r YO sin2 B J K~ 

and Ij; is a cyclic coordinate. Thus p. is a constant of 
the motion. If we set P. = - eg in H, we obtain the 
Hamiltonian (3) with vector potential (5) expressed in 
spherical coordinates plus the constant e2 /2mK. Al
though the reduction can be carried out very simply in 
a coordinate system in which X3 is a coordinate vector 
field, we obtain only a piece of the reduced phase space. 
From this coordinate point of view, H in (3) is ii ex-
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pressed in a symplectic chart, which does not exist 
globally since F is not exact. 

There are two ways of interpreting (3) depending upon 
the choice of domain of H. If the singul~ities are ex
cluded from the domain of H, then H is H expressed in 
a symplectic chart. If the domain of H is R 3

, then H is 
the Hamiltonian for the charged particle in the field of 
one or more semi-infinite solenoids, depending upon the 
number of string singularities in A. The problem with 
implementing a canonical quantization of the symplectic 
structure (T*R3,WR3), where WR3 is the canonical 
symplectic 2 -form on T* R 3, and taking H as the Hamil
tonian is that we obtain a quantization of the motion of 
a charged particle in the field of one or more semi
infinite solenoids. It is claimed that if the resulting 
quantum mechanical Hamiltonian is spherically sym
metric, it represents the Hamiltonian for the charged 
particle in the magnetic monopole field. It is found that 
this quantum mechanical Hamiltonian is spherically 
symmetric if and only if /l has discrete values. 7 

5. CANONICAL QUANTIZATION 

We implement a canonical quantization in (T*B,w B ) 

by taking the Hilbert space H to be the set of complex
valued functions on B which are square integrable with 
respect to the invariant measure obtained from gB' The 
quantum operator corresponding to a real-valued func
tion f on B is multiplication by f and the operator cor
responding to the momentum p(X) , where X is a vector 
field on B, is P x= - iX. 23 The quantum operator 
corresponding to (17) is 

1 1 (1 1 1 2) H=--2-Ll.=-2- --0 (ror)+ . .2 (Pi +Pi )+-::7[Px , m m r r 'r 1 2 Kg 3 

(23) 

where Ll. is the Laplace-Beltrami operator on (B,gB)' 

Before a physical interpretation is given, we must 
consider a reduction procedure just as in the classical 
case. We impose the superselection rule25 corresponding 
to the operator P x . The Hilbert space H is the direct 
sum of the mutualry orthogonal eigenmanifolds of Px 3 
and we proj ect H onto an eigenmanifold!11 1>' Jl an eigen-
value of Px . The projection H onto!11" is the Hamilto
nian for the

3 
motion of the charged particle in the 

monopole field with interaction constant fl. The inter
action constant J1 has discrete values because the struc
ture group G is compact. Since the Euler angle co
ordinate Ij; is periodic with period 47T, we obtain Dirac's 
charge quantization condition26 

eg=in, (24) 

where n is an integer. The compactness of the structure 
group G follows from the requirement that the second 
Betti number of the principal fibre bundle B(M, G) be 
zero so that 7T* F is exact. We could have taken B to be 
R x p3 instead of R x S3, where p3 is three -dimensional 
real projective space. p3 is the group manifold of SO(3). 
In this case we obtain Schwinger's charge quantization 
condition3 

eg=n. (25) 

p3 is just the lens space21 (2,1). We can take B = R 
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XBk for the enlarged classical configuration space, 
where Bk is the lens space (k, 1), since the second Betti 
number of B vanishes for each positive integer k. The 
charge quantization condition is then 

eg=ikn, (26) 

where k is a fixed positive integer and n is the quantum 
number. These charge quantization conditions have been 
obtained by Usachev2

? by taking a vector potential with 
k singular strings. However, the number of strings does 
not enter into our formulation because rrt F is exact on 
B=RXBk , where rrk is the bundle projection rrk : RXB

k 

- R XS2. There are only two more principal fibre 
bundles B with base space M and one-dimensional fibre 
G and they are both trivial. They are MXSI and MXR. 
The second Betti number of both is one and rr* F is 
closed but not exact on both these bundles, where rr is 
the projection onto the first factor. 

We have rederived Hurst's results from a different 
point of view. The Hamiltonian (23) after the superselec
tion rule is imposed differs from Hurst's only by a 
constant. It is identical to Hurst's Hamiltonian in the 
limit as 5 approaches infinity. The P

Xj 
correspond to 

Hurst's J's? or Peshkin's K's. 28 

The charge quantization condition does not depend on 
the spherical symmetry of the monopole field. Indeed, 
let F= F+ E, where_E is any exact 2-form on M and let 
W = w + rr* a, where F= da. For example, E could be a 
uniform magnetic field. Then dw = rr* F. Define a 
Riemannian or pseudo-Riemannian metric ,g-B on B, in
variant under translations in the fibers, by 

gB(X, Y) =gM(rr *hX, rr *h Y) + KW0 w(vX, v Y), (27) 

where K is a nonzero constant and hX and vX are the 
horizontal and vertical parts of the vector field X with 
respect to the connection I-form w on B(M, G). Then 

gB=dr+r[(wl)2+(w2)2]+K(W)2. (28) 

We can show exactly as before that the geodesic equa
tions in (B ,gB) after a reduction procedure are the 
Lorentz force law equations in (M ,g M, J'i'). The same 
charge quantization condition is obtained as before by 
imposing the superselection rule corresponding to the 
operator P

X3
' In general, F has no symmetry and the 

only symmetry that gB possesses is that generated by 

X 3 • 
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An existence theorem is proven for the solution of the ditTerential equations of motion of a finite number of 
particles moving in a bounded piecewise regular region and mutually interacting via C 1 forces. It is shown 
that the elastic reflection laws uniquely determine a Lebesgue measurable flow solution of the ditTerential 
equations of motion (with elastic boundary conditions). The Lebesgue measure is invariant so that an 
extension of the Liouville theorem to non-Hamiltonian flows is obtained. A natural representation of the 
time evolution is given as a flow upward from a base under a "ceiling" function. 

1. INTRODUCTION 

In recent papers it has been shown that it is possible 
to reduce the problem of the existence of dynamics for 
an infinite system to the problem of n particles moving 
in a bounded region A. 1-4 This kind of result is of 
interest in a statistical mechanics framework, see Refs. 
5-B. As far as we know, in spite of its apparent ele
mentariness, there does not seem to be any exhaustive 
study on the argument. 

The usual approach is to consider n particles, in
teracting via regular forces (see D 2.2), in the open re
gion A. By well-known existence theorems, dynamiCS is 
defined until a particle reaches the boundaries (lA, of A. 
The motion is then extended to later times by elastic re
flection prescriptions. 

There are pathologies connected with this procedure. 
Problems arise from collisions with zero normal ve
lOCity: If the particle would naturally escape from the 
region A, in the absence of the walls, the simple elastic 
reflection laws would not be sufficient to specify the 
further motion of the particle. It is also possible that 
during the motion a particle has infinitely many colli
sions with the boundaries in a finite time. Further, if 
one assumes aA not to be completely smooth, see D 2.1, 
a particle may reach aA in a Singular point and then the 
elastic reflection prescriptions would not make sense. 
Finally, the presence of the infinite forces representing 
the action of the walls could undermine the invariance 
of the Lebesgue measure v [=d(q)nd(P)n], the classical 
proof of Liouville's theorem applies to Hamiltonian 
flows. 

We will prove that the initial data in which the above 
pathologies may be present are in some sense excep
tional: We can exclude a set of null v-measure and in the 
remaining of the phase space a v-invariant global flow is 
constructed. The particles have finitely many collisions 
in a bounded interval of time, and never hit aA in its 
singular part or with zero normal velocity. 
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The main steps in the proof of the above results are 
the following. 

The first one is to imbed the finite system (r, v), r 
=A"xlR"" into the unbounded dynamical system 
(rOO, v", S(t)), r"=lR""XlR"n, v" is the Lebesgue mea
sure on lR2"n and S(t) is the flow determined by the dif
ferential equations of motion. We then consider the S
trajectories in roo, in those intervals of time T+ deter
mined by the entrance and exit of some particle from A. 
The main point is to show that the union of these "cut" 
trajectories is a v-measurable set in r, and that a. e. w. 
the above intervals of time (for which the trajectories 
are in r) are strictly positive. Then time evolution on 
this set is naturally represented as a special flow up
ward starting from a base, with "ceiling" function T+ 

and base measure Il +, the measure projected from v on 
the base along the S-flow. 9,10 To obtain a global evolu
tion, it is then necessary to determine a transformation 
R of the base, which is meant to connect a point in the 
ceiling to a point in the base in a Il + - preserving way. 
The upward flow and R therefore define a transformation 
T on the base, under which Il+ is invariant. By general 
arguments (Poincare's recurrence theorem, see Ref. 
11), this is sufficient to ensure global evolutions in r 
independently of the characteristics of T and IJ. +. 

In our particular case the main problems are es
sentially three. 

The first is to prove measurability for the above sets, 
and this is obtained with topological arguments. The 
second is the proof that the elastic reflection prescrip
tions determine a IJ. + -invariant transformation of the 
base; this task is accomplished by explicit knowledge of 
IJ.+. The third is the proof that T+ is IJ.+-strictly positive, 
obtained by using continuity properties of the motion. 

In Sec. 2 we give definitions and notations and then 
develop the above arguments in some detail. The tech
nical estimates are reported in the form of theorems 
and their proofs are given in Sec. 3. In Sec. 4 some 
conclusions of this paper are drawn. 
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2. DEFINITIONS, RESULTS AND OUTLINE OF THE 
PROOF 

In the first five definitions below, we specify the hy
potheses on the system we treat. 

D 2.1 SPace of cOnfigurations: By A, we denote an open 
bounded set in IR". We assume that its boundary oA is 
piecewise smooth: closure of a finite union of surfaces 
with continuous normal derivative. The particles we 
study move in AU (lA. 

D 2.2 Interactions: Let U: IR"n - IR be a C2 bounded 
below function representing the potential energy of our 
system of n particles so that 

Fi = force on the ith particle=- ~ U[(q)n], (2.1) 
oq/ 

D 2.3 Phase spaces: By r, we denote the phase space 
of our system: 

r=AnxIR"n, r={XEO:IR2"n Ix=«q)n(P)n), q/EO:A, p/EO:IRv 

for i=1, ... , n}. (2.2) 

It will be convenient to think of r as a subspace of the 
unbounded phase space, r"'=IRvnxIRvn , of n particles 
moving in the whole space. r'" is equipped with the 
topology of IR2vn

, r is an open set in r'" and sometimes 
it will be thought of as a topological space with the in
duced topology of r"'. The actual motion will take place 
in the closure r of r. 

D 2.4 Measures: We denote by v"', the completed 
Lebesgue measure on r'" by v its restriction to r. Both 
v'" and v are a-finite measures. By vE (vE ), we will de
note the relativization of v'" (v), to the measurable sets 
with energy less than E. Notice that by D 2.2 the sets 
of configurations with energy less than E is open and 
therefore v'" (v)-measurable. 

D 2.5 Time evolution in r"': For every real t we de
note by St: r'" - r"', the time evolution in r'" determined 
by the interaction in D 2. 2: 

(2.3a) 

i=1, •.• ,no 

(2.3b) 

In the sequel we shall consider the map iP: r"'XIR-r"', 
defined as 

(2.4) 

IJj is continuous if r'" x IR is equipped with the product 
topology. In particular we will use the following stronger 
property of S t: 

P I For every x EO: r"', € > 0, T > 0 there exists a neigh
borhood Vx of x such that 

IStx-StYl<e, yEO:V., Itl,,;;T, (2.5) 

(where the norm in Eq. 2.5 is that of IR2vn
). 

In order to represent (part of) the flow St, see the 
outline of the proof in the Introduction (as a flow upward 
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from a base, it is convenient to use explicit notations 
for the sets in which some particle is in oA), definitions 
D 2.6, and D 2.7 below, 

D 2.6 Decomposition of the boundaries: Let n be the 
inward unit vector normal to (lA, defined in (lA - (lAs> 
oAs is the Singular part of oA, see D 2.1. We will con
sider the following sets in r"': 

J'={x=(q)n(P)nl fori=1, ••. ,n either qi EO: A or 

qjEO:OA-OAsandp/n;::O. There existsj s.t. qjE(lA}, 

J O ={x = (q)n(P)n I for i = 1, ... ,n, qj EO: AU (lA and there 

exists j s. t. qj EO: (lAs, or qj EO: (lA and pjn= o}. 

J = J ° U J + U J - will be considered equipped with the 
topology induced by r"'. In this topology both J+ and J
are open sets. 

D 2.7 Time return to (lA: For every x EO: r there exists 
an open nonzero maximal connected time interval I(x) 
s. t. for tEO: I(x), StX EO: r. For x EO: J+ (J-) correspondingly 
there exists a maximal positive (negative) function r+(,1'-) , 
S. t. StX EO: r for 0 < t < r+(x) [r-(x) < t < 0]. In this time 
interval the motion Eqs. (2.3) make sense as evolution 
in r; our task will be to show how to extend them for 
times larger [smaller] than r+(x) [r-(x)] by taking into 
account the elastic reflection laws. 

The first step in the construction of dynamics is to 
consider the subset in r of configurations evoluted from 
]+. More precisely let 

M+={YEO:J+XIR+ly=(x,t), O<t<r+(x), XEO:]+}, 

(2.6a) 

(2.6b) 

and assume analogous definitions for M- and r-. 

In Theorems 2.1-2.3 we state properties of J', r., 
and r', even if for the sake of brevity (both in the 
theorems and in their proofs); we only refer to the "+" 
part. 

Theorem 2.1: ~ is an open set in J+XIR+ (equipped 
with the product topology), and r+ is an open set in r. 
The restriction of if to M+ is denoted by Ij; and it is a one 
to one bicontinuous mapping of ~ onto r+. The function 
r+(x) defined on r+ is lower semicontinuous. 

We pointed out the above topological properties of M
and r+ in order to have measure theoretical information. 
The purpose is to project v on J+ along the flow St. This 
will be obtained in the theorem stated after the following 
definitions. 

D 2.8 Measures on ]: Let a be the completed or
thogonal projection of v on J. In particular, a' is its 
restriction to J', Since J O has null a measure and so 
does the set of configuration which has more than one 
particle in (lA, the following function: 

7To.: J - IR, 7To.(X) =p/n, where Pi is the momentum of 
the only particle in (lA, (2.7) 

is a-almost everywhere defined. We will often consider 
the a- finite measures )1' = 7To. • a' on ]'. 
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D 2.9 Lebesgue measure on IR+: By ,\ we denote the 
Lebesgue measure on lR+. 

Theorem 2.2: Let Il+x,\ be the product measure on 
J+ x lR+ and Il + X,\ 1M" its restriction to M+. Let v'" I r+ 
== v I r+ be the restriction of v'" to r+, then: 

(i) {M+, 11 + X,\ IM+} is isomorphic to {r+, v'" I r+}, 

(ii) r+ is Il+-measurable and the set {XE J+lr+(x)==co} 
has null 11+ measure, 

(iii) r+(xt l is 11 + measurable and if A C J+ is any 11+ 
measurable set 

where x(A,x) denotes the value in x of the characteristic 
function of the set A. 

We want to show that the above theorem defines 11+
essentially a map from J+ to J-. This and the succes
sive arguments will finally be collected in Theorem 2.4 
stated below. We define Il+-a. e. w. a map S., 

Since by Theorem 2.2 (ii) r+(x) is Il+-essentially finite, 
the only problem is to show that the set of those x E J+, 
S. t. S+x E J O, are 11+ negligible. In the following theorem 
we give estimates on the measure of these sets. We 
first establish some notations. 

D 2.10 Special sets: Analogous to Eq. (2.6), we pose 

MO={yEYXlRly=(x,t), XEJo, St,XEr 

for O~t'~t or t~t'~O}, 

rO == ~(Mo). 

Therefore, rO contains the set of all the configuration in 
r which in their natural motion (Without any previous 
collision) hit the boundary in its Singular part aAs, or 
reach aA with zero normal velocity. We will have to 
show that rO is v-negligible and also that the set of con
figurations in r, which after some collision enter into 
rO, is also v-negligible. We will first show this by 
studying the sets 

N+=={x E T Is+x E Y}, 

r N+ == {y E r+ Iy ==StX x E N+ t < -t>(x)}. 

Theorem 2.3: (i) The set rO has null v measure. In 
particular v(r N+) == 0 (ii) The set N+ has 11 + -null measure. 

(ii) of Theorem 2.3 proves indeed that S+ is Il+-es
sentially defined from J+ to J-. 

Proof that S+ J+ has full 11- -measure: In analogy to 
D 2.7, we considered the negative time return r-(x) to 
aA defined from J- to J. Analogous theorems to Thm. 
2.1-2.3 hold so that a Il--a. e. w. defined map S- from 
J- to J+U Y is considered. The set 

has 11 - null measure. 

We have 

In fact, if y is in the lhs of Eq. 2.9, it means that 
S-y EJ+ and by the same Eqs. of motion, S+S-y =y. 

Therefore, 

Il-((S+ 7)COmpl]~ Il-(N-) + Il-[{x E Y I r-(x) = oo}] = O. 

As a result we have proven that S+ is a (modulo zero) 
invertible map from (J+' 11 +) to (J -, 11-). 

Further, from the explicit form of 11+ given in (iii) of 
Theorem 2.3, and the analogous form for 11- (A is 11+ 
measurable), we have 

1l+(A) = 1 v[dl/J(x,t)]x(A,x)r+(x)-1 
r+ 

= J
r

- v[dl/J(S+x,t- r+(x))] X (S+A , S+x) Ir-(s+xtll 

(2. 10) 

Therefore, the measure spaces (J+, 11 +) and (J-, 11-) 
are isomorphic with the isomorphism given by S+. By 
explicit construction D 2.8, (J-, Il-) is also isomorphic 
to (J+, 11 +) by means of the transformation R (elastic 
reflection) , 

where (P)~ is equal to (p)" except for the ith particle, 
which is in aA and whose normal momentum has opposite 
sign. 

As a consequence, the transformation T 

(2.11) 

is 11+ a. e. w. defined and is an automorphism of (J+, 11 +) 
onto itself. 

It still remains to prove that the set 

B =={x E Pit" r+(T"x) < co} 
° 

(2. 12) 

has null 11 + measure. This is proven by general argu
ments (Poincare's recurrence theorem, see for in
stance Ref. 11) 

Proof that 11 +(B) = 0: Let 

A:={xETlr+(x»a, E(x) <E}. 

Since 

11 +[ {x E J+ I r+(x) == o}] == 0, 

by countable additivity of Il + we have 

1l+(B) ==lim lim 1l+(A:B). 
a~c E-oa 

By Poincare's recurrence theorem (1l+(A:B) ==0): almost 
all x in A:B appear infinitely many times in A:B; but 
since this is impossible by the very definition of Band 
A:, it must be that 11 +(A:B) == o. 

A corollary of the above result is that the set 

rJ3 == {y E r+ Iy == (x, t), x E B or T"x E N+ for n ?o 0, 

t < -t>(x)}, 

has null v measure. In fact, the base of rJ3 has null 
11+ measure (proven before) and by using Theorem 2.2 
the desired result is obtained. 

[J- - N- - {x EJ-I r-(x) == co}] C S+J+. 
We collect the above arguments in the theorem below 

(2. 9) which is therefore proven. 
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Theorem 2.4: The map S+ defined in Eq. 2.8 is an 
isomorphism between the two Lebesgue spaces (J+, /l+) 
and (J-, /l-). Therefore, the map T =R S+ where R is the 
elastic reflection map, see Eq. 2. 11, is an automor
phism of (J+, /l+) onto itself. 

The time evolution St restricted to r+ = r+ U J+ U S+J+, 

and extended by the elastic reflection laws, defines 
v a. e. w. a flow T t in the following sense: 

(i) r+ is T t-invariant (v modulo zero), 

(ii) the set of configurations which have infinitely 
many collisions in a finite time, or hit aA in its singu
lar part, or reach at some time aA with zero normal 
velocity, has null measure. 

The dynamical system (r+, vi r+, T t), is represented 
as a special flow with ceiling function T+ under a base 
J+ with base transformation T. 

Theorem 2.4 does not yet complete the study of the 
configurations which have particles colliding on the walls 
aA. It still remains to consider the configurations in rO 
after some collisions. Theorem 2.3 (i) proves that 
v(ro) = 0 while the configurations of r+ entering into rO 
belong to Nr+, see D 2. 10, and therefore have null v 
measure. 

The configurations in r whose particles never suffer 
collision dynamics are directly defined via the flow St 
therefore, the required existence theorem is proven; the 
above results are stated in Theorem 2.5 below. 

Theorem 2.5: The phase space r is v-essentially the 
disjoint union of the two invariant sets r+ and rf. r+ is 
described in Theorem 2.4 and rf is the set of configura
tions whose particles never suffer collisions. As a con
clusion, the set (r, v, T t) is a dynamical flow: T tX rep
resents the unique solution of the Eqs. of motion 2.3 
with elastic reflections on the boundaries. The number 
of collisions is finite for every bounded interval of time 
and no particle hits aA in its singular part or with zero 
normal velocity. 

3. PROOFS 

In this section we give the proofs of Theorems 2.1-
2.3. 

Proof of Theorem 2.1: The proof of Theorem 2.1 is 
carried through in a sequence of steps stated below as 
propositions; some of them are so obvious they do not 
require a proof. 

Proposition 1: J+ is open in J. 

Proposition 2: r+ is open in r. 

Proof: LetYEr+, y=I/J(x,t), andxEJ+, t<T+(X). Then 
there exists T > t such that 

S_t' Y E r for t < t'.,; T. 

As a consequence, there exists E > 0 so that: 

(i) inf 
o~ t'ET 

(ii) S_TY has distance from J which is strictly larger 
than E. 
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The existence of such an E is ensured by the fact that J O 

is closed. We now apply PI of D 2.5: There exists Vy 
open in rO such that 

for ZEVy , IS_t,y-S_t.zl<E, O.,;t'.,;T. 

By property (i) S _to Z is never in J O, and by (ii), and the 
continuity of the motion, it crosses J+ so that it belongs 
to r+. 

Proposition 3: Ijj is continuous. 

Proposition 4: M+ is open in J+xlR+ and T+(X) is lower 
semi continuous. 

Proof: Sinc e ~ = ;p -I (r+) with r+ open and ~ continuous, 
M+ is open in J+XlR+. T+(X) is 1. s. c.: we will show that 
xn - x in J+, and limn inf T+(Xn) < T+(X) leads to a con
tradiction. Let 

lim inf T+(Xn) = lim T+(Xnk) = T < T' < T+(X), 
n .. oo k-oo 

(3.1a) 

lim Xn =x 
k"oo k 

(3.1b) 

Then (xnk ' T') for k > ko does not belong to ~ because ko 
is so chosen that 

for k> ko, T' > T+(Xnk). 

Since limk_~ (xnk,T')=(x,T') E~, this is absurd be
cause ~ was proven to be open. 

Proposition 5: I/J-I is continuous. 

Proof: Let Yn - Y in r+, with I/J(xn, tn) =Yn, I/J(x, t) =y. 
We will show that xn - x and tn -t. We construct T and 
E as in the proof of Proposition 2. Then we choose sub
sequences {nk} and {nj} such that: 

f=lim sup tn=lim tn < T, 
n"oo k-QO k 

t = limn inf tn = lim tn., 
- j~oo J 

x=lim X nk ' 
k-~ 

x=lim X n . 
- j-+«:> J 

We have: 

lim Yn = lim I/J(xnk , tnk) = I/J(x,t) , 
k -+00 k k"oo 

limYn =y=I/J(X,t), 
k -+00 k 

and since I/J has an inverse, by its definition ~d the Eqs. 
of motion, Eq. 2.3, it follows that x=x and t=t. An
alogously, we have that ~ =x and£ = t. 

Proof of Theorem 2.2: (i) First we notice that by 
Theorem 2.1, (r+, v) is isomorphic to (M+' v~) where v. 
= v 0 I/J. We then define /l+ x::\. on J+ x lR+, and consider its 
restriction to M+, which is an open set by Theorem 2. 1 
and therefore /l+x::\, measurable. We compare /l+x::\, and 
v~ on a class T of Borel sets (tubes) which a-generates 
the whole a-algebra of measurable sets. We say that 
BET, if B is the open set of the form 

It is easy to see that T a-generates the algebra of Borel 
sets. We can then define 

/l;(A) = (ttl. v~[A x (0, t)], 
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which is t-continuous. Furthermore, by Liouville's 
theorem on the unbounded system (rOO, v, S t), 

jJ.;lk(A)=jJ.;(A) for every integer k. 

Hence, jJ.; is constant on a dense set and therefore does 
not depend on t, jJ.; = M +. The proof that p. + equals jJ. + can 
be obtained by simply computing the Jacobian of the 
transformation 

(xo, t) - StXo· 

This gives the normal momentum 1TD, which enters in 
the definition of jJ. +, see D 2. 8. Therefore, (i) of 
Theorem 2.2 is proved. 

(ii) By Theorem 2. 1, T+(X) is lower semicontinuous 
and therefore measurable w. r. t. the Borel measure 
jJ.+. Let 

q;={XE T IT+(x) =00, E(x) = energy of x <E}. 

Then vE and fJ.;' are finite measures so that 

fJ.Hq;) = y-1 v~[q;x (0, T)]!S y-1 v({x E r IE(x) < E})T-:""OO 0, 

where (i) of Theorem 2.2 has been used. This proves 
(ii) of Theorem 2.2. 

(iii) This is a consequence of the above proven mea
surability of T+(X). By use of Fubini's theorem we have 

1 v[dljJ(x,t)]xG1 ,X)T+(xt1 
r+ 

= 11 + fJ. +(dx) x A(dt) xG1 ,x) T+(xt 1X[M+, (x, t)] 
X]R 

Proof of Theorem 2.3: The main point in the proof of 
Theorem 2.3 is the following argument, introduced as 
a separate lemma. 

Lemma 3.1: Let a be the surface measure on J, B a 
a-measurable set, Q =U~ tStB. We have 

where v:'xt is the outer measure associated to v"', w(B) 
is the supremum of the moduli of the momenta of the 
particles in the configurations in B, B is the closure of 
Bin J. 

Proof: v:'xt is a S- invariant outer measure on roo. In 
fact v:xt is defined by the following: 

v:xt(B)=inf 6 n v"'(An), BCUAn, An is v'" measurable. 
(An) 

Therefore, 

v:'xt(B) = inf 6 v"'(An) = inf 6 vOO(~An) ~ v:'xdStB) , 
(An) IStAn} 

V:xt(StB) = inf 6 vOO(C n) = inf 6 vOO(S_tCn) ~ v:xt(B). 
(en) (S_Pn) 

We therefore have 

mE Z+. (3.2) 
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To obtain an estimate on the r. h. s. of Eq. 3.2 we con
sider the following vOO-measurable set containing QTlm: 

for every configuration in B take the neighborhood for 
which every particle is within 

[w(B) +F IT 11m] IT 11m, 

with momentum within FIT 1/ m, where F is the maximal 
force that a particle can experience. This set is open 
and therefore v'" -measurable, it obviously contains QT 1m; 

if its projection on J is denoted by C(B, Tim), we have 
from Eq. 3.2 

v:xt(QT)!Sma[C(B, Tim)] (w(B)+FITl/m) ITllm 

- a(B)w(B) IT I. 
m -'" 

This proves Lemma 3. 1. 

Proof of (i) of Theorem 2.3: Let 

M~.E={YEMOly=(x,t), Itl!ST, E(x)!SE}. 

We have by Lemma 3.1 that 
T 

Vext[i)iM~.E]!S v:xt [ ~ It I St J~]!S 2w(J~) T a(y) = 0, 

so that (i) is proven when we let T and E diverge. 

Proof of (ii) of Theorem 2.3: Let 

Then, by the previous estimates 
T 

Vext[UtStIYJE T]!S v (rN.) =0. o • 

Therefore, by Theorem 2.2, 

TfJ.+(IYJE T)=V[OtStIYJE T]=O, • 0 • 

Letting T- 1 and E diverge, the proof is complete. 

4. CONCLUSIONS 

Here we consider the following two problems: Are the 
pathological configurations also negligible with respect 
to the microcanonical measures? Does the technique 
we used in this paper apply to collisions between parti
cles as in the case of hard-core interactions? 

In the remainder of this section we will give some 
sketchy arguments on a possible way to treat the above 
problems. 

We proved in Theorems 2.4 and 2.5 that the catastro
phic configurations we are dealing with are in a Lebesgue 
null set. However, they may not be negligible w. r. t. the 
Lebesgue measure projected on surfaces of constant 
energy, the microcanonical measures. 

To prove that this is not the case we could proceed as 
in Sees. 2 and 3. Since the energy surfaces 2: (E), are 
closed we directly derive from Theorems 2.1 and 2.2 
their analogous just by considering intersections with 
2: (E). The arguments used in the proof of Lemrw 3.1 
carry through in this new case, so Theorem 2.3 can 
also be proved. Since the results of Theorem 2.4 and 
2.5 are consequences of the validity of Theorems 2. 1-
2.3, we may obtain the existence theorem for finite 
volume dynamics in a set of full measure w. r. t. all the 
microcanonical measures associated to the system. 
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Dynamics of finitely many hard-cores in a bounded 
region: In this case the elastic reflection law has to be 
extended to collisions between particles: It is of parti
cular interest for the very same definition of dynamics 
to show that multiple (more than two particles) colli
sions are present in a set of null Lebesgue measure. 

The first problem which arises in this case is to find 
out the "good" infinite system in which to imbed our 
"singular" hard-core finite one. This will be the only 
point we sketch about this problem. 

The idea is that the infinite regularized dynamical 
system, still denoted by (r~, v~, 5 t ), is in fact deter
mined by n fictitious point particles moving in lRv. Their 
interactions equal the actual ones (between the hard 
cores) whenever the positions of the fictitious point 
particles are consistent with the hard core restriction 
and which are extended to regular interaction in the 
remaining configurations. 

The base of our flow will then be extended in the phase 
space to cover situations in which the particles reach 
the hard-core distance. Again at this point, topological 
considerations would have to be used in order to prove 
the measure estimates needed in the extensions of the 
theorems of Sec. 2. 
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Conditioning of states 
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A system of axioms for the state space of a quantum system is proposed which, together with the concept 
of conditioning a state by the occurrence of an event, leads to the construction of the standard 
orthomodular events system. 

INTRODUCTION 

In the present paper we are exploiting the point of 
view advocated by several writers (Refs. 1 to 7), that 
the state space rather than the event (or observable) 
system is the natural underlying concept for the founda
tions of physics. Our main goal is to show how, by 
means of reasonable hypotheses, one can derive a mean
ingful concept of event and impose on the set of all 
events the standard structure of an orthomodular par
tially ordered set. 

The state space we consider consists exclusively of 
pure states, because we feel that unavoidably one has 
to assume the principle of mixture: any state is a mix
ture (possible in several ways) of pure states. In such 
a setup the fundamental question is: what is the proba
bility of (random) transition from one state to another? 
So we are led to postulate a number (m In) correspond
ing to every pair of states m, n in our collection P of 
all pure states; randomness imposes symmetry on this 
functional. Note that in the classical situation we have 
(m In) = 0 for all distinct m, n. 

We now come to the concept of event. Our interpre
tation (not quite original, to be sure) is that we can 
detect the occurrence of events by watching how the 
various states change. These changes are of no "dura
tion" - time is not supposed to enter the pictUre, neither 
causal relationships. Weare thus led to consider an 
event A completely determined if we know how each 
state of the system will change when this event A occurs. 
So we define an event A as a map from P to P, which 
we shall write as 111 - 111: A; the exact meaning of this 
being that when the system is in the state m, the event 
A occurs iff we detect a change from m to m: A • A tech
nical point arises now: how can we incorporate the case 
of an event A not being possible to occur in a state m? 
One possibility is to assign to each event a "domain", 
i. e., the set of states in which it is possible for A to 
occur, and assign meaning to the symbol m:A only in 
case m is in this domain. Another, is to introduce a 
hypothetical (or impossible) state, and incorporate the 
case of A not possibly occurring in the state m by say
ing that m: A is this fictitious state. We shall adopt the 
second alternative as it is technically simpler, but also 
physically suggestive. 

According to our interpretation, it is clear that 
(m I m'A) should be the probability m(A) of A occurring 
in the state m. We shall assume this explicitly, One of 
the results we shall establish that makes our whole ap
proach consistent, is that if the system is in some 
state m and we consider all states in which A occurs 
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with certainty (m'A is one of them!) then m: A is cha
racterized as that state which maximizes the transition 
probability (m In). 

A basic hypothesis which we shall adopt is what we 
call the subspace principle. Once an event, say A, has 
occurred, our state space is transformed from the ori
ginal P to the set r<. A of all states in which A occurs 
with certainty, according to our basic interpretation. 
But this cannot change the basic structure of the state 
space; hence we assume that any property of P has to 
be valid for all RA also. 

Before we enter into the details let us briefly mention 
how the structure of P can impose structure on the 
events. First, consider the meaning of implication. To 
say that A implies 15 means that B is bound to occur 
wherever A does; this we can reformulate as m:A(B) = 1 
for all states m. The basic properties follow, one of 
which is that the set of states in which A occurs with 
certainty determines A completely. The concept of op
posite or complementary event is somewhat more in
volved. Given an event A we say that its opposite A' 
occurs with certainty in a state m iff A cannot occur 
in this state. We can see that A' is uniquely defined, 
but its existence must be postulated. Furthermore, it 
appears that in general the role A and A' is not sym
metric, i. e., (A')' need not be A; it is not hard to show 
that A'=«A')')' without extra hypotheses, and the pos
sibility of a "Browerian" structure on the events ob
tainable from simple physical hypotheses appears to be 
of some interest. It turns out that A = (A ')' is true iff 
we assume that A is certain in a state m iff A' is im
possible in m. ThiS, as well as other standard proper
ties of our class of events, follows from a general as
sumption we shall make on the behavior of maximal sys
tems of states which are pairwise exclusive (i. e., have 
zero transition probabilities): if {m /} is such a set of 
states, then l:(m I m l ) = 1 for any state m. Note that 
an "orthogonal" system of states is just a classical sys
tem; thus, the above axiom means that given a maxi
mal (i. eo, exhaustive) classical subsystem of states, 
the probabilities of transition from any state to one of 
them are also exhaustive. Technically this means that 
any maximal set of mutually exclusive atomic events 
must have the certain event as a logical disjunction, 

These are all the required hypotheses. We now pro
ceed with the details. 

1. EVENTS 

The fundamental object in our construction is a set 
P, which represents the pure states of the system, and 
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a functional P x P - [0, 1], to represent the probabilities 
of spontaneous transitions from one pure state to an
other. For m, n e P we shall write (m I n) for this pro
bability. The first hypothesis we make is the following: 

Axiom 1: (a) O,,;(mln)"; 1, 

(b) (m.ln)=1 iff m=n, 

(c) (mln)=(nlm). 

Part (a) is obviously essential. Part (b) reflects the 
noncausality of our transitions: if the system keeps 
oscillating between m, n, how can we distinguish between 
them? Part (c) also reflects noncausality, but in a more 
subtle way. 

We shall call two pure states m, n orthogonal if 
(m I n) = 0; we shall write this as m 1 no 

It is technically convenient to introduce a fictitious 
state 8 such that (818)=(mI8)=(8Im)=0 for all nucP. 
We shall write Po for PU{8}. 

As discussed in the Introduction, we shall view an 
event as a transformation on our pure state space. It 
pays to allow the state 8 to enter the game. Thus an 
event, say A, shall associate to each me Po another 
element of Po which we shall write as m: A and call "the 
state m conditioned by the occurence of A." It is under
stood that occurrence of A while the system is in the 
state m is tantamount to the system's switching over to 
m, A 0 Thus the number (m I In: A) shall be interpreted as 
the probability m(A) of occurrence of A while the sys
tem is in the state m 0 

Formally we pose the definition as follows: 

Definition 1. An event is a map A : Po - P 0 such that: 

(i) A is idempotent, i. e., In:A:A = m'A' while 8:A = 8, 

(ii) (m I m:A) = ° implies either m or m'A = 8, 

(iii) for any m,neP o we have (mln:A)=(mlm: A) 

x(m:A In'A). 

Keeping in mind the interpretation of (m I m'A)' we 
see that the set of all m: A which are not 8 is precisely 
the set of states in which A occurs with certainty; hence 
reoccurrence of A should not change 11I'A, L e., A should 
be idempotent. The requirement 8: A = 8 together with 
(ii) simply says that 111: A = 8 iff it is impossible for A 
to occur in the state m. Requirement (iii) is strong but 
natural, and stresses the spontaneity of transitions by 
stating that the probability of switching from the arbi
trary state m to a state p ('" n: A) in which A occurs with 
certainty is the product (independence!) of the probabili
ty of A occurring, and the probability of the subsequent 
switching of m'A to p. 

Definition 2: The set D A ={ 111 I m ,A * 8} is the domain 
of A and the set /~ A ={m E P 1m = m:A} is the range of 
Ao As mentioned above, D A is the set of all states in 
which A is possible and 8 A the set of those in which A 
is certain. Evidently 8 A ~D A· 

A symmetrized (equivalent) version of (iii) shall be 
useful in what follows. Take any 111, nePo and consider 
(m I m:A) (m:A I n): the second factor is then equal to 
(m: A In:"v (n: A I n) by (iii), so the whole thing is 
(m I til: A) (m'A In: A) (n: A In). But the first two factors give 
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just (m I n: A ) again by (iii). So we finally get: 

(m Im:A)(m:A In) =(n In,A) (n:A 1m), 

which we shall call the" symmetry" relation. 

Example 1: (classical model) We take any set P and 
let (m I n) be the Kronecker symbol 0mn. Our axiom is 
trivially verified. The events are in a 1 : 1 correspon
dence with the subsets of P. This is because by (ii) we 
have either 111: A = 8 or lIl:A = nz, and we can associate 
with each A the set /<.. A; vice versa, for any subset J 
of P the map 

~
8 m~iJ 

nz-
Tn 111e5 

defines an event. 

Example 2: (nonclassical model) We take P to be the 
set of all rays in some Hilbert space and represent them 
by unit vectors; write 111<!J' ml!, etc. for the states re
presented by ¢, </J, etc. We set (rn<!J 1m</!) = I (¢ I </J) 12, 
where (¢ I </J) is the inner product. It is convenient in 
this instance to represent 8 by the zero vector. Each 
projection operator determines an event. To see this 
let P be a projection and let m:p be represented by Pv) 
(normalized in case it is *0); properties (i), (ii), (iii) 
follow easily. It is not quite clear to the writer whether 
each event can be so represented by a proj ection. This 
shall be the case, however, if we assume the hypotheses 
to be introduced later. 

We shall close this section with a result connecting 
DA toR A, offering some insight into our structure. For 
any J .~ P we write J ~ for the set {m e P I nz 1/1 for all 
n E 5}, and cJ for the set complement {IJI ,=- P 1111 ri J }. 

Proposition 1: For any A e L we have D A = cV'\~). 

Proof: We have mE cIJ A iff m:A = 8, which means 
(m:A In) = 0 for all liE P, which is equivalent to 
(m: A I n: A) (m: A In) = 0. Thus we have by symmetry, JI/ 

E cD A iff (n I n: A) (n:A I m) = 0 for all n E p, and in partic
ular mlll for all JleRA- SO cf)A~/<"~. Conversely, if 
m E/\ A, we have (11I11l: A ) = 0 for alln c p, and reversing 
the above argument we get m: A = 8, or IJI C ("j) A. 

2. PARTIAL ORDERING 

We shall now impose structure on L. First we consi
der the concept of implication. 

Definition 3: The event li implies the event A iff 
111:B (A) = 1 for all states m ED B • We write this as li~: A. 

Note that this condition simply means that if Jj has 
occurred, then A is certain to occur also. 

First we formulate this relation in various useful 
ways. 

Proposition 1: We have Jj,,;A iff/\B~/<A. 

Proof: If i3"CA and 111 "'/-(B' then 1/1 = JI/:B' Hence 
m(A) = m,B (A), or m(A) = 1; thus (/II 11II'A) = 1 and /1/ 

= m:A, or mEP A. Conversely, if PB '~~RA' take any 
m cDB ; then 8 * I1I:B C/\B' so I17:B E /\A and }}I:B(A) = 1 

Proposition 2: We have B·,,; A iff IJI: B =III'A:B and 
m(B) = m(A)IlI: A(B) 0 

Platon C. Deliyannis 654 



                                                                                                                                    

Proof: Suppose B ""A. If m ciDB' then mOB = e, hence 
m: B:A = e also, or mOB =m:B:A• If m EDB then m:B(A) 

=1, i.e., (m: B lm: B: A)=1, oragainm:B=m,B:A' Now 
take any n and use symmetry repeatedly to obtain: 
n(B)(n: B 1m) = (n I nOB) (n: B 1m) = (m I mOB) (m:B In) 
=(m I mOB) (m: B I m:B:A) (m: B In) =(m I mOB) (m: B Im: B: A) 
x(m:B:A In) = (m I mOB) (n I n: A) (n:A I mOB) =(n In,A) 
x (m I mOB) (m'B I n: A) = (n I n,A) (n:A I n: A:B) (n:A:B 1m) 
= n(A)n: A (B) < n: A:B I m). That is, for all m, n we have 
n(B)(n: B 1m) = n(A)n: A(B)(n: A:B 1m). In case n,B = e, we 
have n: A:B = e also; because n: A:B* e implies n: A * e, 
and so all three terms on the right will be * ° for m 
=n: A:B . Thus n(B)=O, n:A(B)=O and the result holds. 
In case nOB * e we have n(B) *0; but we also have n:A:B 
* e, for otherwise the right hand side is ° for all m, 
while the left is not. By the next lemma we then get 
n(B) = n(A)n:A(B), and since these are * 0, we also have 
nOB = n,A'B' Now for the converse, take m Ei<.. B so that 
nl:B=1. Thenm'A:B=m, hencem:AEi<..B, orm: A(B)=1 
which gives m(B)=lII(A). Since m(B)=1 we get m(A)=1 

or 111 c:J\ A-

Lemma 1: If ~ (m11 m) = a2(m2 1 m) (where m 1, m 2 * e) 
for all 111 E p, then a1 = a2 ; if they are * ° we also get 
nil =m2 • 

Proof: Take m = 1111 to obtain a1 = ~(m21 m 1) "" a2, and 
similarly a2 '" a1 • So if a1 , a2 * 0, we get (m11 m) = (m21 m) 
for all 111, and in particular for m = m 1 we obtain 
(111 2 1111 1) = 1, or fill = 1112 , 

Theorem 1: The relation of implication is a partial 
order on L. 

Proof: Using Proposition 1, we obtain A '" A and 
transitivity at once. So assume B ",A and A"" B. Then 
nI:A=m: A:B, in:B=m: B: A, and m: B =111: A:B . Thus, m: A 
=m: B for all Ill, i.e., A=B. 

Corollary: The set 1\ A determines A completely. 

The exact way of obtaining A out of i<.. A can be obtained 
as follows. This interpretation of the state m: A is quite 
natural and appears to justify the present approach. 

Theorem 2: Given A and m ED A, then m: A is the uni
que II ER A which maximizes (m In). 

Proof: Since n ERA, we have (m I m:A)(m: A In)=(m In); 
thus (m III) '" (111 I 111: A> for all n rei<.. A, and In: A maximizes 
(m lIZ). Now if (m I III ,A> = (m I n) for some n rei<.. A, then 
again we have (111 I m: A) (m:A In) = (m I m: A), and since 
(m 1117: A> * 0 (since 111 reD A) we obtain (m: A In) = 1, or 
m: A = 11 and uniqueness is established. 

We shall now introduce several important events, 
and incidentally establish that L * ¢. 

Proposition 3: The maps 

{ 

0: m - e V 111 E /j 0 

I: 111-111 V m'E/\o 

are events, and 0", A "" I for all A re L . 

No proof is really needed. 

Proposition 4: For each m re P the map 
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A 'n- {m m' 
e 

is an event in L . 

if (n I m) * ° 
if (n 1m) =0 

Proof: Clearly e is mapped to e, and to finish (i) of 
definition 1 we need idempotency. Consider an n not 
orthogonal to m; then it is mapped by Am to m, which 
again is not 1 to m, so that we have it in this case. If 
n1 m, then it is mapped to e which again is mapped to 
e. Thus Am is idempotent. To verify (ii) let ml =n,Am 
and note that if n, m 1 * e, then m 1 = n while (n 1m) * 0, 
which is precisely the desired conclusion. For (iii) we 
want (P I n:Am) = (P IP:Ad (P:A m In,A m), which holds for 
n:Am = e; so consider n'A m * e, which means that it is 
m, and the desired relation is (Plm)=(PIP:Am)(P:Amlm). 
Since P: Am is e or m according to whether P 1 m or not, 
this evidently holds. 

Even though the next result is obvious by Proposition 
1, we state it as a theorem because of its importance. 

Theorem: The events Am are the atoms of L. 

Proof: Clearly each Am is an atom, because i<.. Am has 
no proper subsets, being just {m}. Conversely, if A * 0, 
then i<.. A * ¢; but if i<.. A contains m l , m 2, 0", Aml '" A, 
Aml *0, Am *A and A is not an atom. So any atom A 
has /\A ={m} for some m re L, i. e., A =Am. 

Remark: 0, I and the atoms Am may very well be the 
only elements of L, unless we assume more than Axiom 
1. For example, let P ={ a, b, c} with (m In) =t for m 
* n. If i<..A ={a, b} say, then A maps a to a, b to band c 
to one of these, say b (it makes no difference). Then the 
requirement of symmetry yields (a I 11: A) (11: A I c) 
=(clc:A>(c'Ala) or (alc)=(clb)(blc), which is absurd. 

To close the section, we shall state our next axiom 
which shall be used in the next section. Consider two 
orthogonal states m, n and the corresponding atoms 
Am, An; occurrence of Am means that our system is in 
the state m, hence subsequent (spontaneous) occurrence 
of An is not pOSSible, since m(An) = (m In) = 0. Thus 
the events Am, An are very strongly mutually exclusive. 
Now, keeping this in mind, we consider a maximal or
thogonal family {ml} of states; this means that no event 
An exclusive of each and every Ami exists. It is thus 
reasonable to expect that L; m(A ml ) = 1 for any state 
mE P. This we shall assume, explicitly, since it is 
formally independent of Axiom 1. 

Axiom 2: Given any maximal orthogonal family {mi} 
of states, we have L;(m I m l ) = 1 for any m re P. 

Note that the three-element example mentioned pre
viously as well as examples 1 and 2 of Sec. 1, all sat
isfy Axiom 2. 

3. THE SUBSPACE PRINCIPLE 

The hypothesis we shall introduce now is motivated 
by the observation that once an event A has occurred, 
the various states of the system shall switch to their 
images under the map A (according to our basic inter
pretation), and so the state system P can be replaced 
by /\A; in other words, unless something else occurs, 
the only states which make sense to look at are those 
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in which A occurs with certainty, simply because A has 
actually occurred! But this means that I( A must satisfy 
the same conditions as P does. There is no problem 
as far as Axiom 1 is concerned, since the restriction 
of ( I ) will evidently satisfy the required conditions. 
So let us write L A for the set of all events based on /~ A, 

and use the same e as for L. We shall establish a nat
ural 1 : 1 correspondence between the events of L A and 
the events of L which are ""'A. 

Given any B"", A we can easily obtain an element of 
L A by simply restricting the map B to I( A; since I( B 

~ I( A> the values of the restriction are contained in I( A 

and evidently idempotency follows. Writing B for this 
restriction, we note thatLJE, being{mEI(Alm:E,*e} is 
simply LJ B nl( A' SO m ELJE implies (m I mOB) '* 0, and 
since mOB =m'B, we see that condition (ii) holds. Re
quirement (iii) is naturally valid in I( A again because 
m'E = m: B • Note that I(B and I(B are identical. 

The converse requires a little more work. We shall 
show that given any event C E L A, we can find an event 
C E L, C "'" A, whose restriction to I( A is precisely C; 
since /\ c =/\ C we see that such a C is unique. 

The definition of C is obvious; it will just be the com
position of the two maps A and C which we shall denote 
by CoA: C=CoA. It is evident that C restricted to/~A 
is C, since A is the identity on I( A' Also, since the 
range of C)s ,5!ontained in I( A, we have A 0 C = 9. Thus 
we obtain Co C = C 0 A 0 C 0 A = C 0 C 0 A = C 0 A = C, since 
Co C = C anyway (it being an event in LA)' Next we show 
symmetry for C. Note that for any m, n e:1( we have 
(nz I m:c) (m:c In) = (n I n:c) (n:c I m) by hypothesis. So, for 
any nI, n, we obtain (m:A Im:A:C)(m: A:C In: A) 

=(n:A I n: A:C) (n: A:C I m: A). Multiply by (m I m:A) and 
(n:A I n) to obtain (m 1 m:A) (m:A I m:A:C) (m: A:C 1 n: A) (n: A 1 n) 
for the left side; by symmetry the first two factors 
become (m:A:C I m: A:C:A) (m:A:C:A I m) = (m:A:C 1 m) (since 
A 0 C = C), and the other two become 
(m:A:clm:A:C:A)(m:A:C:Aln)=(m:A:cln). So, the left 
side becomes (1111 m:A:C)(m: A:C In) and similarly the 
right becomes (n I n: A : C) (n:A:C 1m), i. e., ~we obtain sym
metry for; the map C. Now note that A 0 C =A 0 C oA 

= C oA = C and so by the argument in Proposition 2, 
which used only the symmetry property, we have 
(1111 moe) (11I:e 1 n) = m(A)(m:A I m: A:e) (m: A:C 1 n) for all n. 

So let (m Irn:e) =0. If m:A:C '* e, we obtain 
m(A)(1I1:Alm:A:C)=0; but n1: A:c=111: A:C, so we have 
m(A)(I1I:Alm:A:C)=O. Since C is an event inL A the sec
ond factor cannot be 0, and so n1,X= e, which implies 
1Yi: A :C= e-a contradiction. So m:A:~ is e after all, and 
so 1I1: A :c is also; but this is just 111:<5! Thu~, the second 
condition in definition 1 is also valid and C is an event. v V' v 
Since A 0 C = C, we have by the definition that C "'" A. 

We shall elevate this situation to the state of an axiom 
in the following form: 

(S) Subspace principle: Whatever axiom we impose on 
L shall also be assumed to hold for each LA' 

It should be noted that the example at the end of Sec. 
2 satisfies the subspace principle, but still has not 
enough structure; this appears to indicate that our prin
ciple is not really too strong. 
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In case we mention explicitly the" secondary" axioms 
derived from the subspace principle, we shall mark 
them with an asterisk, in order to remind the reader 
that we are not making an independent assumption. 

So we have as a consequence: 

AXiom 2*: For any A E L, and any maximal orthogonal 
set {111;} in 8 A we have I; (1111 mi) = 1 for each 111 E/\A' 

Remark: This, actually, could have been incorporated 
in our definition of an event. It is trivially verifiable for 
o and each Am, while for I it reverts back to Axiom 2. 

Proposition 5: Let {111;} be m. o. in /\ A and 111 C P; 
thenm(A)=I;(mlm i ). In particular, mcl\A iffI;(I1lIn1 i ) 

=1. 

Proof: For n C/<A we have (m Im:A)(m:A In) =(m In); 
hence m(A)L(m:Alm i)=2;(mlmj), and since 11l: A fC/\A 
we have 2:,(m:A I lni) = 1. 

4. COMPLEMENTS 

We shall now impose further structure on L. But 
first we need some preliminary analysis in which the 
results of the previous section playa useful role. 

Proposition 6: For any A reL we have ((<~)l=/~A' 
Therefore 8 A = (ciJ A)l also. 

It is evident that III EI< A implies nz ill for all n c/<~, 
1. e., /II E ((~~)l. So we must prove the reverse; here 
we use Proposition 5 0 Take {nli} m. o. in I< A and enlarge 
by {n j } to obtain m. o. in P. By Proposition 5 we have 
each nj EI<~, because L(1II 1 lIli) +2;(111 Inj) = 1 for any 111, 

while for m E 8 A the first term is 1; hence 1111 II j , for 
all j. Now if 111 E ((<~)l, the second term is zero, hence 
L (In I til i) = 1 and again by Proposition 5 we get m (' I, A' 

We can now introduce complements of events; the 
basic property is, of course, that the complement of 
an event can occur with certainty in some state iff the 
event itself cannot occur and vice versa. Existence of 
complements must be postulated, as the example at the 
end of Sec. 2 shows. 

Axiom 3: For each A E L there exists an event A I such 
that/lA' =I<~. 

Note that I< ~ is, by the above, the same as cj) A and 
so it follows thatLJA,=c((~~')=c/\A' 

The proof of the next result is again simple and shall 
be omitted. 

Theorem 4: Complementation has the following 
properties: (A')' =A, A"",}j implies lJ' "'" A', 0 ' = I, 
I' = 0, A VA' = I, A;\A ' = ° (where V, ;\ denote suprem
um and infimum respectively). 

The concept of disj ointness for two events A, B is 
introduced in the usual way as the condition that A "'" lJ' 
(or equivalently B ""A'). It follows immediately that it 
is equivalent tOf\Al/\B' i.e., that IJ/:A 1 I1:B for any 
m, II E P. We write Ai H, as usual. 

A t this stage we must ask the question: since the ele
ments of P are supposed to represent the (pure) states 
of the system, we should have an additive property, 
i. e., for any family {AJ of pairwise disjoint events for 
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which sup Aj = A exists, we have mA = L: mA j . This is 
indeed the case. 

Theorem 5: Suppose that Ai lA j for Uj and that A 
= SUP{Ai} exists. Then, for each mE P we have mA 

=L: mAio 

Proof: First note that if we adj oin A' to the given fam
ily we obtain one with pairwise disjoint members whose 
supremum is 1. Next note that mA + mA' = 1 for any A. 
Because if we take {mi} and {nj} m. o. in~A' KA • and 
assume m lIn i, nj> we have m EK ~ (by Proposition 5). 
Hence 111 EK A' which means that {m, nJ is orthogonal, 
which is impossible; thus {mi' nj} is m. 0., and so 
L: (m I m i > + L: (m I nj > = 1, i. e., the desired result. 

Thus, it suffices to obtain our result for the case 
where A = 1. Choose {mii}i m. O. in Ai and note that all 
the mij together form an orthogonal family. Now let 
m 1 mil for all i, j; this implies Am'; A: for all i, hence 
Ai ';Am and so I.; A~, but this is absurd. Thus {mjj}i ,j 
is m. O. in P and so L: iL:i(m Im ii> = 1, or L: imAi = 1. 

We shall write, as usual, the supremum of disjoint 
events as a sum. 

It is also proper at this point to ask whether the or
thomodular law is valid: GivenA.;B, is B=A+(B!\A')? 
This is a simple consequence of Axiom 3*. 

Theorem 6: Given A .; B; then B = A + (BI\ A'). 

Proof: Consider L B ; by Axiom 3* there exists an ele
-Tent of £.B (which must have the form C) such that 
A + C = B (= I for LB n. We claim that C =B!\A' and 
A+C=B. We have/~e =Kc=~1={mEKBlml~A}; since 
KA=~A' we haveK e =~B n~~ =KB n~A' which implies 
(by Proposition 1) that C=B!\A'. We note that.A+C 
= 13 means that, if {m;} and {nj} are m. o. in ~A and Kc 
respectively, then {mJ> nj} is m. o. iri the state space, 
Le., ~B' But since~A=KA' Kd=~e, we see that 
mA +I11C=mB for all m EP; thus mlKB iff ml~A and 
mIKe, Le., K~=K~nK~, orKB.=KA.nK e •• There
fore B' =A'!\ C'; hence B=A +C. 

5. COMPATIBILITY 

There are several equivalent formulations of compa
tibility (or commutativity) for two events. We shall use 
the following: 

Definition 4: The events A, B are compatible (or com
mute) iff there exist pairwise disjoint A l , B l , C such 
thatA=Al +C, B=Bl +C. 

It follows that C =A!\B. It is worth noting in general, 
that if the infimum, say C, of A and B exists, then K e 
=~An/<B' Because evidentlyKe<:KAnK B, while if 
m E/<A n/~B we have Am'; A, Am ~ B hence Am~ C, L e., 
m E/~e and KA nK B <:K e . 

Theorem 7: The events A, B are compatible iff for 
each m we have m: A:B =m,B:A; in such a case this state 
is also m:A!\B' 
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Proof: First suppose A, B compatible and write A 
=Al +C, B=Bl +C with C=A!\B, A1IB, and B1IA. 
Since A 1.;A we have by Proposition 2 that m:Al:A 

= m:A:Al' hence, also m:B:A: Al = m:B:Al:A' But B lAl 
and so m: B l~Al' \. e., m:B:Al = 0; thus m:B:A:Al = 0 
also, or m:B:A E~Al' If m: B:A *" 8, then m:B:A(A) = 1, so 
that m:B:A(Al ) + m:B:A(C) = 1, and since we just saw that 
the first is zero, we obtain m:B:A(C) = 1. So we have 
m: B:A EKe, or m:B:A:e =m:B:A; but C.;A and so m: B:A:e 
=m: B:e , while C.;B also and so m: B:e =m:e. Thus we 
conclude that m:B:A=m: e • Now if m:B:A=O, we can 
assume moB *" 0 [ for otherwise m(B) = 0 and C.; B im
plies m(C) = 0, L e., m,e = 0 and again we get 11l: B : A 

=m:el. So mOB EKA and m:B(C) = 0 or m: B:e = e; again 
C ~ B implies m: e = e and we end up with m: B : A =m: e . 
So in all cases we have m: B:A = m:A!\B; as the role of 
A, B is symmetric, we also have m:A:B =m:A!\B' 

Now for the converse: Suppose m: A : B = m gB : A for all 
m; we shall first establish the existence of A!\ B, which 
has to be the map m - m: A: B by the previous argu-
ment. Write C for the mapAoB (=BoA) and note that 
idempotency is trivial: CoC=AoBoA oB=AoAoBoB 
=AoB=C. Symmetry takes a little longer. Note that 
(m I m:A>(m:A I m A:B> =(m: A:B I m:A:B'A> (mA:B:A I 111> 
= (m: A:B I m: A:A:B> (mA:A:B 1m> = (m: A:B I m'A:B> (nz: A:B 1m> 
=(mlm:A:B>' and so we have (mim:A:B>(m:A:Bln> 
= (m I m: A> (m: A I m: A:B> (m:A:B In> = (m I m: A> (n I /lOB> 
X (n: B I m: A> = (n I 1'l:B>(n: B I 1'l:B:A>(1'l:B:A I m> = (n I Il: B:A> 
X(n: B:A 1m> = (n I n: A:B> (n: A:B I m> which is precisely what 
we want. Finally, if (m I m'A:B> = 0, we have by our very 
first remark that either (m I m: A> = 0 or (m:A I m: A:B> = 0, 
i. e., either m = e, or m: A = e or m: A : B = e and so the 
composite map A 0 B is indeed an event. 

By the definition of ~ we have at once C .; A, C.; B, 
Le., ~e<:KArIKB' On the other hand, mE/<AriK B im
plies m = 111: A and m = m:B, hence 111: A:B = moB = m, L e., 
m EKe and this shows /~e =~A I:~B' so that indeed C 
=A!\B. To show that A, B are compatible we must show 
thatAI\(AI\B)'lB, BI\(A!\B)'lA. We verify the first, 
since the role of A, B is symmetric. Let m[AI\(AI\B)'l 
= 1, which implies mA = 1, and m(A 1\ B) = O. Then 
111: A = m, and m:A:B = 11l: B:A, gives 171, B = 1fl:B ,A' Let 
mOB *" e; then m:B(A) =m:B:A(A) = 1, and so m'B EK A. 
Thus moB E~A!\B,hence 111: B(A!\B)=L But sinceA!\B 
~B we have m(AI\B)=m(B)m:B(A!\B), or 111 (A !\ B) 
= m(B), which implies m(B) = 0; but this is impossible 
since we assumed mOB *" e. This means that m: B = e, 
or indeed m(B) = 0, L e., that A!\ (A!\ B)' .; B'. QED 

6. THE STATES 

In general, a state of a logic L is defined as a map 
m: L - [0, 1l such that m(O) = 0, m{I) = 1, and m(A) 
= L: m(Ai) for Ai pairwise disjoint with A their supremum. 
In the space of all maps L -~, the states evidently form 
a convex set whose extreme points are, by definition, 
the pure states. Implicit in our analysiS is the hypoth
esis that these extreme points are in a one-to-one cor
respondence with the elements of P. Naturally this re
quirement is expected to limit severely the range of 
candidates for the functions ( I > which determine the 
structure of L . 

Proposition 7: If {mi} is m. O. in /~A then A = L:A;, 
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where Aj =Amj • In particular, if f is any state of L, 
thenf(A) =U(Ai ). 

Proof: Clearly Ai ~A for all i. Now, if Ai ~ B we 
have mj E/~B' and so there exist nj E P with {mj' nJ 
m. o. in RB • It follows that 'L, (m I mj) + l: (m I nj ) = m(B) 
for all mE P; but mEI"<, A implies the first term is 1, 
hence m(B)=l and mE(\B, Le., (\A~(\B' Thus, Aj 
~ B implies A ~ B and so A = 'L,Ai' The rest follows 
from the definition of states. 

This means that a state f is completely determined 
by its values on the atoms of L, and since these are in 
a 1 : 1 correspondence with P, we may consider f as a 
function on P. Evidently 'L, mEQf(m) = 1 for each m. o. 
set Q~ P. The converse of this also holds. 

Proposition 8: Letfbe a map P - [0, 1J such that for 
each m. 0, set Q ~ P we have l: mEQ f(1)/) = 1. Then, given 
A ELand {m i} m. o. in R A, the number 'i ;!(m j) is in
dependent of the particular m. o. set employed; if we 
write it as](A), the map]:L -[0, 1J obtained is a state 
of[ such thatj(Am)=f(m). 

Proof: The last part follows easily, provided j(A) is 
well defined. Because, as we saw in the proof of Theo
rem 5, given A='L,Aicand {miih m.o. in(\A" then 
{mjih,j is m,o. ipRA andj(A) =Si,d{mli) =''L,i'id(111 jj ) 
=Lf(Aj), i. e., f is a state. So take two m. o. sets 
{ml}, {nj} in(\A and some m. o. set {Pk} inR A• =R~. 
Then {m"Pk} and {nj,Pk} are m. o. in p, hence we have 
U(m i) +U(Pk) =l=U(nj) + U(Pk) , Le., U(mj)=U(ni ), 
the desired independence. 

LetlY! be the (convex) set of all mapsf: P-[O, 1J 
such that 'L,mEQ f(m) = 1 for each m. o. set Q in P, and 
If!. the set of extreme points of If I . The implicit restric
tion mentioned previously becomes: 

(p) There exists a 1: 1 correspondence P :3 111 - fm 
EII'!. such that fm(N) = (m In). 

This, even though quite clearly formulated, does not 
appear simple to verify or contradict; the calculation 
of extreme points is quite complicated. We shall now 
see how this goes through for the systems mentioned 
in Sec. 1, and then we shall exploit this analysis to show 
that no system of states for which (P) holds can be 
finite. 

Example 1: (revisited) Recall that we have (m In) 
= om" and we have verified that the events are in a 1 : 1 
corr~spondence with the subsets of P. It is clear that 
this correspondence is the one we developed in Sec. 2 
for any L, namely A -R A' Axiom 3 is easily seen to 
hold, with A' just the set complement of A, and the 
subspace principle also holds. Our L is just the atomic 
(complete) Boolean algebra of all subsets of P, and thus 
its pure states are just the Dirac measures on P. SO, 
we see that the required 1 : 1 correspondence between 
P and/~I. is there. 

Example 2: (revisited) We have already seen that any 
projection gives rise to an event in our L. Now we veri
fytheconverse. TakeanyAEL and{m,,.}am.o. set 
in R A; thus {I/Jj} is orthonormal in H. We 'have m" E (\ A 

iff'L,(m"lm"j)=l, Le" iff'L,I(I/JIl/Jj)1 2 =1, which means 
l/J='L,(l/JIl/Jj)l/Ji' Write MA for the (closed) subspace spanned 
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by the {l/Jj} and P A for the corresponding projection. For 
any m" E P we have m" EiJ A iff l/J is not orthogonal to 
(\ A, L e., iff l/J fi M~; further, we know that 111.: A maxi
mizes (m" I n) as n varies in R A' Thus we seek for the 
maximum of (m" I mJ as x varies in M A, which is ob
tained for x =P Al/J/ I IP Al/J I I. This shows that the map 
A precisely corresponds to P A as required. It is also 
clear that A' corresponds to the projection on i\;~, and 
that the subspace principle is valid. 

Invoking Gleason's theorem we see that the pure states 
are indeed in a 1 : 1 correspondence with the elements 
of P as demanded in requirement (P) above. 

For the most part, the analysiS that follows is valid 
in any logic; it is only at the end that (P) is invoked. Let 
us assume that a finite logic exists, which is not 
Boolean. Then there must exist one, say L, with the 
least number of elements in P. But then, by the sub
space principle, each L A (for A * I) is Boolean. 

Lemma 2: Suppose that for A * reach L A is Boolean. 
Then, if 8 is a maximal Boolean algebra in L, no ele
ment A ci 13 can commute even with a single element 
BEB (B*O or I). 

Proof: First we consider the simple case of the re
lation A ~ B. If this happens, then A commutes with aU 
C ~ B because L B is Boolean. Now take BI EB and write 
BI = (BI\. Bll + (B'I\. Bl ); we have A lB'1\. Bl and A com
muting with B I\.Bl' It follows that A commutes with 
their sum B l • F or convenience, introduce a short nota
tion: let X 1 Y with A 1 Y and A compatible with X, We 
haveA=Al+C, X=Xl+C, and Al 1Xl . SoX+Y=Xl 
+ Y + C and all we need is C 1 Xl + Y, All Xl + Y. But 
C ~ X, hence C 1 Y and C 1Xl by hypothesis, so C 1Xl 
+ Y; also Al 1Xl by hypothesis and Al ,;A 1 Y, so Al J Y 
too, hence Al 1Xl + Y. So we see that if A ~ B for some 
BE B, then A is compatible with aU Bl E' B; since B is 
maximal such an A cannot be outside B. 

N ow for the general case. Suppose A is compatible 
with some BE. B ; by our argument above we have A I\. 1J 
EB, hence BI\.(AI\.B)' E.8 also. But A I\. (A I\. B)' is dis
joint from BI\. (A I\. B)' by hypothesis, hence ~ to its 
complement which is in /3. Thus A I\. (A I\. B)' ,B and 
finally A c B being the sum of two events in 15 . 

This lemma shows that in a logic L for which aU 
L A (A * r) are Boolean, the maximal Boolean algebras 
have no elements in common except 0, I; also that 
events in distinct maximal Boolean algebras are not 
related by ~, 1. 

Thus, such an L is a disjoint union of its maximal 
Boolean subalgebras. We apply this to the logic men
tioned previously, the one for which P has the least 
number of elements. We then have L = U~=lD i, and we 
observe that each state of L is determined by a family 
(mtli=l •. oo,k of states, one for eachB i. Each 1111 can be 
chosen independently because there is no relation be
tween the elements of distinct B i; the same goes for 
pure states. Note that since the B i are Boolean, the 
values of the pure states on the atoms are either 0 or 
1. But by virtue of requirement (P) this means that 
each (m I n) (for 111, n E. P) is either 0 or 1. Since (111111) 
* 1 for 1J/ * n, we have aU" off diagonal" probabilities 
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zero, and L is, after all, Boolean-contrary to our 
hypothesis. 

So we have completed the proof of: 

Theorem 8: There is no finite logic derivable from a 
state space by means of Axioms 1-3, and the subspace 
principle (S) satisfying requirement (P) on the behavior 
of pure states, unless it is Boolean. 

We have as yet been unable to determine whether a 
non-Boolean countable model exists. 

7.ORTHOCOMPLETENESS 

So far we have made no assumptions with regard to 
the existence of suprema or infima-even for disjoint 
events. It is not hard to see that if A = inf{Aj} exists 
then R. A = n R. Ai (we have actually used part of this in 
Sec. 5). Evidently R.A c::; nR.Ai' so let mE nR. Aj ; then 
Am"'; Ai> which implies Am"'; A, or rnA = 1 and mER. A' 
The meaning of this is, of course, that the conjunction 
of a family of events occurs with certainty in a state iff 
each event occurs with certainty in that state. 

It is perhaps interesting to see that the hypothesis of 
orthocompleteness (i. e., that every family of pairwise 
disjoint events admits a supremum) can be used to re
place several of our assumptions. 

First note that it is sufficient to assume orthocom
pleteness for atoms only. 

Proposition 9: If for any orthogonal family {ml}, the 
supremum L;Aml exists, then L is orthocomplete. 

Proof: Recall that if {nj} is am. o. set inR.A' then 
A = ~A"~ (pro?osition 7). No,": consider any disjoint 
famIly iAi} wIth {mljL m. o. III R. Ai' Let A = L;I,jAmlJ , so 
that A ~ Ai for all i. We then see, following the argu
ment in Proposition 7, that if B ~ Ai for all i, then m ij 
ER.a and so A.,,; B. 

In view of what we have already developed, orthocom
pleteness is equivalent to: 

Given any orthogonal set {ml}, there exists an event 
A such thatR. A ={m 1L;(m I m i ) = 1}. This is roughly the 
converse of Proposition 5, and provides a characteri
zation of the various possible R. A' 
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It is this characterization which can replace Axioms 
2, 3 and the subspace principle. Technically it appears 
as an improvement, but it lacks an immediate physical 
interpretation. In exact terms it can be stated as 
follows: 

(O) Given any m. o. {mj} inR.A' we have R.A 
={m I L;(m I mj) = 1} and vice versa, given any orthogonal 
{nJ, there exists an event B such that {m I L;(m I nj ) = 1} 
=R. B • 

Let us recall that the partial ordering of L and its 
properties did not require the use of Axioms 2, 3 or 
(S). We now use (0) to obtain the existence of 
complements. 

First note that Proposition 5 is incorporated in (0) 
and so Proposition 6 is still valid: For any event A we 
have ~~).L=R.A' Now take any m. o. set {mJ inR. A; we 
claim that the event A' associated to it is such that 

R. A' =R. ~. We must show that L;(m I mj) = 1 iff m ER. A' 
Choose any m. o. set {nj} in R. A and note that {m I, nj} is 
m. o. in P; because if (m InJ) = 0 for all j, then m ER.~ 
(by Prop. 5) hence cannot be 1 all mi' Thus, L;(m I m j) 
+ L;(m I nj) = 1 for all m [by (0)]; since mER. A iff (m I nj ) 
= 0 for all j we are done. 

N ow we verify orthomodularity. Take A.,,; B, any m. o. 
set{m j} inR.A and enlarge it to a m.o. set{mj,nJ 
for R. a . Write C for the event corresponding to {nJ. 
Evidently Ale, and all we have to do is to show A + C 
=B. Now we know by our remarks at the beginning of 
the section that A + C eXists, and it is of course"'; B. 
By the argument in Theorem 5 we also know that {m;, nj } 

is a m. o. set in R. A+C; but then A + C = B and we are 
done. 
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All diverging algebraically special solutions of the complex vacuum Einstein equations which are left (or 
right) conformally flat (H ·spaces) are found explicitly. These metrics contain four arbitrary functions of 
two variables. 

I. INTRODUCTION 

Recently a four-complex-dimensional manifold known 
as H-space has been introduced into general relativi
ty. 1-5 It arose first in the study of asymptotically flat 
solutions of the Einstein or Maxwell-Einstein equations 
as the manifold of asymptotically shear-free null cones 
of the analytically extended asymptotically flat 
(physical) space -time. The study of H -space has already 
proved to be a powerful tool for the analysis of the real 
space-time with which an H-space is associated. A 
complex center-of-mass world lines can be defined in 
H-space, which leads to a definition of center-of-mass 
motion in general relativity. An intrinsic angular 
momentum can also be associated with this center-of
mass world line. A magnetic moment similarly arises 
from a complex center-of-charge world line in H-space. 
It has been shown for stationary space-times that if 
these two world lines coincide, the Dirac value (g= 2) 
for the gyromagnetic ratio immediately follows. It 
appears that an entire theory of equations of motion 
follows from these considerations. More recently, 
Penrose has argued from another point of view that H
space should be viewed as a nonlinear graviton. 

One can show that H-space has the following proper
ties. 3.4 It is a four-complex-dimensional manifold with 
a nondegenerate complex "Riemannian" metric on it. 
In addition to satisfying the (complex) vacuum Einstein 
equations the metric is such that the self-dual (or anti
self-dual) part of the Weyl tensor is zero. [In terms of 
a spinor description this means that q, ABCD = 0 (or 
-Ii A'B'C'D' = 0). Note that due to the complex nature of the 
space, >li is not the complex conjugate of >¥ nor is the 
anti-self-dual part of the Weyl tensor the conjugate of 
the self-dual part; they are independent of each other. I 
An H -space with q, ABC D = 0 is refe rred to as left flat 
while when ~ A'B'C'D' = 0 it is right flat. 

It is the purpose of this paper to find explicit exam
ples of H -spaces. In particular we obtain all algebra
ically special H-spaces with nonvanishing divergence. 
In Sec. II the spin-coefficient form of the vacuum 
Einstein equations is generalized to include complex 
manifolds, and hence H-space, and then integrated 
under the conditions of algebraic specialness. The 
further specialization to types lII, N, and D is given 
in Sec. III. In Sec. IV we conclude with a discuSSion of 
some unsolved special problems related to H-space. 
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II. ALGEBRAICALLY SPECIAL H-SPACES 

The spinor (or spin-coefficient) formalism 6 provides 
a convenient framework for generalizing the Einstein 
equations to complex manifolds. At each point of the 
four-complex-dimensional manifold we introduce two 
spin spaces, Sand S, which are independent of each 
other, and a normalized basis in each space (~, i\ A), 

(7fA',~A') so that 7TAi\A=7fA'~A'=O. By identifying the 
tangent space at a point in H with S0S at that point we 
obtain the complex null tetrad 

l" =a~A'7TAijA', n" =a~A,i\A~A', m" =a~A,7TA.\A', 

In" = a~A' i\ A7fA', 

the a's being the Infeld-van der Waerden symbols. (We 
emphasize that, in the present formalism, a tilde does 
not indicate complex conjugation. The usual spin
coefficient formalism would result from specializing 
the present work to the case where all quantities with 
tildes are the complex conjugates of the corresponding 
quantities without tildes. ) 

The spin coefficients and intrinsic derivatives used 
in the spin-coefficient formalism are defined in the 
usual way, but again quantities that in the usual formal
ism are complex conjugates of each other are now 
independent quantities. (For example the operators 
<5 ;:= m" '\7" and 6';:= iil" ~" as well as the coefficients p 
;:=l,,;vm"mvand p=l,,;v,n"mv are independent quantities. 
The gradient operator, of course, refers to the com
plex coordinates of H -space. ) 

The complete set of complexified spin-coefficient 
equations now consists of the usual spin-coefficient 
Bianchi identities) with all complex-conjugated quanti
ties replaced by tilded quantities, plus the equations 
obtained by interchanging the corresponding tilded and 
untilded quantities. [For example, the equation DIJ!1 
- 6>¥ 0 = - 3 K>¥2 + (2E + 4p)1J! 1 + (7T - 4 (lI)1J! 0 must be replaced 
by the two equations 

D>¥1 - 61J!o 0= - 3K>¥2 +(2E +4P)1J!1 +(7T- 4a)lJ!o 

and 

D~1 - <5~o= - 3K'-li 2 +(2E +4p)-li 1 +(iT - 4a)~o' I 
By setting the <pm" and J\. equal to zero (equivalent to 

R" v 0= 0) in the complexified spin-coefficient equations, 
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we have a set of first-order equations equivalent to the 
complex vacuum Einstein equations. In order to further 
restrict the complex space to H-space, it is necessary 
to set 

>¥o = >¥, = 'l12 = 'l13 ='l14 = ° 
for left-flat spaces, or 

~O=~, =~2=~3=~4=0 

(2.1) 

for right-flat spaces. This follows from the fact that 

>¥o = - C~ar6Z"'mSzrm6 , ~o = -C;Brol"'mazrm o , 

>¥, = - C~sroZ"'n81rmo, ~, = - C;aroZ"'naZrmo, 

- '" a r 6 :;::. C. '" aIr - 0 >¥2=-C~sr6m n 1 m, "'2=- ",arom n m, 

- '" a r 6 ,T'. C. '" alr 0 >¥3=-C~8r6m n 1 n, "'3=- ",8rom n n, 

'l14= - C~8rOm"'namrnO, ~4= - C~BrOm"'nBmrnO, 

with C~8r6 and C;8rO being the self-dual and anti-self
dual parts of the Weyl tensor, respectively: 

C~sro =t(C",sro - iC",8r'O)' C~8ro =HC",Bro + iC",Br'O)' 

Simply for definiteness we chose to work with left-flat 
spaces rather than the right-flat ones, so that we now 
impose Eqs. (2.1) on the spin-coefficient form of the 
complexified Einstein equations. 

The definition of left-flat H-space implies, for the 
spinor components of the Weyl tensor, that >¥ABCD=O, 

which further implies that the unprimed spin space is 
parallely propagated. Though it is possible to choose 
the basis spinors TT

A and A A so that they are parallely 
propagated, it is much more convenient for us here not 
to do so. The reason will be apparent later. 

The definition of an algebraically special H-space is 
a simple modification of the usual definition. Since 
,j; A'B'C'D' can always be written in the form 

$ A'B'C'D' = ii(A'~B'Yc,6D'» 

we define algebraic specialness by the equality of two 
of the principal spinors, i. e., by 

(2.2) 

If the basis spinor ITA' is chosen to be the repeated 
principal spinor, this leads immediately to the condi
tions that 

$o=,j;,=O. (2.3) 

We hereafter adopt these conditions. 

Next we wish to choose the spinor basis (and thus the 
tetrad) and a coordinate system so that we sim,plify the 
spin-coefficient equations. The allowed tetrad trans
formations are induced by transformations of the spinor 
basis (at each point of H) of the form 

with 

7T*A = a7TA + bA A, iT*A' = a~' + li;l:A', 

A*A=C7TA +dAA, ;I:*A'=cifA'+d;l:A', 

1~~I=I~~I=1. 

(2.4) 

In order to preserve Eqs. (2.3), we have immediately 
that 
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(2.5) 

We find (after a great deal of effort) that, by writing 
out the appropriate transformation equations for the 
spin coeffiCients and examining their integrability condi
tions, we may choose the tetrad such that the following 
spin-coefficient relations are satisfied7

: 

K=E=7T=T=A=O, 

K=€= 1T= T=a==O, 

p-p=a +~==a +/3=0. 

(2.6) 

Note that had we chosen the unprimed spinor basis to 
be parallely propagated this Simplification could not 
have been aChieved, and most importantly I". would not 
have been geodesic and a gradient. 

The transformations (2.4), when (2.3) and (2.6) are 
imposed, are restricted by the following conditions; 

li = c=d - a-I =d - a-I =0, 

D(b/a) - p(b/a) = 0, DIna - (~- 6Ina)(b/a) = 0, 

6(b/a) +2tl<b/ a) = 0, DIna + (~+ 6lnii)(b/ a) = 0, 

6In(aa) = 0, t:.(b/a) - 2y(b/a) - v(b/a)2 - pac = 0, 

aln(aa) +t:.(b/a) + [t:.ln(aa) +9-y + f..L](b/a) =0, 

D(ac) + [6(ac) +2{£2' + Ilj(b/a) == 0. 

Since 1". is a gradient and tangent to a null geodesic, 
one can choose the scalar function of which it is the 
gradient as one of the coordinates, u, and the affine 
length along llJ. as another coordinate r. Two further 
coordinates, 1: and f (constant along each geodesic), 
label the geodesics. This leads to the form for the 
tetrad: 

nlJ. == a~ + Uaf + X"a~ , 

mlJ. == waf + ~'a~ , 

(k = 2, 3) and hence 

o 
D=-, 

2r 

o 0 a 
t:.=- +u- +X"-, au ar oz' 

(l (l 
a=w- +~'-::::-:J;' ar oz 

o=w~+~kb· ar az 

(2.7a) 

(2. Th) 

(2.7c) 

(2.7c) 

(2.8) 

The full set of spin-coefficient equations for algebra
ically special H-space can now be written as follows: 

Field equations 

Dp=p2, 

Du=2pa, 

Df3==p/3-u~, 

Fette, Janis, and Newman 

(2.9a) 

(2.9b) 

(209c) 
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D~=p~, 

Dy=O, 

Dy='lt2' 

Di: = p:\ +a'jJ., 

Dfl=Pfl, 

D'jJ.=p'jJ.+'lt2, 

Dv=O, 

DV=~3' 

6v=2~v, 

A'A - OV=(y - fl- 3,y -il)'A -2{3v -~4' 

Op - 5a = 413a, 

6p=0, 

o~ + 6{3= - flP -4{3~, 

6{3 + o~= -;J.p - 4{3~ +~2' 

6fl=0, 

6A-0'jJ.=-4~~-~3' 

Ov - Afl= fl2 +(y +Y)fl-2{3v, 

6v - A;J. = il 2 + (y +y)/l- 2~v, 

Oy - A{3= -av +(fl-y +y){3-~, 

5y - A~= (/l-y +y)~, 

Aa = - fla - p'A +(3y -y)a, 

Ap = (y +y - fl)p, 

Ap= (y +y - fJ.)p -~2' 

A(3 + 6y = - pv - (il - y) ~ - {ty, 

A {3 + Oy = - p v + (3'A - (fJ. - y) {3 - {3 y - ~ 3' 

Bianchi identities 
- -

D'lt 2= 3p>l12' 

D~3- 0~2=2p~3' 

D~4 - 0~3= P~4 - 2{3'lt 2if~3' 

6~2=0' 

A~2 - 6~3 = - 3~~2 +2~~3' 

A~3 - 6~4 = 3v~ 2 - 2(y +2/l)~3 +4~~ 4' 

Metric equations 
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Dw=pw +aw, 

Dw=pw, 

D~·=p~k +a~k, 

D~k = p~" 
DU= - (y +y), 

DXk=O, 

oU - Aw = (fJ. -y +y)w +'Aw - v, 

6U - Aw=(/l-y +y)w -v, 

oX. _ A~k = (fJ. _ y +y)~k + 'A~., 
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(2.9C') 

(2.9d) 

(2.9d) 

(2. ge) 

(2.9f) 

(2.9£) 

(2.9g) 

(2,9g) 

(2.9h) 

(2.9h) 

(2. 9il 

(2.91) 

(2. 9il 

(2.9]) 

(2.9k) 

(2.9k) 

(2.91) 

(2.9i) 

(2.9m) 

(2.9m) 
(2.9n) 

(2.90) 

(2.90) 

(2.9p) 

(2.9il) 

(2.10[) 

(2. lOb) 

(2.10c) 

(2.10d) 

(2.10e) 

(2.10£) 

(2.lIa) 

(2. 1I[) 

(2. lIb) 

(2. 11 b) 

(2. lIe) 

(2. lId) 

(2.lle) 

(2.1le) 

(2.1lf) 

6)(" - A~k = (jj. _y +y)(" 

5w - Ow = - 2 ~ w + 2 {3 CD + /l - fJ., 

6~k _ o~· = - 2~~k +2{3P. 

(2.11£) 

(2. lIg) 

(2.l1h) 

Though the integration of these equations is straight
forward, 8,7 it is rather lengthy and cumbersome. We 
will thus omit the details and simply present the final 
results. Along the way we used up nearly all of the 
coordinate and tetrad freedom to simplify the results of 
the integrations. 

An essential final result is that all variables can be 
expressed as explicit functions of the four coordinates 
and four arbitrary complex functions (~~, G, A, B) of 
the two coordinates u, l;. 

The results follow: 

Spin coefficients 

p=-l/r, 

a=aO/r2, 

{3 = (3°/r + ~oao /r2, 

~= ~o/r, 

fJ.= fJ.°/r , 

/l = fJ. ° / r - ~~/ r2 , 

v= vO, 

v=;;o _ ~~ + Pil~~{'n _ wo~~, 
r 2r 2r 

y=yO, 

Y = yO _ ~~/2 r2 , 

i:=i;.°/r- fJ.°aO/r2 +ao~~/2r\ 

where 

p=1 +Gf, 

aO= _ ~~ _ pA +p2B 
2G2 G ' 

° a2 lnp 
v =-p Guaf' 

a2 1np 
iJ'l= -p iluol; , 

° 1 a lnp 
y =-2'--au-' 
-0 il(ao/p) 
A. =P~' 

(2.12a) 

(2,12b) 

(2.12c) 

(2. 12C') 

(2. 12d) 

(2. 12d) 

(2.12e) 

(2.12e) 

(2.12f) 

(2.12f) 

(2.12g) 

(2.13a) 

(2.13b) 

(2.13c) 

(2.13c) 

(2.13d) 

(2.13e) 

(2. 13e) 

(2. 13f) 

(2.13g) 

and ~~ and WO are defined in Eqs. (2. 15[) and (2. 17), 
respectively. 

Weyl tensor 

(2.14<1') 
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where 

Metric variables 

X" = 0, 

u = - 2·lr 1-11° - ~~/2r, 

Wo 
w=-, 

r 

w=O, 

~k = (p /r)o~ _ (pOo /r2)o~, 

E!' = (p/r)o~, 

where 

(2.146') 

(2.15:1') 

(2.156') 

(2.16a) 

(2.16b) 

(2.16c) 

(2. 16c) 

(2. 16d) 

(2. 16d) 

(2.17) 

In terms of these quantities, the metric takes the form 

0 0 

g"'~ 
2U 0 

(2.18a) 
0 0 

-pw -ep 

1 -wi!;" 0 

1 0 0 0 
(2. 18b) 

0 2 e /(~2)2P 
0 0 _1/~2P 

In obtaining this solution, we have reduced the re
maining coordinate freedom to transformations of the 
form 

u* = (Y' )1/ 2U +/(1;), 

r*= (Y't 1
/

2r, 

1;*= Y(!;), 

f* = f _ p 2
h(u, 1;) 

r +hGp , 

where I and Yare arbitrary functions of I; and 

Y'= dY, ( ) ou*/ol; 
d '" h u, I; = ;:;-;---/? . 
~ ~U ,u 
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(2. 19a) 

(2.19b) 

(2.19c) 

(2. 19c) 

(2.20) 

III. TYPES III, N, AND D 

In the previous section we obtained the general 
algebraically special H-space metric with nonvanishing 
divergence. We now show how further specialization 
leads to types III, Nand D. 

The condition for a type III metric, 

~0=~1=~2=0, ~3*0, 

leads immediately to the restriction that 

~~(u, 1;)=0. 

(3.1 ) 

(3.2) 

Thus the solution is expressed in terms of the three 
functions G, A, B of u, 1;. 

Similarly, for a type N metric we must have WO=Wl 
=~2=~3=0, ~4*0, which leads to the conditions .j,g 
=~g=O. It follows then from Eqs. (2.15) and (2.13) that 

(aG)-1[a 2G a (A)~ B- - -+G- - . 
- - au al;2 au G 

(3.3) 

We thus see that the general N solution depends only on 
the two functions G and A. 

H-spaces of Petrov type D are those in which it is 
possible to choose a tetrad such that 

WO=Wl=W2=W3=W4=0, 

~0=~1=~3=~4=0. 

(3.4a) 

(3.43:') 

This choice of tetrad, however, is not necessarily the 
one in which the results of Sec. II are expressed, In 
order to write the type D solutions in such a tetrad 
system, we start with a tetrad satisfying Eqs. (3.4) and 
transform to one satisfying the conditions imposed in 
Sec. II. When this is done, we find first of all that G is 
a function only of 1;. If G is not constant, then we may 
always make the simple choices 

G=I;, 

A=B=O, 

by USing the available coordinate freedom. It then 
follows that 

(3.5a) 

(3.5b) 

(3.5c) 

where CPo is an arbitrary constant. The remaining 
coordinate freedom is then given by Eqs, (2.19) with 
Y = I; and I an arbitrary constant. If G is constant, then 
two further cases arise according to whether or not ~~ 
is constant. In the first of these cases, we may use the 
available coordinate freedom to obtain 

G=Go, (3.6a) 

~g=l, (3.6b) 

A=Ao, (3.6c) 

B=O, (3.6d) 

where Go and A o are arbitrary constants. The remaining 
coordinate freedom is then given by Eqs. (2,19) with 
Y=I; +a and 1= bl; +c, where a, b, and c are arbitrary 
constants. In the remaining case, we obtain 

G=Go, 

~~= CPo/u3
, 

Fette, Janis, and Newman 
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(3. Th) 
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A=B=O, (3.7c) 

where Go and rfJo are arbitrary constants. The remaining 
coordinate freedom is then given by Eqs. (2.19) with 
/=0 and 

y_ c _b2 +ac~ , 
- a(1 +a~) 

where a, b, and c are arbitrary constants. This some
what complicated way of choOSing the constants in Y was 
made to simplify the resulting forms of Eqs. (2.19a) 
and (2.19b), and to facilitate the reduction to the identity 
transformation (which arises from first setting b = c = 1 
and then taking a = 0). The complete type D solutions 
are thus obtained by using Eqs. (3.5), (3.6), or (3.7) 
in the results of Sec. II. We note that these solutions 
are completely determined by either one arbitrary con
stant, in the case when G is not constant, or two arbi
trary constants, in the remaining cases. 

IV. CONCLUSION 

We have seen that with relative ease it has been 
possible to integrate the H-space spin-coefficient equa
tions to obtain all diverging algebraically special solu
tions. It remainS an open question as to whether the 
general H-space metric can be found by direct integra
tion, though it is certain that many special cases can be 
found. 9 

Of possibly greater interest would be to find a method 
of going from H-space to phYSical space. We know that 
an asymptotically flat space-time determines (by means 
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of its radiation field) an H-space (i. e., the space of 
complex asymptotically Shear-free null cones). The in
verse question would be how one determines the radia
tion field of the phySical space from a known H-space. 
This question is actively being explored. 

One would further like to know what physical meaning 
one can give to a particular H-space metric if the H
space is interpreted as a Penrose nonlinear graviton. 
We appear to be at an impasse on this question, 

*This paper incorporates some of the results contained in a 
Ph.D. dissertation submitted by C. W. Fette to the Univer
sity of Pittsburgh. 

tResearch supported in part by a grant from the National Sci
ence Foundation. 
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On the tensor product C·-algebra of bosons and fenruons a class of states determined by the two-point 
functions is proved to exist. It is indicated how they induce a class of states on the CCR algebra which are 
not quasifree, but determined by their two- and four-point functions. 

1. INTRODUCTION 

The treatment of models which have Hamiltonians at 
most quadratic in the field variables for bosons or 
fermions individually leads naturally to the study of 
quasifree states. 1-4 The essential property of these 
states is that all correlation functions are expressible 
in terms of the one-' and two-point functions. For the 
individual systems this is achieved by having all n
point truncated correlation functions zero for n;' 3. Al
ternatively one can compute the higher correlation 
functions from the explicit representations for these 
quasifree states, which are well known. 

It is natural, therefore, to consider states on the 
product (boson x fermion) algebra and to seek states 
for which all correlation functions are expressed in 
terms of the one- and two-point functions. Furthermore 
one may conjecture that such states describe systems 
for which the Hamiltonian is at most quadratic in either 
field variable. One such system is the Dicke Maser 
model. 5,6 Because of the mixed statistics in the product 
algebra it is not clear how to define truncated correla
tion functions and consequently we take the alternative 
procedure and construct a representation of a state on 
the product algebra with given one- and two-point func
tions. As a starting point we consider for simplicity 
the case of one degree of freedom for both bosons and 
fermions. 

The explicit construction of the representation is 
given in Theorem III. 1. We then consider the restric
tion of the corresponding state to the CCR subalgebra, 
and study its properties. We observe that it is not 
quasifree, nor gauge-invariant despite requiring gauge 
invariance in the one- and two-point functions. 

Finally, we would like to stress that the representa
tions considered in Theorem III. 1 belOW, are to our 
knowledge the first explicit ones on the product algebra 
which yield states which are not simply product states. 

2. NOTATION 

Let ~ = c.(IR2, a) denote the CCR C*-algebra for one 
degree of freedom, 1 and.i8 = ~ (IR2, s) the CAR C*-alge
bra,2 also for one degree of freedom. s(', 0) and a(o , .) 
= - s(Jo, 0) are the real imaginary parts of the usual 
complex inner product on <r = IR EB JIR. 

~ is generated by {W (x) : x E IR2} satisfying the com
mutation relation 

W{x) W{y) = exp{- ia(x, y)} W(x + y), 
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and.i8 by {B(x) :XEIR2} satisfying 
B{x)* =B(x), 
B(4 + MY) = AB(x) + MB{ y), A, ME IR, 
B(x)2 = sex, x). 

Let ~ denote the tensor product C*-algebra ~ 0 sa, 
which is generated by {W(x)B(y) :X,YEIR2}. 

We introduce the Fock representation of ~ and sa , 
and denote the GNS triples by (H, IIB, 0B) and 
(<r2, II F, OF) respectively. The corresponding creation 
a+, b+ and annihilation a, b operators are defined by 

IIB (W(e») = exp(a* - a), 

IIF(B(e) - iB(Je» = 2b*, where e = (1, 0) E IR2, 

and satisfy 

aOB=bOF=O. 

We will only be interested in regular representations 
of states on ~ having the two-point functions 

w(aa*) =P1' 

w(bb*) =P2' 

w(a*b) =7), 

and all other one- and two-point functions zero. 

(1) 

(2) 

(3) 

The positivity of the state w implies necessarily that 

P1 ;, 1, 1;, P2 ;, 0, 

(P1 - 1)(1 - P2) ;, 17) 12, P1P2;' 17) 12. 
(4) 

For the individual boson or fermion systems the nec
essary positivity conditions arising from the one- and 
two-point functions are also sufficient in defining the 
quasifree state. However it is not clear in the product 
case that conditions (4) are sufficient to give rise to 
positivity of a state on the full algebra ~ • 

3. REPRESENTATION 

Let.\) =H0H0 <r20 <r2 be the representation space 
and 0= 0B 0 0B 0 0F0 OF the cyclic vector. Define 

II1(a) = (O'a+ fJa*)01 + 10 y(a* +a) + a101, 

IIHa) = y(a* + a) 01 + 10 (Cia + fJa*) + a /10 1, 

II2 (b) = -)1 - P2 b 0 1 + IP; 8 0 b* , 

IIHb) = vP;8b* 0 8+-)1-P210 be, 

where 

8=2b*b -1, 0' =0', {3=[J, 

Y=-y, 0'2-{32=1, a,{3,YE<r. 
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It is easily checked that Ill' III are *-representations 
of ~ onH0H such that [Ilt (a),Il1(a)]=[Ilt (a*), Il1(a)]==O, 
and Il2' Il~ are * - representations of S8 on ([:20 ([:2 such 
that [Il2(b), IlHb)J=[Il2(b*), Il2(b)]==O. Let 

II (a) = III (a) 0 IlHB(e», 

Il(b) = Ilj(W(z» 0 Il2 (b), zEffiEBJffi. 

Theorem III. 1: For fixed Pt, P2 there exists 1)0'* 0 such 
that whenever 11) k 1)0 there exist constants G', 13, y, 
z, a, a' such that the vector state 

wn(x)== (n, II (x) n), XE ~ 

satisfies Eqs. (1)-(3). 

Proof: The definitions of Ilj,Ill (i==1,2), and Eqs. (5) 
imply that 1T is a * -representation of~. It is a straight
forward matter to compute the two-point functions of 
wn. They yield: 

G'2+ IYI2+ lal 2 =pt [from (1)] (6) 

vP2(1- P2) (G'u - yv - a) 

x exp {- "HluI 2 + IvI 2)+w}=1) [from (3)], 

f3u - yV - a == 0 [from wn(a*b*) == 0], 

G'f3+y2+a2=0 [from wrr (a2)=0], 

where 

u=zy-zy, v=zG'-zf3, w=za'-za'. 

(7) 

(8) 

(9) 

The other one- and two-point functions are automatical
ly satisfied. We put z = z, y = iyo, and then obtain: 

u=-2izyo, v=z(a-fJ), w=z(a'-a' ), 

a = - iyoz(G' + 13);: iao. 

Equations (6)-(9) become 

G' = pt/v'2Pt - 1, 13 = (Pt - 1) j.,!2Pl - 1, 

z@' - a'l == i(1T/2 + arg1), r~ = G'f3 - a~, 

z2 =u~(G' - f3)2/(G' 13 - ( 0
2), 

and finally 

- log~2 + 10gO"~ == 0"~(1- Ba~)/(A - a%), 

where 

X= 11) 1/2vP2(1-P2)' A=Pj(Pj-l)/(2pj-l), 

B == 4/(2Pt - 1). 

(10) 

Letfx(x) == 10gx2 -logX2, g(x) =X2 (1- Bx2)/(A - x2). fx 
and g are continuous functions on [a,A) and g is indepen
dent of :\(see Fig.l). Consequently ::IXo such that when
ever X < Xo there is a solution to fx(x) =g(x). Let 1)0 

=2XovP2(1-P2), then for 11) 1<1)0 there are two solutions 
to (10) and for 11) 1 =1)0 there exists one solution. Hence 
the theorem is proved. 

Remark III. 2: In order to obtain an idea of how small 
110 has to be, we show now that for X~ '3 (Pt - 1)/4 there 
is no solution to (10). 

It is enough to show it for ~~ = (Pt - 1)/4. It is 
straightforward to see that in this case one has 
g(x) '3x2/Xt-1 '3fx (x), using the inequality logx-'Sx-l 
for x '3 1. In word~, a representation of the type consid-
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FIG. 1. 

ered in Theorem III. 1 exists when the correlation func
tion 1) == w(a+b) is small enough. 

Remark IlL 3: We consider the generating function 
IJ.n(x) == wn(W(x)01), where W(x) == exp(xa* - xa), 

So 

Il{Xa* - xa) ==R0 Ilf(B(e», 

R== (Xa* - Xa)01 +101J.(a* +a) + 11(101), 

A==xa-xfj, M=XY-xy, v=xa-xa. 

[Il(xa* - xa)J2k=R2k e101, 

[Il(xa* - xa)]2k+t ==R2k+t0 Ilf{B(e». 

Hence 

Il(W(x»==coshR0101 + sinhR0 Ilf(B(e», 

and after simple calculation 

Mn(x) == exp[ - -H2Pt -1) Ix 12] 

x exp[ + ta~(x + X)2] cos[ao(x + X)]. (11) 

Mn is not the generating function of a quasifree state, 
and from its form it is clearly not gauge invariant. This 
can be checked by computing the four point function 
w.(a*3 a) == 20"04• 

Let w~ be the restriction of the state wn to the C*
subalgebra ~ of ~". The gauge invariant part of w~is 
given by the generating function 

iln(x) = 12
• Mn(ej",x) ~~ ==exp[-~(2pt-l)lxI2] 

x 1: 2
• exp[~ag(xexp(iG')+xexp(-iG'»)2] 

x cos(ao(x exp(ia) + X exp( - iG'» ~~ . 

Remark III, 4: A quasifree state over 6. (R2, a) is de
fined completely in terms of the one- and two-point cor
relation functions, The state w'lf is also described by 
two parameters Pt, ao where 

Pt==wn(aa*), 20"o4==wn (a*3a), 

and so is a state determined by its two- and four-point 
functions, Indeed from (11) one immediately sees that 
Mn = ~ (vn + v~), where vn is the generating function of 
a quasifree state, given by 

vn(x) = exp[ - t(2Pt - 1) 1 x 12 + tU02(x + X)2 + i(]o(x + X)]. 
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U(5) ::> 0(5) ::> 0(3) and the exact solution for the 
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Over twenty years ago A. Bohr discussed the quantum mechanical problem of the quadrupole vibrations in 
the liquid drop model of the nucleus. States of definite angular momentum L could not be obtained exactly 
except when L = 0,3. In the present paper we indicate how we can determine states for arbitrary angular 
momentum L and definite number of quanta v in terms of polynomials of the creation operators 
characterized by irreducible representation (IR) of the chain of groups U(5) :J0(3). We furthermore 
characterize the states by a definite IR h of 0(5) by replacing the creation operators by traceless ones. 
These states are fully determined by an extra label fl. that gives the number of triplets of traceless creation 
operators coupled to angular momentum zero. We show then how all the wavefunctions of the problem 
discussed by Bohr can be obtained in a recursive fashion and briefly discuss some of their applications. 

1. INTRODUCTION 

Over twenty years ago Bohrl discussed the quadrupole 
vibrations of the liquid drop in the quantum mechanical 
picture. This problem provided the basis for the intro
duction of the collective degrees of freedom in the 
phenomena of nuclear structure, that was so fruitful 
in the development of nuclear phYSics. 

In his analysis Bohr and his collaborators1• 2•3 went 
into what is known as the strong coupling picture to 
construct the required states. These wavefunctions can 
then be characterized by the number of quanta v, 
seniority A, angular momentum L and projection lvi. 
The states of lowest even angular momentum, L e, , 
L = 0 and arbitrary v, A were already available in the 
papers mentioned and those of lowest odd angular mo
mentum, L e" L = 3 were obtained shortly afterwardso 4 

Yet, as far as we know, no systematic procedure is 
given in the literature to determine the states for arbi
trary L, as well as to characterize the missing label 
(which we shall denote by Jl) in such a way that we get 
a fully defined and complete set of states. 

We plan to carry out this program in the present 
paper, We shall start in the next section by briefly 
reviewing Bohr's analysis1 stressing in particular the 
part of the problem, connected with the y vibrations, 
that remained to be solved, 

We then formulate in Sec. 3 the group theoretical 
structure of the problem and indicate how it can lead 
to determination of states characterized by a definite 
irreducible representation v of U(5) and L of its sub
group 0(3L The arguments, though group theoretical, 
use only concepts related with the theory of angular 
momenta and elementary algebra. 5 The states are ob
tained as polynomials in the creation operators and are 
furthermore characterized by two other missing labels, 

Finally in Seco 4 we introduce the concept of the 
traceless creation operator recently discussed by 
LoheG starting from considerations introduced by 
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Vilenkin.7 ReplaCing the creation operators mentioned 
in the previous paragraph with traceless ones, we 
automatically get states characterized by the IR v of 
U(5), A of 0(5), L of 0(3), and Iv! of 0(2)., The missing 
label is not related with the eigenvalue of the Casimir 
operator of any group but, in analogy with the concept 
of seniority,8 with the number Jl of triplets of trace
less creation operators that are coupled to angular 
momentum O. Expressing the traceless creation opera
tors in terms of the variables appearing in the strong 
coupling picture we can, in a recursive fashion, get 
all states from those of L = 0 or L = 3 that were men
tioned previously, 

In conclusion we indicate some possible applications 
of the states that are explicitly derived in the present 
papero 

2. aUADRUPOLE VIBRATIONS OF THE LlaUID 
DROP IN THE STRONG COUPLING PICTURE 

If the motion of the liquid drop is restricted to the 
quadrupole type the surface of the nucleus is described 
by the equation 

R =Ro(1 +6 Q' mY2m(8, 4>)), (2.,1) 
m 

where Ro is the spherical radius in the absence of 
deformation, Y1m (8, ¢) the spherical harmonics and 
Q'm, m = 2,1,0, - 1, - 2, the contravariant form of the 
generalized coordinates describing the collective 
motion. 

As usual, the covariant form Q'm of these collective 
coordinates is given by 

(2.2) 

and they are basis for an IR of 0(3) associated with 
1 = 2. Introducing now am as the corresponding general
ized coordinates in the frame fixed in the body along 
the principal axes we have the relation1

•
9 
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(2.3) 

where ,91, i = 1,2,3 are the Euler angles, and because 
the inertia tensor becomes diagonal in this frame we 
havel,s 

a2 = 0_2 = (1/v'2)/3 siny, 01 = a_I = 0, ao = /3 cosy. (2.4) 

Up to second-order the classical Lagrangian for the 
motion is 

(2.5) 

where the parameters B2 and C2 are related with the 
density, surface tension, and charge of the liquid 
drop. 10 In the present paper we shall take units in 
which 

fi=B2 =C2 = 1. (2.6) 

The covariant momenta are then given by 

_ aL _. _";,,,* () "D2* (" ) • 1Tm- ""m-Cim-LJv- ,,91 am,+LJ mm''''f am" va ~ mm m' 
(2.7) 

The time derivative of Wigner's D2(,9f) function is dis
cussed by Eisenberg and Greinerll and using this re
sult, as well as (2.4), we can write 

1Tm=(Cim/i3lPe+WIAm, (2.8) 

where 

(Ci m/i3l = (l/Y2)[D~(,9f) + D~2(,9f)] siny 

+D~~(,9f) cosy, 

Am=i ~ D~";,."(,9f)Jkl{[(2m"ILkI22)* 
m" k 

+ (2m" ILk 12 - 2)*](1/v'2) /32 siny 

+ (2m" ILk 120)*/32 COSy} L~ 

+ {[D~~ (,91) + D~!2 (,91)] cosy 

(2.9a) 

-D~~(,9i)siny}py. (2.9b) 

In (2.9b), (2m"IL k I2m)* is the conjugate of the standard 
matrix element of the angular momentum operator L k , 

k = 1, ?, 3 and L ~ are the components of the angular mo
mentum in the frame fixed in the body. In the classical 
picture 

Pe=~, 
p y =/32y, 

while in the quantum picture 

1 a 
PY=i 01" 

(2. lOa) 

(2. lOb) 

(2.11a) 

(2. llb) 

and the L~ take the operator form, in terms of Euler 
angles and their derivatives, discussed in Ref. 11. 
The principal moments of inertiaJ k , k=1,2,3, along 
the principal axes are given byll 

Jk=/32Ik, 

Ik=4sin2(y- 21Tk/3). 

(2. 12a) 

(2. 12b) 

The quantum mechanical Hamiltonian in the body 
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fixed frame of reference is given byl.12 

11°4 0 1212 
H = - "2 ~ 0/3 /3 0/3 + 2j3'I A +"2/3 , (2.13) 

where A2 is the Casimir operator of 0(5) that has the 
form12 

2 1 a. 3 a ~ 1-1 L,2 A=::- -. -3- -;- sm y -;- + LJ k k' (2.14) 
sm y uY uy k=1 

The eigenvalue of A2 is given byl3 

X(X + 3), (2.15) 

where ,\ is an integer. As the Hamiltonian H is that of 
a five-dimensional oscillator its eigenvalue is given 
in terms of the number v of quanta by 

v + % = 2n + ,\ + % , (2. 16) 

where n = Mv - X) is now the radial quantum number. 
The eigenvalues associated with the total angular 
momentum 

L2=:: t L~2= t L~, (2.17) 
""I k=1 

and L3 are respectively 

L(L +l),M. (2. 18) 

Thus our states can be denoted by the ketl • 12 

where we indicated by Il the missing one of the five 
quantum numbers required to characterize the state 
completely. 

In (2. 19) we note that the dependence on /3 can be ob
tained immediately from (2.13) if we replace A2 by 
X(,\ + 3), and thus we getl4 

FA(i3l=( 2(n!) ) 1/2 {3ALA+3/2({32)exp(_{32/2) 
n r(n+'\+~) n , 

(2.20) 

where L~+3/2({32) is a Laguerre polynomial and the func
tion is normalized for the volume element {34d{3. For 
the dependence on 1', ,91, we can use the fact that the 
DiI}(,9I) constitute a complete set of functions of the 
Euler angles. In fact, from the symmetry considera
tions1,12 associated with the choice of principal axes, 
we see that the development must be made in terms of 

(Dt; + (-) Dt~K),K =:: 0, 2, ... ,L for Leven; 

K == 0,2, ... ,L - 1 for L odd, (2.21) 

rather than in terms of the Dili themselves. Thus the 
only remaining part of the state (2.19) to be determined 
is the one associated with the variable y. Applying the 
operator 

A21 v'\IlLM)=X(,\+3) I VXIlLM), (2.22) 

we clearly see that this provides a set of coupled 
ordinary differential equations for the 

¢~L(y), 

where'\, Il, L are given and the K take the values in
dicated in (2.21). This is the part that has been solved 
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exactly only for the special cases L = 0, 3 that we 
proceed to discuss. [See note at the end of the paper. ] 

For L = 0, K = 0 and the application of the L ~ opera
tors in (2.14) gives 0, so we are led to the equation 

A regular solution is possible only if A is a multiple 
of 3 and we define Il in this case by requiring that 

(2.24) 

so that the ¢~I".I".0 is proportional to the Legendre poly
nomial PI" (cos3y). Clearly we can limit discussion of 
the states (2.19) to II=A, as 1I=2n+A means only intro
ducing the Laguerre polynomial L~+3/2(132) instead of 
the unity to which it reduces when n = O. We can also 
restrict our analysis to M = L and thus deal only with 
the states 

For L = 0 they have then the12 form 

131l, Il, 0) ::::AI"1331" exp(- 132 /2) PI" (cos3y) (2.26) 

where AI" is so far an arbitrary constant which we shall 
later select conveniently. 

Turning now our attention to odd L we note that (2. 19) 
vanishes identically if L :::: 1 because then K = 0 is the 
only possible value and the square bracket in it is zero. 
We lOok then to L::::3 for which K::::O, 2, but again 
K:::: 0 vanishes, so we get only a single ordinary differ
ential equation for ¢r 3{y) of the form 

[- ~3 dd sin3y dd + ~3 J¢~I"3{y) = A(A + 3) ¢~I"3{y), sm y y y sm y 

(2.27) 

where we used the fact that 

(7/811"2) J D~"2{0i)L~2Di:2{0i)dn=4, k=1,2,3, (2.28) 

where dn =: sifi,'}2 d''}l d,'j2 d i )3, and also thaes 

1 1 1 9 
sin2y + sin2{y _ 211"/3) + sin2{y _ 411"/3) =:: sin23y . (2. 29) 

As in the case of L = ° a regular solution exists only if 
A'" 0 mod 3 and for later convenience we write, in the 
case L = 3, that 

We have then that ¢31"+3,I".3{y) will be proportional to 
the associated Legendre polynomial pJ+1{cos3y) and the 
state 13 Il + 3, Il, 3) takes the form 

i31l + 3, Il, 3) =: B I" 1331" +3 exp{- 132/2) P :+1 (cos3y) 

(2.31) 

where B~ is again an arbitrary constant to be selected 
later. 

We shall now proceed to derive in a systematic 
fashion the states 1 A, Il, L) for arbitrary L starting 
from L == 0 if L is even, or L == 3 if L is odd. 
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3. STATES CHARACTERIZED BY THE IR OF 
THE CHAIN OF GROUPS U(5) :::) 0 (3) 

We shall proceed to obtain the eigenstates of the 
Hamiltonian (2. 13), of angular momentum L and highest 
proj ec tion M = L, as polynomials in the covariant 
creation operators 1)m, m = 2,1,0, - 1, - 2, defined as 

(3.1) 

where am is given by (2.3), (2.4) and 11"m by (2.8) and 
(2,9), with the latter being understood as a quantum 
mechanical operator. These polynomials will be ap
plied to the ground state 

(3.2) 

The contravariant form of the annihilation operators 
is 

(3.3) 

and they satisfy the commutation relation 

(3.4a) 

which implies that ~m, when applied to polynomials 
in 1)m' can be interpreted as 

~m= _0_. 
o1)m 

(3.4b) 

The relation between covariant and contravariant com
ponents of the same operator is again (2. 2). 

The number operator has then the form 

2 
N= L; 1)m~m::::H - i, 

=-2 
(3.5) 

and the components of angular momentum are given 
by16 

L q = 6 {6 (21mqI2m')1)m,~m, q=l,O,-l, 
mm' 

implying in particular that 

2 
L 1=- L; [~(3+m)(2-m)]1/21)m+1~m, 

m~-2 

(3,6) 

(3.7a) 

(307b) 

We are now in search of the polynomials P(1)m) that 
satisfy the equations 

NP= vP, L 1P=0, LoP=LP, 

where the ~m in the operators is interpreted in the 
differential form (3.4)0 

(3.8) 

The first equation in (3.8) implies that P is a homo
geneous polynomial in the 1)'S and thus we can write 
it as 

P(1) ) = 1)" pI (!l.1 170 !1117-2) 
m 2 1)2' 1)2' 1)2' 1)2 ' 

(3,9) 

where pI is an arbitrary polynomial in the variables 
indicated of degree not exceeding II. To apply the second 
equation of (30 8) we shall introduce the following poly
nomial functions: 
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2 

(2,0)= ~ (-)"'rjm1J-m 
_-2 

(3, 3) =-v'I473 ~ ~ (22m mm" \33) 
mm' TTI'mI" 

x (22mm'\2m"')1Jm1Jm'1Jrn'" 

(2,2)=v7 ~ (22mm'\22)1Jm1Jm" 
rnm' 

(3. lOa) 

(3. lOb) 

(3.10c) 

The notation is (v, L) indicating the number of quanta 
v, and the maximum projection M=L of the angular 
momentum L of the polynomials, which correspond to 
elementary permissible diagrams (epdL 17,18 

From the explicit form of the Wigner coefficients 
in (3.10) we obtain 

(2,0) -2 ~ 2!b1 211 + 1Jn 
T - 1J2 - 112 1J2 11I' 
~ =2 !b1_J6 2111Jo +~, 

1)2 1)2 1)2 1)2 1)2 

¥ =2V2 1)0 --13 ~, 
1)2 1)2 1)2 

and therefore we could also write P as 

P(1) )- vp "(211 (2,2) (3,3) (2,0») 
m -1)2 1)2' 7jf' 1Jf' 7jf , 

(3.1la) 

(3.1lb) 

(3. ltc) 

(3. 12) 

where P" is again an arbitrary polynomial of the vari
ables indicated. 

We note now that from their definition, 

L 11)2 =L1(2, 0) =L1(3, 3) =L1(2, 2) = 0, 

L 11)1 = - V21) 2, 
(3.13) 

and thus, as L1 given by (3.7a) is a first-order differ
ential operator in the 1)'S, we have 

(3. 14) 

which implies that p" is independent of (1)/1J 2) and 
therefore we can write 

where so far the B"t"2"3 are arbitrary constants. 

Considering the third equation in (3.8) we see from 
(3.7b) and (3.15) that it implies 

3n 2 + 2n3 + 2(v - 2n1 - 3nz - 2n3) =L, 

from which we obtain 

(3.16) 

(3.17) 

Thus the polynomial that satisfies the Eqs. (3.8) has 
the form 

P(1) ) = ~ B' 1)L-v+2n1(2 0)nl(3 3)"2 
m "ln2 "1"2 2 , , 

(3.18) 

We note from (3.18) that for P to be a polynomial, 
nz must be even (odd) if 2v - L, and thus also L, is 
even (odd). At first sight the different polynomials 
seem to be given by taking B"I"2 = 1 for a particular 
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nt, n2 and zero for the rest, with the restriction that 
all the exponents are nonnegative. We note though that 
1J2 contains n1 but not n2 in its exponent. Thus there is 
the possibility that 

~ B' (3 3)"2 (2 2)l2v-L-3"2) /2-2n1 (3.19) 
"2 "1"2' , 

for some coefficients of B~ n could be divisible by 1)2 
1 2 

and in this case the exponent of 1)2 can take negative 
values. To avoid this problem we note that the poly
nomial characterized by the epd (3,0), i. e., 

(3,0)=v7 ~ (-)m
H

(22mm'\2-m")1Jm1)m.1)rnH (3.20) 
mm'm" 

is related with those of (3.10) by 

_ (3-13/4)(3, 3)2 =1J~(3, 0) - 1(2, 2)(2, 0) 1)~ 

+ H2, 2)3. 

Thus if L is even, then n2 is also even, i. e. , 

n2 =21J. 

and we can express (3,3)2" in terms of (3,0)" and 
powers of the other epd's. 

(3.21) 

(3.22) 

Therefore for 2v - L even, we can also write (3.18) 
as 

P(1Jm) "" ~ B:"11)r-V+2"1+3" (2, 2r2v-L)/2-3,,-2"1 
n1" 

x (3, 0)" (2, O)nl. 

It seems at first sight that we have not avoided the 
problem of divisibility in (3.23) as we can write 

(3.24) 

and expressing nl in terms of T we have now to ask 
whether 

P(1Jm) =~ B:'T(3, 0)" (2, 0)lT-3,,)/2 

" 
(3.25) 

is divisible by 1J2 for some value of the coefficients 
B::.'T' The answer to this last question is immediate. 
The polynomial (3.25) corresponds to L = 0 as the two 
epd (3,0), (2.0) appearing in it have angular momentum 
zero. Thus if we can factorize it in the form 

(3.26) 

where x is some positive integer, then 

(3.27) 

This implie s that R is a polynomial in the 1Jrn'S corre
sponding to a negative angular momentum which is 
clearly impossible. 

We have then from (3.23) that the different poly
nomials are given by 

P ""L"1 (1J m) 

(3. 28a) 

when L is even and IJ., nl' L, v are restricted by the 
fact that all exponents must be nonnegative. 

A similar analysis for L odd, in which case nz is 
odd and can be written as 

nz =21J. + 1 

leads to 

(3.29) 
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P v/.£ Lnl (11 m) 

= (3, 3)112L-I>+2n1+3/.£ (2, 2)(2v-L-3) 12-3/.£-2nl (3, 0)/.£ (2, 0)"1, 

(3. 28b) 

where again Jl, n1, L, v are restricted by the fact that 
all exponents must be nonnegative. 

The polynomials (3.28), besides being characterized 
by the IR v of U(5) and L of 0(3), have two other 
labels, the nonnegative integers Jl, n1 which indicate 
the powers of the operators associated with the epd 
(2,0), (3,0). 

We have obtained the complete, though not necessari
ly orthonormal, set of states of definite number of 
quanta v and maximum projection of angular momen
tum M=L. For arbitrary M we just have to apply 
(L_1)L-M of (3. 6) to the polynomials (3.28). The states 
(3.28) do not correspond though to a given seniority 
and in the next section we indicate how we can intro
duce this label in the classification scheme, 

4. CONSTRUCTION OF STATES OF GIVEN 
SENIORITY THROUGH TRACELESS BOSON 
OPERATORS 

The states belonging to the IR (AO) of 0(5) are eigen
states of A2, the quadratic Casimir operator of the 
group, with eigenvalue A(A + 3),13 

The expression for A2 islO 

A2 = t:0 [11m~m' -11m'~m] [11m' ~m -11m~m']' (4.2) 
mm' 

and after some rearrangement of factors, it can be 
taken to the form 

A2 = N(N + 3) - (:p, 11m'11 m') (~~m~m), (4,3) 

with N given in Eq, (3,5), From (4,3) we see that the 
eigenstates of A2 with eigenvalue A(A + 3) have the form 
P(11m) I 0), where P(11m) is a homogeneous polynomial 
of degree A in 11 m, which is "harmonic", i, e, , 

(4,4) 

If we take the polynomials (3, 28) with v = A, we find 
that they do not satisfy the condition (4,4) as they 
stand, There is however a method, originated by 
Vilenkin1 and further developed by Lohe, 6 by means 
of which we can enforce the condition (4.4) in a relative
ly simple way, 

Following these authors we introduce "traceless 
boson operators" defined by 

a;;'=11m-(2,0)(2N+5)-I~m' m=2,1,0,-1,-2, (4.5) 

where N is the number operator of Eq. (3.5), and (2,0) 
is the second degree polynomial of angular momentum 
o of Eq, (3. lOa), i, e., the one associated with two 
paired quanta. U sing the identities 

(2N + 5)-I11m =11m(2N + 7)-1, 

(2N + 5)-I~m = ~m(2N + 3)-1, 

(4,6a) 

(4,6b) 

which hold when we apply the operators to homogeneous 
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polynomials in the 11'S, we can easily show that 

[a;", a;", ] = 0, (4,7) 

and furthermore, 
-2 -2 

~ a;"a+ m= (4lfl-l)-1(2, W E ~m~m. (4.8) . 

We now turn our attention to the polynomials P v/.£Lnl (11 m) 
of (3.28). If we replace 11m by a;,. in these polynomials 
and apply them to 10), we see from (4,8) that the corre
sponding states will vanish unless nl = O. Assuming 
this last condition and taking v = A, we have the states 

(4,9) 

These states are linear combinations of terms like 
11m111mz • , • 11mx I 0), i. e" they are homogeneous of degree 
A in 11m' and they continue to be characterized by the 
angular momentum L. 6 Moreover, if we applYbma;;'a+m 

on the state IAIJ.L) we obtain, from Eq, (4,7) and (4.8), 

(4lfl-l)-1(2, W.0 ~m;mIAJlL) 
m 

=.0 a;"a+mPX/.£LO(a;;") I 0) 
m 

(4.10) 

and since the factor (4lfl - 1)-1 (2, 0)2 does not vanish 
identically, it follows that the states PX/.£LO(a+) 10) are 
"harmonic", i. e., they satisfy condition (4.4). Thus 
the states of Eq. (4.9) correspond to the IR (AO) of 0(5) 
and [.\0000] of U(5). 

As the states (4.9) are eigenstates of H, A2, L2, and 
L~witheigenvaluesA+t A(A+3), L(L+l), andL, 
respectively, they obviously are identical to IAJ.LL) of 
(2.25) if the extra label J.L needed to characterize them 
denotes the number of triplets of traceless operators 
a;,. coupled to zero angular momentum, Introducing the 
notation [v, L] for the elementary permiSSible diagrams 
(3.10), (3.20) where we replace 11m by a;;, as well as 

[1,2]=a;, (4,11) 

we can express the states I AIJ.L) in the operator form 

if L is even, (4, 12a) 

I AIJ.L) = [1, 2p-X+3/.£ [2, 2](2)·-3-L) 1 2-3/.£ [3, 3][3, 0]1k 10) 

if L is odd, (4. 12b) 

where all exponents must be nonnegative so the follow
ing inequalitites are satisfied: 

L - A + 3J.L ~ 0, t(2A - L) - 31J. ~ 0, Jl ~ 0 

for Leven, 

L - A + 3Jl ~ 0, t(2A - L - 3) - 3Jl ~ 0, Jl '" 0 

for L odd, 

(4. 13a) 

(4. 13b) 

We show in Appendix A, that the inequalities (4.13) 
guarantee that the number of states (4.12) (of which there 
there are 2L + 1 for each L when we consider all possi
ble values of M) for a given A is 

dx = teA + l)(A+ 2)(2A + 3), (4.14) 

Chacon, Moshinsky, and Sharp 672 



                                                                                                                                    

This is exactly the dimensionality d). of the IR (AO) of 
0(5).13 We note furthermore that the states (4.12) are 
linearly independent. This certainly is true for states 
of different L or A as they are even orthogonal. For the 
same A and L the polynomials in (4. 12a), for which L 
is even, contain ai to the highest power (L/2) + Il as 
from (4.11), (3.10c), (3.22) we see that [1,2], [2,2], 
[3,0] contain ai linearly. Thus no linear combination 
on the index Il of the polynomials (4. 12a) can vanish 
and the same applies to those in (4. 12b) for L odd. 

The inequalities (4. 13a) show that for L = 0 we have 
A = 31l and thus the state 

131l, Il, 0) = [3,0]" 1 0) (4. 15a) 

must be identical to (2.26) if the constant A" in the 
latter is selected appropriately. Furthermore from 
(4. 13b) we see that for L = 3, A = 31l + 3 and thus the 
state 

(4. 15b) 

must coincide with (2.31) for an appropriate selection 
of B". Looking then back to the states tAIlL) of (4.12) 
we see that all of them could be obtained from (4.15) 
if we apply powers of the operators [1,2] and [2,2]. 

The best way of getting ¢~L(y) in the states tAIlL) 
of (2.25) and (2.19) seems to be a recursive one start
ing from the state (2.26) of L = 0 for L even, or (2.31) 
of L = 3 for L odd. In Appendix B we applied the opera
tor a~ to the state t v = A, A, Il, L, M) of (2. 25) and found 
out that 

a;' 1 v = A, A, /l, L, M) 

= [r(A2
+f) f/2 /3A

+
1 exp(- /32/2) 

x L~K{i![(L2MmILM)Q~1l (y, a~) ¢~L(Y)J 
x [D~!({)i) + (_)L D~~K({)i)] } , (4.16) 

where Q~}~y, a/ay) is an operator function of yand 
a lay linear in the latter and given by (B. 17). 

Turning now our attention to the states (4.12) we note 
that 

[l,2]IA/lL)= IA+l,/l,L+2), 

[2,2]IA/lL)= IA+2,/l,L+2). 

(4. 17a) 

(4. 17b) 

From the definitions (2.25), (2.19) of the states 
tAIlL), and the explicit form of the operators [1,2] 
and [2, 2], i. e. , 

[l,2]=ai 

[2, 2]=v"f 'B (22mm' 122)a~a~, 
mm' 

(4. 18a) 

(4. 18b) 

we see from (4. 16) and the elementary recoupling 
theory that19 

'-/'1::1,,,,L+2 (y)=~ QALJ-+2 ( ~) .-/,A"L() (4. 19a) 
'l'K K KK y, ay 'l'K y, 

cpi<;2,,,,L+2(y) = _~ {v'35(2L + 1) W(L, L + 2, 2, 2;2L) 
LKK 

XQ~+1LL+2 (y ~) QAL~ (y ~) '-/'AlLL(y)} 
KK' , ay KK , ay 'l'K (4. 19b) 
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where W is a Racah coefficient. Thus we have given an 
explicit recursive procedure to get all states t vA/lLM) 
of (2.19) from those of L = 0 if L is even, or L = 3 if L 
is odd. 

The states t VAIlLM) though complete are not ortho
gonal in the index /l and have not been normalized, but 
once obtained they can lead to an orthonormal set of 
states through an appropriate Hilbert-Schmidt 
procedure. 

Having solved exactly the problem of the quadrupole 
vibrations of the liquid drop model of the nucleus, we 
briefly discuss in the concluding section the procedure 
for evaluating matrix elements as well as some possi
ble applications. 

5. CONCLUSION 

The states t vA/lLM) of (2.19) with the ¢~L (y) deter
mined through (4.19), have many applications. To 
begin with we may consider extensions of the Lagrangian 
(2.5) in which besides the quadratic term in the 
potential 

(5.1) 

we have a cubic one of the form9 

{3,0}=v'7 ~ (-)m"(22mm'12-m")O'mO'm'O'm" 
mm'm" 

= - ...fi fJ3 cos3y (5.2) 

as well as higher power ones which are formed from 
products of {2, o}, {3,0}, i. e. , 

{2, 0}2; {2, O} {3, o}; {2, 0}3; {3, 0}2, etc. (5.3) 

This type of Hamiltonian has been applied to transitional 
nuclei20 and considered also in relation to higher order 
deformations. 

The simplest way of dealing with Hamiltonians con
taining terms of the form (5.3) would be to calculate 
their matrix elements with respect to the states 
t VAIlLM) and diagonalize the corresponding matrix 
for which L2, L z remain good integrals of motion. The 
matrix elements of powers of /3 with respect to the 
FnA(fJ) of (2.20) are well known. 14 Those of powers of 
cos3y with respect to the cp~L (y) can be determined 
from the explicit forms of the latter functions given by 
the recursion relations, (4.19). 

A similar problem concerns the determination of the 
transition probabilities between states of the type 
(2.19), when we have a multipole operator such as O'm 
or appropriate powers of it. 9 Again it is a question of 
determining matrix elements, though now we also have 
the Wigner functions D~m' ({)i) involved in the operator 
O'm as seen from (2.3). 

Recently states of n bosons, of the type 11 min (3.2), 
characterized by the IR of the chain of groups 
U(5) =:J0(5) =:J0(3), have been considered in the analysis 
of elementary excitations in vibrational nuclei by 
Arima and Iachello. 21 All of the discussion in Sec. 3,4 
of this paper applies also to them. In particular the 
states required in Ref. 21 can be written in the form 
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where the epd (2,0) is given by (3. lOa) and the kets 
!'\J.LL), have the operator form (4.12). 

(5.4) 

Finally we note that while the analysis carried out in 
the present paper concerns only quadrupole vibrations, 
i, e., l = 2, it is in principle generalizable to other l. 
For example for octupole vibrations l = 3, we have the 
chain of groups U(7) ::::J0(7) ::::J0(3). The determination 
of the polynomials in the TJm'S, where now m 
=3,2,1,0, -1, - 2, - 3, in the chain U(7) ::::J0(3) can be 
done along lines similar to those in Sec. 3 for 
U(5) ::::J0(3), but the divisibility problem is likely to 
be much more difficult. ......he introduction of an appropri
ate traceless boson operator will then permit the char
acterization of the states by the IR of 0(7), in a way is 
similar to what was done in Sec. 4 for 0(5). 

Applications and extensions of the present develop
ments will be published elsewhere. 
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APPENDIX A 

We shall give here the proof that the sum of the 
dimensions of all the IR of 0(3) allowed by the inequali
ties in Eqs. (4.13), for a fixed,\, is equal to the 
dimension of the IR ('\0) of 0(5). 

The inequalities (4. 13a) can be collected in 

0"",\-3J.L""I""2,\-6J.L, Leven, 

while those in Eq. (4. 13b) give 

0"",\-3J.L""L""2,\-6J.L-3, Lodd 

(Ala) 

(Alb) 

with J.L being a nonnegative integer in both cases. From 
here it follows that the sum we must evaluate is 

[x/31 2A-Si' 

S = :0 :0' (2L + 1) 
1'=0 L=2[(~+1-3i')/21 

[(~-3)1 31 2~-Si'-3 

+:0 :0' (2L + 1), 
1'=0 L=2[(~-3i')/21+1 

(A2) 

where [x] is the largest integer contained in x, and a 
prime means that the sum goes by steps of two. 

We can regroup terms and write the sum (A2) as 

[(A-3)/31 [2X-6i'-2 ] 
s= Eo L~3i' (2L+l)+2(2,\-6J.L)+1 

(A3) 

where the last bracket is the contribution of the terms 
with J.L = [,\/3] and contains, respectively, the dimen
sions of the following IR of 0(3): 
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L=O when ,\=0 mod 3, 

L = 2 when ,\ = 1 mod 3, 

L=2,4 when ,\=2 mod 3. 

Using the auxiliary formula, 

8 
:0 (2L + 1) = (13+ 1)2 - a 2, 

L=", 

we have 

s= [(~r3J (3,\2 + 2 -18,\J.L + 27J.L2)+ {~} 
1'=0 14 

(A4) 

(A5) 

(A6) 

The upper limit of the sum for the three cases of (A4) 
is, respectively, (,\ - 3)/3, (,\ - 4)/3, (,\ - 5)/3. The 
sum can be effected in each case using the formulas 
Z;,;"=on=~k(k+l) and z;"k=on2=fk(k+l) (2k+l), giving 
in all three cases 

s == t(,\ + 1) (,\ + 2) (2,\ + 3), (A7) 

which agrees with the dimension of the IR(,\O) of 0(5), 

From (A3) and (A4) it can be deduced that, whatever 
the value of,\, L = 1 never occurs, and L = 0,2,3,4,5,7 
occurs at most once. 

APPENDIX B 
In this appendix we shall give an outline of the deriva

tion of the operator Qx:l'(y, a/ay) of Eq. (4.16). 

The traceless boson operator a;" was defined in 
Eq. (4.5) as 

a;"=TJm - (2, 0)(2N + 5)"1~m' (Bl) 

It is, however, convenient to use the commutation 
relations of the TJ'S and ~'s to move the ~m in (Bl) to 
the left and obtain the following expression, equivalent 
to (Bl) when applied on a homogeneous polynomial 

in TJm' 

(B2) 

Introducing here the relations 

TJ m=(l/v'2)(a m-ilTm), ~m==(l/v'2)(am+ilTm)' (B3) 

with am, lTm given in Eqs. (2.8), and (2.9), and further
more, taking into account that a;" is going to be applied 
on a state (2.19) which we write as 

(B4) 

we conclude that 

a;" 111== '\, ,\J.LLM) 

== [ r(;+ t) f/2 J3~+1 
2 (2,\ + 5)1/2 [ a ] 

x exp(- 13 /2) (2,\ + 3) (,\ + 3) 13m 
- it..m X(y, {lj) 

(B5) 
where we made use of the fact that 
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(2,0) = ~ t (Q'mQ'm -1Tm1Tm - i1T
m

Q'm - iQ'm1Tm) 
m=2 

For computational convenience we shall split the 
operator ~m of Eq. (2.9b) into two terms, namely 

~m= Vm + Wm, (B7a) 

where 

V m = i 6 (2p \Lk\2T)*D~~(,<)i)J;1L'kaT//3, (B7b) 
kTp 

Wm=- (i/v'2)[D:+D~~2]COSY 'O~ +iD~bSiny 'O~. 
(B7c) 

As the effect of Q'm and Wm on X(Y, ,<)/) can be easily de
duced, we shall concentrate our attention on the appli
cation of V m on X(Y, ,<)/), 

Writing X as 

X(Y, ,<)/) =X+ + (_)L X_, X±=6 1>}tL(y)D;':K(,<)i), (B8) 
K 

we have, owing to the completeness of the set D~K' 

with 

AfliK = [(2L + 1)/81T2] J D;K(,<)i) V m X:dS"a 

=i(L2Mm[LM) ~ [6 (2pIL k \2T)* 
KLT kPK' 

(B9) 

x (LK'\L k \L, ±K)*(L2K'p [LK)I;l] (~T) 1>}tL(y), 

(Bl0) 

where in the last step use was made of Eq. (4.62) of 
Ref. 19 as well as the fact that 

L~Dt:K=6 (LK'\L k [L, ±K)* D~r,. (Bl1) 
K' 

We note now that the term in the square bracket of 
(Bl0) could be written as 

6 (L2LR\6 l;lL\PL~2) \L2L"K")(L2, ±KT[L"K") (B12) 
L" K" k 

where we distinguish the two operators Lk appearing in 
(Bl0) by the indices 1 and 2. We furthermore have the 
identity 
3 

6 /;1 Lk1) L~2) = Hl1-
1 - 12-

1) ([L (1) x L(2)]~ + [L(1) X L\Z) ]:2} 
k=l 

+ H213-
1 - 12-

1 - 11-
1) Y273 [L (1) x L(2)]5 

- (3v"3/4) ~- [L(1 ) XL(2 )]O (B13) sm23y 0, 

where 

[L\i)xL\2)]~= L; (l1m'm"[jm)L~,)L~J. (B14) 
m'm" 

Introducing (B13) in (B12) and using standard re
coupling techniques, we finally wri~c 

A!liK=i(L2Mm[LM) L; {(L2IK[61;1L~1)Lk2)\L2L"K") 
L"K" k 

x 6 (L2±KT[L"K,,>(aT) 1>~L(y)} 
KT /3 K 

(B15a) 
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with 

(L2LR\6 l;lLk1)Lk2) \L2L"K") 
k 

= 5[6L(L + 1)(2~ t 1)(2L" + 1)]1/2 {f:£,} 
sm 31' 112 

x [- 2v"3 sin3ycosy«LI2K"2[LK) + (L"2K" - 2\LK» 

+ (1/v6)(3a + COS2y]2 - t)(L"2K"0 \LK)] 

3 [ - - ) - . 23 L(L + 1) + 6 - L(L + l)]oLL"Oj(K" (B15b 8sm y 

where { } is a 9j coefficient. 

Carrying out a similar analysis for Q'm/{3 and Wm we 
see that 

a;,\v = A, AIlLM) 

= [ (2 7)] 1/2 /31..+1 exp( _ /32/2) L; (L2Mm \ LM) 
r1+y In 

x~ [Q~l (I', 'O~) 1>}tL(y)] 2D~i- (,<)/), (B16) 

where 

- ( a) (21+5)1/2 
Q>;ti 1', '01' = 2(21+3) 

x {~ [3~" «L2LK\ ~ 1;1L).1) L),2) [L2L" K") 

+ (1 + 3) 0L"I 0K"K}«L2KT \L"K") 

+ (-)L(L2 - KT [L" K"» ( d)]- (1/i2)«L2K2[LK) 

+ (_)L(L2 -K - 2\LK) + (L2K - 2\LK) 

+(-)L(L2-K2\LK»cosy 'O~ + «L2KO\LK) 

+ (-)L(L2 - KO [IK» siny 'O~ }, 

and (," ll:kl;lL).1) L).2) I" ,) is given in Eq, (B15b), 

We note now that 

(B17) 

QAf:..L = (_)L QALf (B18) 
KK K-K' 

as can be seen from (B17) changing the sign of all re
peated magnetic quantum numbers of the Clebsch
Gordan coefficients and using their symmetry proper
ties. Thus we conclude that in the expansion (B16) we 
could replace 

- L - -
2D%~ (,<)i) - DM~(,<)i) + (_)L Dt~K(,<)/)' 

and the operator (B17) is the one we require in Eq. 
(4.16)' We note incidentally, from the Wigner coeffi
cients in (B17) and the fact that T=± 2, 0, that all R 
will be even if K is even, thus keeping the restriction 
mentioned in (2.21), 

Note added in proof: It has been brought to our atten
tion that particular solutions of the problem of quadru
pole vibrations of the nucleus have been obtained for 
other L besides 0 and 3. D. Bes22 considered the set of 
coupled differential equations for 1>~L(y) when L 
= 2,4,5,6. He gave explicit solutions for small values 
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of A in terms of polynomials of cos3y. Budnik, 
Rabotnov, and Seregin23 gave for all A the explicit solu
tion when L == 2. 
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We propose an approximant which attempts to reconstruct a solution starting from the Born terms of a 
formal power series. The approximant follows closely the Fredholm solutions to Born-Neumann series of 
completely continuous operators and their finite rank approximations. We show that if the Fredholm 
solution is written as a combination of Born terms, it tends to become independent of the expansion 
parameter X asymptotically. The proposed approximants then appear as solutions to differential equations 
approximately satisfied by the formal power series, a feature they share with kernel of finite rank 
approximations. All Born terms are put on equal footing and their respective weight is determined 
independently of X by initial conditions; thus knowledge of the solution and (N- 1) derivatives at one point 
is necessary. Analytic and crossing-symmetry properties are preserved by the proposed approximant, but 
unitarity is not insured and has to be examined specifically. Its error structure and its properties are 
studied and compared to Pade approximants. 

1. INTRODUCTION 

One of the outstanding practical problems met in 
physics is the reconstruction of the true solution fix, X) 
from the more or less formal power series known to 
physicists as a Born series and to mathematicians as 
a Neumann series: 

~f(X, x) = !o(x) + Vi (x) + X%(x) + X3!3(X) +. .. . (1. 1) 

This formal power series is usually all that is available 
because most theoretical schemes are only capable of 
yielding the "perturbative" Born terms through some 
iteration procedure. 

The presently popular approach, when X is known and 
relatively large, is the Pade approximant which con
centrates on the X dependence of fix, x) and sees the 
Born terms !j(x) as coefficients of the power expansion 
in X. Pad~ approximants have been successful in many 
instances. The literature on the subject is extensive, 
and there are recent review books. 1_3 The "x" depen
dence (possibly more than one variable, e. g., energy, 
momentum transfer, etc.) of the Born ter ms usually 
appears, however, in the denominator of the Pad~ ap
proximant. This often introduces unwanted Singularities 
in the "x" variable. Further the crossing properties of 
amplitudes, an important feature in high energy physics, 
are lost in the Pad~ approximant. 

Our purpose here will be to tackle the reconstruction 
of !(x, X) starting also from the Born-Neumann series 
(1. 1) but streSSing instead the hitherto neglected "x" 
dependence. The approximant we wish to propose will 
seek to use to the maximum the information contained 
in the functional form in "x" of every Born term avail
able. This should be particularly useful when the ex
panSion parameter ,\ is unknown or when it is so large 
as to make it a purely formal device in obtaining a power 
series. We will define, from the Born terms, systems 
of differential equations, the solutions of which will con
stitute our approximants. But, whoever says differential 
equations implies initial conditions or boundary values; 
knowledge of these will replace that of the expansion 
parameter X which we feign to ignore. 
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The perturbative and Padl! methods have established 
a hierarchy among Born terms associated with the cor
responding power in X. To establish "democracy" among 
Born terms and discredit the importance of X, especial
ly when it is large, we will examine Born-Neumann 
series generated by a completely continuous integral 
operator and their finite rank apprOXimations. In Sec. 
2 we will study the Fredholm solutions of the latter. 
Those solutions are linear combinations of Born terms, 
and it turns out that the coefficients of the Born terms 
tend to become independent of X asymptotically. In Sec. 
3 we formally define our approximant using Wronskians 
and initial conditions to determine the weight of each 
Born term. To this effect we need to know the solution 
and (N -1) of its derivatives at one point. In Sec. 4 we 
study its error structure, and compare some of its 
advantages and drawbacks with respect to the Padl! 
approximant. 

2. ON THE COMPLETELY CONTINUOUS INTEGRAL 
OPERATOR 

Let us take an integral equation with a complete con
tinuous operator K of kernel k(x,x') on a Hilbert space: 

(I -XK)!=g. 

This equation can be solved at least formally as a 
Born-Neumann series: 

The "perturbative" terms are obtained by repeated 
application of the operator K, thus: 

(2.1) 

(2.2) 

(2.3) 

This expansion by itself is of little use when IlxK11 > 1; 
nonetheless, these perturbative or Born terms are often 
the only building blocks available in many physical 
problems. 

As a first step we will relate these Born terms to the 
Fredholm resolvent of the equation. Following closely 
the notation of Byron and Fuller, 4 we have 
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fix, A) - g(x) = [AlD(A)] J N(x ,x', A)g(X') dx'. (2.4) 

Both N(x,x', A) and D(A) are infinite series which con
verge for all A. The Fredholm determinant is 

D(A)= I; Ak (-l)k d 
k-O k! k' 

(2.5) 

where d k are constants (i. e., do = 1, etc.). Using the 
notation N (A) for the operator f dk' N(x, x' , A), we write 

N(A)= ~ An(-l)n N 
, n' 

n_O n· 

Formally the operator N (A) satisfies the equation 

N(A) = D(A)K[I - AK1-1 • 

(2.6) 

(2.7) 

Expanding D(A) and [I - AK1-1 in powers of A, and re
grouping these powers, the expansion operators N n of 
(2,6) can be written as 

N = t (_l)i __ /1'_, - d KiT1 
n j-O (n-j)! n-j • 

(2.8) 

We can then use the Fredholm solution (2.4), again as 
the ratio of series convergine; for all A, but this time 
using explicitly the Born terms of the formal power 
series (2.2), 

A ~ (n ( _ 1 )n-j ) 
f(X,A)-g(x)=D(A) 6An ~ (_,),dn_J f j +1(X). 

n-O J-O n J . 
(2.9) 

At this point we replace the general kernel k(x, x') by 
the approximating kernel of finite rank "L": 

L 

kL(x,x')= 6 O'j(x);3j(x'). 
l-1 

(2.10) 

(The superscript label "L" will be used to identify all 
objects pertaining to a finite rank kernel like the above. ) 
The determinantal integrands entering in the definition 
of the classical Fredholm terms dk and N n will insure 
that df '= 0 for }, > Land N ~ '= 0 for 17 > L - 1. The numera
tor and denominator series of (2,9) will then terminate, 
and we have 

P(.x:,A)-g(X)=flLA(A) I; An(±(-l)n-J 
d L fL (0 (211) 

( 
') , n-j j +1 X , • 

n-O j-O 17 - J . 

After rearranging the sums and regrouping the coeffi
cients of the Born terms, we obtain 

L 

fL(X, A) - g(x) = 6 ef(A)fjL(x), 
i-1 

(2.12) 

where 

Ai L-/ (_1)1 
ef(Ak nL(.\) ~ -Z-! ~ A.ldf, (2.13) 

and 

flL(A)=± (_~)k .\k dkL , 
k-O k. 

(2.14) 

It will be no surprise, of course, that the "x" depen
dence of the solution fL (x,.\) is described by a linear 
combination of L Born terms for a kernel of finite rank 
L. Indeed each f~(x) is made up of a linear combination 
of the L independent functions a/(x) of (2.10) through 
repeated application of K L. Thus in general the solution 
[jL(X,A) -g(x)1 which is a linear combination of the L 
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functions al(x) can equally be given as a linear combina
tion of L Born terms ff(x). Should some fortuitous 
linear dependence occur between the first L terms f{(x), 
the adjunction of further f;(x) should restore the gen
erality of the solution. 

This could have all been said without working through 
to equations (2.13) and (2.14), but we derived them in 
order to study the A dependence of the coefficients ef(.\) 
of the Born terms in (2.12). When .\ is small, the co
efficients ef(A) obviously have a leading power Al cor
responding to their index "i", and 

fL(X, A) = A[l + O(A)]ff (x) + A2[1 + O(A)1f:f (x) + ••• 

+ AL[1 + O(A)1ff(x). (2.15) 

This reestablishes as expected the hiearchy of impor
tance among the Born terms, and then the weight to be 
granted to each ff (x) is almost equivalent to the cor
responding power in .\. 

However, we wish to stress that when A is large, the 
situation is entirely different. In fact all the coefficients 
ef(A) tend asymptotically to become independent of A, 
and most importantly this is true for any value of Lone 
might have chosen to approximate the original kernel K : 

limet(A) - (-1)I[Ll/(L - i)l 1dL/d~, 
,-~ 

(2.16) 

Hence when A is large, the hiearchy among Born terms 
is abolished since the weights to be attributed to each 
ff(x) are roughly independent of A and of the same order 
of magnitude. The weights ef(A) are in fact complicated 
functions of A which may be unravelled only if we have 
L further Born terms on hand. That this can be done 
through a [L/ L 1 Pade approximant when 2L Born terms 
are available was shown by Chisolm, 5 and then the prob
lem is completely solved in both its "x" and .\ depen
dence. It is important to note, however, that only with 
2L Born terms in a [L/ L] Pade, and solely for a kernel 
of finite rank L, will the subtle cancellations of the "x" 
dependence take place in the denominator of the Pade 
approximant. If these conditions are not all met, stray 
"x" dependence in the Pade denominator will occur in 
contradiction to the Fredholm denominator (2,14). The 
case L = 1 will illustrate this point. Given 

kI(x,x')= a(x);3(x') (2.17) 

and the corresponding formal power series 

F(x, A) - g(x) = .\a(x)(;3,g) + A2 a(x)(;3, a)Ul,K) + ••. 

+ Ana(x)(;3, a)n-1 (j3,g) •• ', (2.18) 

where (;3, a) and (;3,g) are scalar products. 

With two Born terms a Pade approximant [1/11 gives 
the exact answer: 

[ / 1 ( ) - .\f {(x) _ .\ I () (2. 19) 
1 1 II -g x -1 _ V{(x)/ ff(x)-1- .\(j3, a) f1 x . 

Note that the ratio f~(x)/ fUx) just cancels the a(x) 
dependence in this simple case and serves to provide 
the constant term (;3, a), but in general such cancellation 
of x dependence in the denominator does not take place. 
It is also interesting to note that consecutive Born ter ms 
f~+1(X)/ f~(x) would do. In view of this we would rather 
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take the outlook that when A is large the coefficient is 
practically independent of A, and that the correct "x" 
dependence will be given with a single Born term 
(anyone of them in fact): 

fl(X, A) - g(x) = cffi(x). (2.20) 

Let us now return to an idealized finite rank operator 
(which we need never know) and suppose it faithful 
enough to the original k(x,x') so that each of theft(x) 
of (2.12) will be fairly close to the actually available 
Born termsfj(x) of (2.2). Thus 

L 

fL(X, A) -g(x) '" L; ct(A)fj(x). 
j o 1 

(2.21) 

Since our aim is not to approximate fL (x, A) anyway but 
rather j(x, A), we may be bold enough to suppose that the 
substitution ft (x, A) - fj(x, A) goes in the right direction. 
This heuristic line of reasoning leads us to propose the 
following approximant to j(x, A): 

N 

A N (x) - g(x) = 6 af f j (x), 
j 

made out of N available Born terms. 

(2.22) 

This linear combination allows us (0 to bypass the 
difficult problem of the A dependence of the coefficients 
which is less and less relevant as A gets larger, (ii) to 
avoid stray" x" dependence in the denominator. This 
linear combination is surely reasonable whenever the 
generating kernel is well approximated by a kernel of 
finite rank. On the other hand, the coefficients of that 
linear combination will have to be determined in some 
empirical way. This really comes down to management 
of the available information; since Born terms are 
usually very limited in numbers, we are trying to use 
them in a more economical manner. 

3. THE APPROXIMANT 

Consideration of the completely continuous operator 
and its finite rank approximations led us to suggest an 
approximant AN(X) to f(x, A) where the N Born terms, 
available from a formal power series (2.2), are a priori 
on equal footing: 

N 

AN(X)=AN(X) -g(x)= L; affi(x). 
jo1 

(3.1) 

Before we discuss the problem of determining the af, 
there is still a problem lingering: How many Born terms 
are sufficient to make a reasonable approximation of the 
"x" dependence? The criteria will have to come from 
the Born terms themselves since they are the only fully 
known objects we have. Our test will yield differential 
systems whose solutions will be of the type (3.1), but 
at the same time it will indicate how many Born terms 
are needed. 

Given a Born-Neumann series where for convenience 
the A dependence has been deleted in f and j , 

we first divide by one of the Born terms, let us say 
f1(X): 
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j(x)1 f1(X) = A+ A2[j2(X)lf1(X)] + A3[j3(X)1 f1(X) + ' , , 

+ An[jn(x)1 f1 (x)], (3.3) 

If we were dealing with an operator of finite rank L = 1 , 
then the right-hand side of (3.3) would necessarily be a 
constant. Thus, if we were to find these ratios of Born 
terms nearly constant, a reasonable ansatz for an ap
proximant would be 

(3.4) 

If these ratios of Born terms are not constant, we first 
differentiate everywhere and then divide by one of the 
new coefficients of the powers of A so obtained, say 
[j2(x)1 f1 (x)]': 

(if f1)' = A2 + A3 W2U P f3) + A4 W2U1Of4) 
(f2If1)' W2(f1,f2) W2(f1,f2) 

+ An W2Uufn) '" 
W2Uuf2) 

(3.5) 

However, the derivatives of the ratios of Wronskians on 
the rhs are such that 

W2[W2Uuf2) , W2U1Ofn)] 

[W2U1Of2))2 

f1 W3U1Of2,fn) 
[W2Uuf2))2 

(3.6) 

These derivatives would be nil if the generating kernel 
were of finite rank L = 2 since the linear dependence of 
f1Of2'/n then gives a W3U1'/2.Jn)= O. The rhs of (3.5) 
would then be a constant. If the ratios of Wronskians on 
the rhs of (3.5) are nearly constant, a reasonable ap
proximant can be defined through 

(AN
o
2 I f1)' I U/ f1)' = const. 

The solution of this differential system yields 

A N
o
2(X) = aU1(x) + aU2(x). 

(3.7) 

(3.8) 

If the ratios of Wronskians in (3.5) are not constant, a 
new differentiation and division everywhere gives 

[(flfJ'IU/f1)']' = A3 + A4 W3Uuf2.J4) +'" 
[U31 fY IU/ f1)']' W3Uuf2.J3) 

+ AnW3Uuf2.Jn) '" 
W 3 UUf2.J3) 

(3.9) 

The derivatives of the ratios of Wronskians on the rhs 
are 

[
W3U1Of2.Jn)] , _ W2U p f2) , W4Uuf2.J3.Jn) 
W3Ul>f2.J3) - [W3Uuf2.J3)]2 . 

(3.10) 

(see Ref. 6 where the author has given general composi
tion rules for Wronskians of Wronskians). These 
derivatives would be nil for finite rank kernel L = 3 and 
the rhs of (3.9) would then be a constant. Again if these 
ratios of Wronskians in (3.9) are only approximately 
constant, an approximant can be defined through 

(3.11) 

and then 

A3 = aU1 (x) + a~f2(x) + aU3(x). (3.12) 
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Ideally this process of alternate differentiation and 
division can be repeated until one achieves a practical 
constancy for the ratios of Wronskians of order N, 
thereby indicating that a linear combination of N Born 
terms is sufficient. In practice, of course, these tests 
of constancy are limited by the actual number of Born 
terms available. If we are dealing with a completely 
continuous generating operator, it will be ever more 
closely approximated, and so will its Born terms, by 
finite rank kernels of ever higher rank. This should 
manifest itself by an "improved" constancy after each 
repeated process of alternate differentiation and 
division. To the same extent an approximate solution 
will be given by a linear combination of Born terms. We 
have again taken our cue from completely continuous 
operators. It should be obvious however that any formal 
power series, which exhibits a similar tendency 
towards constant ratios of Wronskians of Born terms, 
enables us to define heuristically an approximant of the 
type (3.11). 

One may wonder why we have not written the lhs of 
(3.9) and (3.11) also as ratios of Wronskians which 
they are. The reason is twofold: First, because it is 
easiest to show in the form of ratios of derivatives that 
our test is independent of the parametrization "x" of 
the Born terms, we can take them as ratios of total 
derivatives: secondly, if the Born terms have coincid
ing zeros, as may happen at a threshold, we see that 
the test is still well defined. 

In Sec. 2 we went to some trouble to discredit the 
use of the coupling constant or expansion parameter A 

when it is large, and we have simply used the Born 
terms to construct approximants which are solutions of 
differential equations. We will need extra information 
to fix the constants af of (3. 1). This, as with any dif
ferential equation system, may come from boundary 
conditions or more likely from initial conditions. These 
initial conditions imply full knowledge of the solution at 
one point. In theoretical cases this may happen for 
example in potential theory where some problems are 
completely solvable say for some energy k = 0 but not 
for other values of k. 7 If, for these other values of the 
energy, perturbatives terms are computed by iteration, 
our approximant is immediately applicable. In experi
mental circumstances, determination of the coupling 
constant itself requires knowledge of the solution at one 
point, so that this knowledge could be used directly in
stead to provide initial conditions. With this approach 
one might even completely bypass the notion of coupling 
constant and consider it a mere formal device whenever 
it turns out to be large. 

4. ERROR ANALYSIS 

Ideally, if we know the value of the true solution at 
one point and its derivatives, we can arrange a match 
between the approximant and the solution at that point. 
By posing then AN(XO) =!(xo) , AN,(XO) =j'(xo) , etc., or 
equivalently for AN(XO) =j(xo) , AN,(xo)=!'(xo), etc. , the 
coefficients of 3.1 are given as 

af = :N~~" . '~i-1'~lil+1I ... il) I . 
N 11"" 1_11 II 1+11 ••• , N 

(3.13) 

Xo 

It is well to note at this stage that the proposed ap
proximant is not equivalent to building a kernel of finite 
rank approximation with 

N 

k N(x,x')=6 !1(X){3j(x'), 
j=1 

(3.14) 

of unspecified (3j(x). A rapid glance at the "x" depen
dence of both approximants through the use of N Born 
terms might give this impression. Indeed the two ap
proximants satisfy the same type of differential equa
tions [e. g., Eq. (3.11)] as we have emphasized at the 
beginning of this section. The important feature of a 
Born-Neumann series seemed to us this differential 
equation rather than the A dependence of the coefficients 
Cf(A) as explained in Sec. 2[see Eq. (2.16)]. Having 
made the passage from one approximant to the other via 
the common differential equation, it might be useful to 
examine the difference in the A dependence of their re
spective coefficients. First, a kernel of finite rank ap
proximation would necessitate ad hoc reconstruction of 
the (3j(x) or 2NBorn terms to form an equivalent [N/N] 
Padil, and at any rate the coefficients of the Born terms 
will be tied to a specific form of A dependence, i. e. , 
the Cf(A) of Eq. (2.13). On the other hand our approxi
mant, with the coefficients defined in Eq. (3.13), uses 
implicitly the actual form of A dependence found in the 
"true" solution at the point xO' It does not impose a 
specific A dependence but seeks rather that of the actual 
solution, through knowledge of j(xo), ... ,jlN-l )(xo) , this 
A dependence is in general very different from that of 
kernel of finite rank approximation. 

There is, however, one instance when the two types 
of approximation coincide, that is, if it happens that the 
Born series at hand itself stems from an integral equa
tion with a kernel of finite rank N. Then our N approxi
mant and the true solution satisfy exactly the same 
differential equation as well as having the same initial 
conditions. Our proposed approximant is then exact for 
all x and A. This and other characteristics are studied 
in detail in the error analysis that follows. 

With this choice for the coefficients it is interesting to study the structure of the error at points xof-xo' We define 

EN(X:XO)=j(X) -AN(x:xo)=.f(x) _AN(X:xol. (4.1) 

Thus 

(4.2) 
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and after some manipulations: 
fN(xO) j(xo) 

f~(xo) p(xo) 

This determinental form is convenient to study the error. 

(a) If each term of the last row is developed about point Xo as 

fj(x) = fj(xo) + J;(xo)(x - x o) + ••. + f: Nl (~I)(x - xo)N / N! , 

then multiplying each of the first N rows by the relevant coefficients (x - xo)J / j! before subtracting from the 
last row we obtain 

where 

XO~~l""'~N'~~X 

or equivalently 

f~N-l l (xo) ••• f~N-l'(xo) j<N_ll(Xo) 

fllN l (~1) ••• fJNl(~N) j(NlW 

EN (x;xo) = [W N(fl> ... .fN)x ]-l[ WN+l (fl> ... .fN,j)x (x - xo)N / N! + O(x - xo)N+1]. 
o a 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

That the error should be proportional to a term (x - xo)N comes as no surprise since we chose the coefficients af 
using a fit with the solution and its derivatives through (N -1) at xo' 

Further if our ansatz is justified in approximating the solutionj(x) by a sum of Born terms, it is useful to write 
for the solution j(x) an exact relation: 

N 

j(x)=j(x) -g(x)=6 eJi(x) + r(x) , (4.7) 
1=1 

where r(x) is the x dependence of the solution not reducible to a linear combination of the N Born terms written. 
Note that we do not know the value of the exact coefficients e l surely different from the af. No matter though, since 
our approximant is self-correcting in this respect. Indeed as the determinant in (4.3) shows, the first N columns 
remove any linear dependence in the fl(x) from the last column. Combined with the Taylor expansion as in (4.4) 
this gives 

(4.8) 

This determinant form for the error shows that the approximant has the advantage of a derivative fitting, as 
expected, together with the elimination of whatever forms of "x" dependence that happen to be in the N Born terms. 

There is yet another advantage, normally one can always write a solution in the form: 

_ N 

f(x) = 6 Ai fl(x) + AN+1KN+1j(X). (4.9) 
i=1 

If this expression is substituted in the last column of (4.3) for the solution and its derivatives either at Xo or at x, 
all the terms of the above sum 2:f=l are eliminated and the error can be written as 
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(4.10) 

In other words for A small the error is of the O(AN+l) just as with a Pade approximant using N Born terms. This 
result is welcomed, of course, and it does not jeopardize either of the two error reduction features previously 
described. The Taylor expansion property through row subtraction from the last one still holds as in (4.5). Simi
larly the column combinations described in (4.8) still reduce the terms of the last column linearly dependent in 
their x behavior on the Born terms. This is so because the last column, and the N Born terms all result from the 
application of the same operator K on some function: thus they are linearly dependent in their x behavior to the 
extent that the kernel of K can be approximated by a kernel of finite rank N. 

5. CONCLUSION 

The approximant we have proposed is based on 
considerations of finite rank approximations to com
pletely continuous operators as generators of Born
Neumann series and on the differential equations they 
satisfy. Retaining these differential equations as the 
essential features, we find solutions that appear as 
linear combinations of Born terms. Since the weights of 
the Born terms tend to become independent of the ex
pansion parameter A as it gets large for the kernel of 
finite rank approximations, we have also abolished the 
hierarchy among Born terms, seeking to determine 
those weights phenomenologically. New information, 
often of an empirical nature, will have to be supplied to 
determine the importance of each "perturbative" term. 
This may be the main difficulty in practice, and we have 
discussed in detail coefficients determined by initial 
conditions. 

Among the advantages of the proposed approximant, 
we note: 

(i) It will give the exact solution to a problem of 
finite rank kernel N with only N Born terms, whereas 
the Pade approximant requires 2N. 5 

(ii) Contrary to Pade approximant our proposed ap
proximant will not introduce stray x dependence in the 
denominators and will thus preserve all the analytical 
properties in the variables covered by "x". 

(iii) The linear combination of Born terms preserves 
such an important property as crossing symmetry if one 
is thinking of high energy applications. Its drawbacks 
are 

(i) Required knowledge of the solution and (N - 1) 
derivatives at one point. 

(ii) Unitarity fails in general and has to be examined 
specifically. 

(iii) It cannot obviously predict poles as function of 
A, since A has been excluded from our considerations. 
It could, however, "witness" a pole, through the co-

682 J. Math. Phys., Vol. 17, No.5, May 1976 

efficients determined at xc, if the position of this pole 
in A is completely independent of the value of x. This is 
indeed the situation for Fredholm resolvents whose pole 
positions in A are independent of x. Our approximant 
is thus better suited for approximating functions free of 
poles ariSing through a variable coupling strength. The 
proposed approximant has the characteristics of a best 
fit to the true solution in the following sense. One 
maintains Simultaneously three features since the error 
is 

(a) like that of a Taylor fit at the point xc, that is, 
proportional to (x - xo)N, useful for x close to xc, 

(b) like that of a Pade approximant constructed out of 
N Born terms, that is, of order O(AN+

1
), useful strictly 

speaking for small A only, 

(c) proportional to a determinant which tends to 
vanish in so far as the "x-shapes" present in the N Born 
terms are sufficient to describe by linear combination 
the x dependence of the solution. 

Finally we recall that the weights of the Born terms, 
i. e. , the coefficients af, are obtained independently of 
the choice of parametrization for the x variables since 
the ratios of Wronskians involved are made up of suc
cessive ratios of derivatives. 
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A method is derived for using variational expressions to interpolate among known values of a functional of 
the solution to linear equations. For linear functionals of the solution to an inhomogeneous equation, the 
interpolation expression is exact at N distinct points when N distinct functions are used, each of which is 
the solution of the underlying Euler equation. Two point variational interpolation is derived to interpolate 
on the value of an eigenvalue using the Rayleigh quotient. Illustrative examples are given based on neutron 
transport studies of fusion reactor blanket systems and applications to sensitivity and optimization studies 
in reactor theory are discussed. 

I. INTRODUCTION 

Variational theory has been widely used in mathemati
cal physics to evaluate functionals or to derive approxi
mate theories. In the former application, the motivation 
for using variational techniques is the fact that errors 
are second order with respect to inaccuracies in trial 
functions. An additional motivation is that one is often 
actually interested in a functional of the solution to an 
equation describing a physical system, rather than in 
the solution itself. Examples are the evaluation of 
transport coefficients for gases and plasmas and the 
evaluation of various scalar products of the neutron or 
gamma flux in fission and fusion reactor neutronics 
studies. In general, it is of interest to estimate inner 
products of the form 

(Sf, cf», 

where cf> satisfies a linear inhomogeneous equation 

Lcf>=S. 

The adjoint equation is 

Lt cf>t = st. 

(1 ) 

(2) 

(3) 

In neutron transport theory, L is the Boltzmann trans
port operator, 1 and S is a source. 

Two widely used variational principles to estimate 
linear functionals of the solution to an inhomogeneous 
equation are the Schwinger 2 and Roussopoulos3 varia
tional principles. Both these principles have been gen
eralized by Pomraning4 to provide an estimate of an 
arbitrary functional, rather than just a linear one. 
Several recent papers have also treated the problem of 
estimating changes in a functional of interest5

,6 using 
variational forms accurate to second order in the 
change. 7 

In this paper, a method for using variational expres
sions to interpolate among known values of a given func
tion is derived. The linear operator, L (CI'), is assumed 
to depend in some known way on a set of parameters, 
Ct. To estimate the effect of changes in CI' on the func
tional of interest, e. g., (st, cf», the standard procedure 
has been to let O! = a1 be defined as a reference system 
and to use L(0!1) and Lt(0!1) to determine solutions cf>1 
and cf>1. Then cf>1 and cf>1 are used as trial functions in 
either the Schwinger or Roussopoulos functionals to 
assess the effect of changing 0' on the response func-
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tional of interest. Often, the perturbation introduced 
is large and/ or more than one reference system is ap
propriate. In such cases, the method of variational in
terpolation to be described here can be used to inter
polate among several reference values. For linear 
functionals, an expression is derived which is exact at 
an arbitrary number of reference points and which can 
be used to interpolate among them. Two point varia
tional interpolation is derived to interpolate on the value 
of an eigenvalue using the Rayleigh quotient. Some il
lustrative numerical examples are given based on 
neutron transport studies of fusion reactor blanket sys
tems which have recently become of greatly increased 
interest. 8 

II. THEORY OF VARIATIONAL INTERPOLATION 

A. Linear functionals and inhomogeneous equations 

The simpliest illustration of the basic idea is to con
sider two point variational interpolation for linear func
tionals of the solution to a linear inhomogeneous equa
tion. Letting (st, cf» be the linear functional of interest, 
the Roussopoulos functional, 

IR[cf>\cf>;a]=(st(CI'),cf»+ (cf>t,S(CI') -L(CI')cf» (4) 

is stationary about the exact value of (st (CI'), cf» with 
Euler equations 

L(CI')cf> = S(CI') , 

Lt(CI')cf>t = st(CI'). 

(5) 

(6) 

As noted, CI' represents parameters in the operator L 
(for example, cross sections or densities when L is the 
Boltzmann transport operator) and Sand st may depend 
on CI'. Let us now characterize two reference systems 
by the parameters 0!1 and Cl'2' To estimate (st(CI'), cf» at 
a point CI' not the same as Cl'l or Cl'2' we chose trial func
tions cf>1 and cf>~ which satisfy, respectively, 

L(a1)cf>1 =S(0'1)' 

Lt (0'2)cf>1=st(0'2). 

(7) 

(8) 

The simpliest form of the method of variational inter
polation follows from noting that the functional 

IR[ cf>L cf>1; CI'] = (st(CI'), cf>1) + (cf>L S(CI') - L(0')cf>1) (9) 

is exact at both reference points. Clearly, for a = au 
the operator L is L(0'1) and the source is S(0!1). 
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Thus, the second term in Eq. (9) is zero and IR[¢L¢I; 
()II] is exact. For a system with a= a 2 , where L =L(a2), 
S=S(az), and st = St(()I2) , we use 

(¢LL(a2)¢I)= (St(a2 ), ¢I)' (10) 

from which it follows that IR[¢L 4\;0'2] is also exact. 
Thus, the functional IR[¢L ¢I;a] can be used to inter
polate in a and thus estimate other values of the basic 
functional. 

The Schwinger functional, 

Is[¢t, ¢, a]= (St(a), ¢)(¢t ,S(a»)/(¢t ,L(a)¢) (11) 

is also exact at a = ()II and a = a2 when ¢ = ¢I and ¢ t 
= ¢~ are used as input functions. The proof is equally 
straightforward. At a = au use Eq. (7) to show that 
Is[ ¢1, ¢I; al] = (St(al ), ¢I). At a = a2 , again use Eq. (10) 
to find Is[¢L ¢1;a2]= (¢tS(a2», which, of course, is 
equal to (St(a2), ¢2)' Thus, the Schwinger functional can 
equally well be employed to interpolate in a and it can 
have advantages over the Roussopoulos functional, as 
has been discussed recently. 9 We will expand on this 
shortly. 

A three point interpolation formula can readily be de
rived, and it suggests the procedure to follow in con
structing a general proof. Consider three reference 
systems, au a 2 , and a 3 , and the trial functions 

¢T(a)= ¢I + a(a)(¢z - ¢l)' 

¢i(a)=IJ(a)¢1, 

(12) 

(13) 

where ¢I> ¢2' and ¢~ are solutions to the appropriate 
equations for the subscripted reference points. Insert 
¢T(a) and ¢~(a) into IR(¢~' ¢T;a) and solve the equa
tions oIR/3a= 0, aIR/ab= O. This yields 

a(a)= (¢LS(a) -L(a)¢I)/(¢~,L(a)(¢2 - ¢I»' (14) 

lJ(ex) = (St(a), ¢2 - ¢1)/(¢LL(a)(¢2 - ¢l»). (15) 

Using these expressions in ¢T and ¢~ gives the 
functional 

I 3 [ ¢~, ¢T ;a] = (St(a), ¢I) 

+ (¢LS(a) - L(O')¢J(St(a), ¢2 - ¢I)/ 

(¢LL(a)(¢2 - ¢rl), 

which is exact when a equals au a2, or a 3. 

(16) 

A general proof can be constructed for N forward 
trial functions and N - 1, N, or N + 1 distinct adjoint 
trial functions (or N adjoint functions and N - 1, N, or 
N + 1 distinct forward functions. ) The proof for 2N dis
tinct reference systems proceeds as follows. Let 

N 

¢T(a)=¢1+6 aj(a)(¢j-¢I) 
i;2 

and 
2N 

¢~(C'I)= ¢~+I + 0 IJ/a)(¢i - ¢1+1)' 
j=N+2 

where the ¢i satisfy 

L(al)¢1 = S(aj) 

and the ¢ 1 satisfy 

Lt(aj)¢~ = st(aj)' 
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(17) 

(18) 

(19) 

(20) 

All a j are distinct and the indices can clearly be arbi
trarily assigned. Inserting Eqs. (17) and (18) into 
IR[¢~' ¢T;a] and carrying out a Rayleigh-Ritz proce
dure, (iJIR/aal=O,iJIR/iJlJl=O), the following set of 
coupled algebraic equations are obtained: 

for the coefficients alia), 

a2(O')((¢1- ¢1+1),L(aJ(¢z - ¢I» 

+ a3(a)((¢~ - ¢~+I),L(a)(¢3 - ¢I») + ••• 

+ aN(a)(¢~ - ¢~+I),L(a)(¢N - ¢J) 

= «(¢~ - ¢1+1)' Sea) - L(a)¢l), 

i=N+2,N+3, . .. ,2N; 

for the coefficients bj(a), 

IJN+2(Lt(0!)(¢L2 - ¢~+rl, (¢i - ¢I» 

+bN+3(Lt(a)(¢1+3 - ¢1+1)' (¢I - ¢l»+'" 

+ b2N(Lt(a)(¢~N - ¢~+I)' (¢I - ¢I» 

= (St(a) - Lt(a)¢~+u (¢I - ¢I)), 

i=2,3, ... ,N. 

(21) 

(22) 

The functional 12N[¢L ¢T;a] is formed by using Eqs. 
(17) and (18) as trial functions with coefficients {al(a)} 
and {bj(a)} determined by solVing Eqs. (21) and (22). 
Proving that 12A ¢ i, ¢ T; a] is exact whenever a = a I' i 
= 1,2, ... , 2N, is equivalent to proving that, at a = a p' 

one of the trial functions equals the exact solution, 
i. e., either ¢T= ¢p or ¢~= ¢;. 

For a= a l the right-hand side of Eq. (21) vanishes. 
Since the coefficients are linearly independent (the a j 

are distinct), it follows that al(al)=O for i=2,3, ... , 
N. Thus, ¢T(a l )= ¢I and 12N[¢~' ¢T;a1 ] is exact. For 
a"" a.* au rewrite the right-hand side of Eq. (21) as 

«<Pi - ¢~+l),S(ak) - L(ak)¢I) = «¢i - ¢~'l!L(ak)(¢h - ¢I»). 

(23) 
Then the coupled algebraic equations become 

a2«¢1- ¢~'I),L(a')(¢2 - ¢I»+'" 

+ (a. -1)«(¢i - ¢1.1),L(a.)(¢. - ¢I») +'" 

+ aN«¢I - ¢1+1),L(a.)(¢N - ¢1»= O. (24) 

In this form, we see that the linear independence of the 
inner product coefficients again implies 

a2 =a3 =···=a k -l=···=aN=0. (25) 

Thus, a j = OJ., ¢T(ak )"" ¢h' and this guarantees that 
12N[¢~'¢T;a.J is exact for any k=2,3, . .. ,N. There
fore, we have proven that 12N[¢i, ¢T;a] is exact when
ever a= ()Iu a 2 , ••• , aN' 

Similar arguments applied to Eq. (22) prove that for 
()I = a., k=N+1, N+2, ... ,2N, 12N[¢~'¢T;ak] is also 
exact. Thus, 12A¢L ¢T;a] involves 2N distinct trial 
functions and takes on the exact value for the corre
sponding 2N distinct reference systems. This functional 
can therefore be used to interpolate in <l' among these 
exact values and constitutes a multipoint variational in
terpolation. A proof for N reference ¢ functions and N 
- 1 or N + 1 distinct reference adjoint functions can be 
carried through following the same procedure. 
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The form of the error term in variational interpolation 
can be illustrated by examining the two point formula. 
Again consider the linear functional, R(O!) = (St(a), ¢), 
of the solution of a linear inhomogeneous equation. 
When an altered st = S~ and an altered ¢ = ¢T are used, 
the first order change relative to the reference point in 
R is given by 

(26) 

where I5St = S~ - st and 15¢ = ¢T - ¢. This expression is 
the sum of an error term due to the perturbation itself, 
which changes st, and the error induced because the 
perturbation in turn effects the solution. The change, 
I5R, can be rewritten using LI5¢= -I5L¢ + as, where the 
operator LT has been written as L + I5L and ST as S + as. 
I5R becomes 

I5R = (l5st, ¢) + (¢t, as) _ (¢t, I5L¢). (27) 

Assume as, I5St , and I5L depend linearly on the change 
in a parameter a so that 

as = sa CIi , (28a) 

I5St = st 150!, (28b) 

and 

6L =HI5C1i. (29) 

Then the derivative of R with respect to O! at the ref
erence value a 1 is 

~~ I =(st,¢J+(¢I.s)-(¢r.H¢l)' 

"'1 

(30) 

It is easily shown that both the Roussopoulos functional, 
Eq. (4), and the Schwinger functional, Eq. (11), 
preserve the exact slope at CIi = Cli1 if trial functions ¢1 
and ¢I are used. 

In the method of variational interpolation, the trial 
functions are taken at distinct reference pOints, for 
example, ¢1 at CIi = 0!1 and ¢~ at O! = a2 • The slope of the 
functional does not, however, preserve the exact slope 
at either Cli 1 or Q!2' Indeed, for two point interpolation 
where the changes depend linearly on a, the Rous
sopoulos form, Eq. (9) yields a straight line interpola
tion between (St(a1), ¢1) and (St(a2), ¢2). The difference 
between the slope using Eq. (9) and the exact slope is 
(15¢11' H¢l-S), where 15¢11=¢~-¢I. 

Variational interpolation using the Schwinger function
al comes closer to preserving the slope. By using Eq. 
(11) with ¢1 and ¢~ as input functions, the approximate 
slope is 

~I -( t A-.) (st(O!l)'¢l) [( t ) (A-.t )] 
oa - s ,'1-'1 - (A-.f S) ¢2,H¢1 - 'l-'2'S . 

0:1 '+'2' 

(31) 

Let ll.(oR/oCli) be the difference in slope from the exact 
value. One then finds that 

ll. (~~) = ( (15¢~1 - (~:!~s~) ¢r), (H¢l - s)), (32) 

neglecting second order terms. Compared with (15¢~u 
H¢l-S), we see now the additional term [(I5¢~l'S)/ 
(¢I. s)]¢I in the inner product on the right-hand side of 
Eq. (32). This term is independent of the amplitude of 
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¢r but does depend on the difference 15¢11' This added 
term attempts to correct for first order differences 
in the adjoint functions. This, if the shape of the ad
joint function tends to be preserved, the slope will tend 
to be preserved to second order. Further, interpolation 
between 0'1 and Cli2 based on Eq. (11) will not be linear 
in a. This is an important distinction between the 
Roussopoulos and Schwinger functionals which will be 
clearly illustrated in the numerical examples. For 
higher order interpolation, the method used to derive 
the combining coefficients, {a j } and {b j }, is the same as 
that applied to derive the Schwinger principle from the 
Roussopoulos functional. 10 The interpolation will there
fore be nonlinear and should have the same renormal
ized character as the Schwinger principle. 9 Moreover, 
if one chooses ¢j and ¢~ at the same reference point in 
Eqs. (17) and (18), i. e. , 

N 

¢T(CIi) = ¢1 + 6 a/a)(¢i - ¢1), (17) 
j=2 

(18') 

the general procedure is equivalent to the variational 
synthesis method discussed by Kaplan. 11 

Now consider the exact form of the error term in two 
point variational interpolation when ¢1 and ¢I, evaluated 
at 0' = Cli1 , are used as trial functions in the Roussopoulos 
principle, Eq. (4), to estimate (St(a), ¢), (,1't. a1 • The 
error is 

(33) 

Here, I5S=S - Su 15¢1 = ¢ - ¢u l5¢r = ¢t - ¢r. and ¢ and 
¢t are the exact solutions in system 01. When ¢1 and 
¢~ are used in the variational interpolation method, the 
error is 

(34) 

[This is another way of proving Eq. (9) is exact at a 
= Cli 1 and O!= 0!2'] By comparing Eqs. (33) and (34), it 
becomes clear that variational interpolation relies on 
cancellation of error for Q! between a 1 and 0!2' That is, 
e. g., as a approaches 0!1 from 0!2' 15¢1 is increasing 
while 15¢1 and as are tending to zero. Thus, one should 
not expect great accuracy if CIi does not lie between the 
two reference parameters. Similar error terms can be 
derived for higher order interpolation formulas, and 
they all show the same basic characteristic of cancel
lation of error. 

B. Two point variational interpolation and homogeneous 
equations 

The Rayleigh quotient4 is a homogeneous functional 
which is widely used to estimate eigenvalues. Be-
cause an eigenvalue equation is homogeneous, only 
homogeneous functional can be of interest. As such, 
these functionals are nonlinear and we have not suc
ceeded in constructing N point variational interpolation 
procedures in this case. Indeed, because the functionals 
of interest here are nonlinear, it may not be possible to 
do so. It is possible, however, to construct the sim
pliest case, two point variational interpolation, and this 
can sometimes be useful. For example, it is often of 
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interest to determine the sensitivity of an energy level 
to the interaction potential in quantum mechanics. If 
the potential is characterized by one or more param
eters which can vary over a specified range, interpola
tion can be used to determine the change in the eigen
value as the parameters change. 

Consider, therefore, the general eigenvalue equation 

L(et)<P j = AjF(a)<p j 

and the adjoint equation 

Lt(a)<Pi = Ajpt(a)<pi. 

(35) 

(36) 

It is assumed that L(a) and F(a) are real, though not 
necessarily self-adjoint, and that the eigenvalues Aj 
are discrete and nondegenerate. <P j and <P 1 are biorthog
onal with respect to F(a), i. e. , 

(37) 

A variational expression for the kth eigenvalue is the 
Rayleigh quotient 

(38) 

Consider two systems characterized by a l and a2 • Or
dinarily, one evaluates the effect of changes in a from, 
e. g., a l by using <P1K and <PiK as trial functions. These 
functions are solutions of 

(39) 

and 

(40) 

respectively. With these trial functions, one proceeds 
to use L(a) and F(a) to evaluate the Rayleigh quotient. 

The expression for Ex[<piK' <p1K;a] can be written as 

EJ <PiK' <P1K ; a] 

_ A ( ) (1 (6<Ph,L(a)6<P 1Kl - (6<PIK' F(a)6<P1K)) 
- K a + (<PiK' F(a)<P1K) , 

(41) 

where 6<P1K = <P K - <P 1K , 6<p~ = <pi - <pIK' and higher order 
terms have been neglected. 

Now consider choosing <P1K and <P1K as trial functions, 
where <P1K satisfies Eq, (39) and <P~K satisfies 

Lt(a2)<p~K= AK(a2)Ft(a2)<p~K' (42) 

The functional 

Ex[ <P1K' <P1K; a] = (<P~K' L (a )<P1K)/ (<P1K' F(a )<P1K) (43) 

is exact when a equals either a1 or a2 and can there
fore be used to interpolate for AK(a) when a differs from 
from a l or a 2 • Further, this functional can be 
expressed, using 6<P~K= <pi - <P~K> as 

EJ<P~K' <plK;a] 

( ) (1 (6<Ph,L(a)6<P1K) - (6<P~K' F(a)6<P1Kl) , 
= AK a + (<PtK' F(a)<P

lK
) 

(44) 

neglecting higher order ter ms. The cancellation of er
ror characteristic is again clear on examination of the 
interpolation formula. As a approaches au 6<P~K re
mains finite as 6<P1K tends to zero while the reverse is 

686 J. Math. Phys., Vol. 17, No.5, May 1976 

true as a tends to a2 • This is analogous to the result 
found previously for linear functionals of the solution 
to an inhomogeneous equation. 

III. ILLUSTRATIVE NUMERICAL APPLICATION 
To illustrate the application of variational interpola

tion, we have examined a relevant problem of current 
interest in the neutron transport analysis of conceptual 
fusion reactor blanket systems. A quantity of primary 
interest for a reactor based on fusions of deuterium and 
tritium is the tritium breeding ratio, i. e. , the number 
of tritons produced in the blanket per triton consumed. 
The sample blanket is shown in Fig. 1. Tritium is pro
duced by neutron reactions in lithium, particularly the 
6Li(n, a)t and 7Li(n, n' a)t reactions. We study here the 
breeding ratio from reactions in 6Li, labeled T6, from 
7Li, labeled T 7' and the total breeding ratio, labeled 
BR. T6, T7, and BR are defined as 

and 

T6 = (L 6 (n, a), <pl, 

T7= (L 7 (n, n'a), <pl, 

BR= [(L 6 (n, a) + L 7 (n, n' a)), <p]. 

<P is normalized to one incident 14.1 MeV neutron, and 
L 6(n, a!l and L 7(n, n' a) are the macroscopic, energy and 
space dependent cross sections for the two pertinent 
nuclear reactions. This, for T6 , st = L 6 (n, a) while for 
BR, st = L 6 (n, a) + L/n, n' a). 

The numerical evaluation of the inner products re
quired for variational interpolation were carried out 
using the program SWANLAKE, 12 developed to apply 
conventional variational procedures. The computational 
method to solve the neutron transport equation in multi
group form and the nuclear data employed are the same 
as described previously. 8 

The illustrative examples are based on asking the 
question, "How does the breeding ratio change as a 
function of the percentage of structural material in the 
tritium breeding zones?" [Zones (2) and (4).] 

We have chosen 5% structure as reference system a l 

and 25% structure as reference system a 2 • Two point 
variational interpolation is used in the analysis. <Pl and 
<pI have also been used as trial functions in Eqs. (4) and 
(11) to provide a comparison with the more convention
al application of variational techniques. The parameters 
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FIG. 1. Schematic of a fusion reactor blanket. 
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FIG. 2. Variation of T7 with the amount of structure in the 
breeding zones (zones 2 and 4 of Fig. 1.) 

Ci used in the theory are the appropriate atomic densi
ties of the materials in zones (2) and (4). 

Figure 2 shows T7 as a function of the percent struc
ture based on several calculational procedures. The 
open circles are taken as exact from direct numerical 
calculation. Zeroth order perturbation theory is simply 
the evaluation of (L;" 1>1)' where L;7 changes as the per
centage of lithium changes in the breeding zones. The 
value of T 7 is preserved at the reference point but not 
the slope. Two point variational interpolation based on 
the Roussopoulos functional also does not preserve 
slope but gives correct values at the two reference 
points. The Roussopoulos functional using 1>1 and 1>1 as 
the trial functions preserves both the value of T 7 and the 
slope at reference point at but is quite inaccurate at 
a = a 2 • Finally, two point variational interpolation 
based on the Schwinger functional, Eq. (11), is exact 
when Ci equals Cit or a 2 and yields a nonlinear interpola
tion that is quite close to the exact values for a between 
Ci 1 and Ci 2 ' 

As a second example, the change in BR, T 6' and T 7 
as a function of the fraction of 6Li making up the lithium 
in zones (2) and (4) has been evaluated. (Natural lithium 
is 7.42% 6Li and 92.58% 7Li. ) Two point interpolation 
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has been used with a 1 at 7.42% 6Li and a 2 at 30% 6Li. 
The results are given in Fig. 3 with the open circles 
indicating exact values. Again, formula (11) yields a 
nonlinear interpolation between the reference values. 
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Scattering of scalar waves from a Schwarzschild black hole 
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The scattering of scalar waves from a Schwarzschild black hole is investigated for wavelengths much less 
than the gravitational radius (r,). Explicit expressions for scattering parameters are obtained for two cases: 
high angular momenta and low angular momenta. In the first case we obtain the phase shifts and 
absorption coefficient with the JWKB method. The elastic differential cross section and the total absorption 
cross section are also calculated. For low angular momenta we present a method based in the DWBA 
(distorted wave Born approximation). With this method, the phase shifts and the absorption coefficients are 
obtained. 

I. INTRODUCTION 

The scattering and absorption of scalar waves by a 
Schwarzschild field is investigated here. This subject 
has been previously considered by several authors, 1.2 

but exact expressions for the phase shifts and for the 
cross sections has not been found. 

In this scattering problem, the choice of the boundary 
conditions needs special attention. Every solution of 
the radial wave equation remains bounded on the 
Schwarzschild radius r., and consequently every solu
tion is "physically acceptable. ,,2 This property, due to 
the presence of the singular attractive term propertional 
to - (y - rs)"2 in the effective potential, is intimately 
connected with the wave capture by the black hole. 

The physical solution of the wave equation must be 
selected in order to have purely ingoing waves on the 
horizon r=ys' 1 

In this paper we study the scattering problem for 
waves of short wavelength. That is, wavelength much 
less than the Schwarzschild radius rs' 

We find approximate expressions for the phase shifts, 
the absorption coefficient, the elastic and the capture 
cross sections for two cases: 

(a) High angular momenta (l» krs) and low angular 
momenta (l« hrs )' In the first case, we find the phase 
shifts by the JWKB approximation in a partial wave 
analysis. They are expressed in an expansion in powers 
of (rib), where the impact parameter b=(l+1/2)/k is 
large, in this case b» r s' 

With these phase shifts and by means of the eikonal 
formalism, an expression for the differential cross 
section, valid for small angles, is obtained. For b-rs , 

the absorption coefficient for the lth partial wave is 
calculated. With this partial wave absorption coefficient, 
the total capture cross section is obtained in Sec. III. 

In all of our results one recovers the geometrical 
optics expressions in the limit krs - 00. 

For the case l «l?rs , we exhibit a method to calculate 
scattering parameters, based on a modification of the 
DWBA (Distorted Wave Born Approximation). In this 
approximation we find the phase shifts and the partial 
wave absorption coefficients. Here, the choice of the 
boundary conditions is discussed in Sec. IV. 

By using the Schwarzschild metric, we have of course 
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neglected any small gravitational field which the scalar 
wave itself might produce. 

II. GENERAL CONSIDERATIONS 

In flat space-time the metric tensor in spherical co
ordinates is 

guv=diag[l, -1, _r2, -r2 sin2-&], 

and the scalar wave equation 

o \.(f=gUV \.(f;I-'v=O, 

is separable. 

In Schwarzschild space-time, the metric tensor is 

guv=diag[(l- ~s), -(1- ~sr, _r2, -r2 sin2B], 
where rs is related to the mass M by the relation rs 
= 2M, and the equation which determinates the scattering 
is a generalization of the flat space-wave equation. 

If 

\.(f=R(r)y(B, ¢)exp(-iwt), 

then Y(B, ¢) is a spherical harmonic, and we have for 
R (r), the radial wave equation 

2 d2R dR 
r(r - rs) p + (r - rJ(2r - rs) dr 

+ [h 2r 3 -l(l + l)(r - rs)}R = O. 

where k=w. 

(1) 

We use now a new coordinate (the Regge-Wheeler co
ordinate r*) 

r* =r +rs In(;s -1), 
so that as 

r-+oO(rs), r*-(+oO)(_oO). 

In terms of r*, the radial part of the wave equation 
reads 

dr*2 + h2-l(l+1)/r2+rs/r3 
d

2
R { 

x [rs/r +l(l + 1) -1] }R(r*) =0. (2) 

Equation (2) is similar to the one-dimensional Schrodin
ger equation with independent variable r*. This equation 
has an effective potential 
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Ver(r*) = (1 - ~s )( -;r + l(lrt I)) , 
with r considered as a function of r* . 

Part of this effective potential [liZ + 1)/r2], is the 
"centrifugal barrier," and part [rs/r], is due to the 
curvature of space-time. 

(3) 

This scalar wave potential is positive for all r> 2M. 
It rises from 0 at r = 2M to a barrier summit, then, 
falls back to 0 at r = 00. 

We can also write Eq. (1) in the SChrodinger form, 
by means of the substitution 

R(r) = ,B(r) . g(r), 

with 

J3(r) = k-1/vr(r - rs). 

We obtain for girl, 

d
2
g [2 ()] dr'l + k - Vr g=O, 

where 

l(l + 1) r; 
+ r 2(1-r/r) - 4r4(I_r/r)2 

(4) 

(5) 

The function Vir) can be interpreted also as an effective 
potential. As we have pointed out in Sec. I, its singular 
behavior near the horizon 

V(r)=- ( y )2 +0(_1_), 
r-rs r-rs 

where y = k 2r; + t, is responsible of the capture of waves 
by the black hole. Due to the fact that y>i, the ab
sorption will be present at all energies. 3 

III. HIGH ANGULAR MOMENTA-JWKB 
APPROXIMATION 

For large values of l, waves of short wavelength 
(krs » 1) can be analyzed to good approximation by the 
quasiclassical method. Hence, the phase of the radial 
wave function R(r*) (Eq. 2), is given by the well-known 
JWKB expression, 

r* 
J* [l,'2- Ver(r*)]1I2 dr*+1T/4, (6) 
r 0 

where ro is the classical turning point. This expression 
is not valid if ro approaches the maximum of the po
tential of Eq. (3).4 That is, formula (6) holds for 
(l+t)=kb»krs' 

Due to the slow decrease of the effective potential, 
the wave is distorted even at large distances by the 
presence of a logarithmic term in the phase. This term 
is entirely produced by the Coulomb tail of the effective 
potential. The radial wave function can be written as 

R z (r) - (l/r) sin[l?r 

+krs IOgVr+O z(k)-Z1T/2 J+O(?) , (7) 

where v is a constant with inverse length dimensions. 
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We follow Matzner convention 1 in order to fix oz(k) 
unambiguously, that is, we take v=2k. Then, with the 
substitution 

dr* =dr(l- r./rt1
, (8) 

we get from Eqs. (6) and (7), 

Oz(k)=IT~~[fr([k2-Ver(r)]1/2 l-(~/r) -k) 
TO 

xdr+trr(l+i)-kro-krs In2krl (9) 

This JWKB phase shift can be expressed in terms of 
a combination of complete and uncomplete elliptic in
tegrals of first, second and third kinds. Due to the com
plex form of this expression we will proceed to calculate 
ol(k) in an approximate form. 

For large impact parameters, as the gravitational 
field acting on the wave is weak, we will expand ol(k) in 
powers of rs/b. By integration, one obtains, from Eq. 
(9), 

0z(k)=-krs In(Z+i)- k;s [1+ (I~W] 
1 (krs)3/2 151T (kr)2 (1) 3/2 

+"3 (l +1)1/2 + F (l+'1) +0 l +1 (10) 

The JWKB phase shift is connected with the classical 
function e(l) of the same angular momenta by 3 

( ) d JWKB e l = 2 dl 0z • 

Then 

) 4M M 2 
e(b=-6+~;\ 

_ .!(rs)3/2 _ ~ 1T(rs)2 
3 b 16 b . 

The second term depends upon the energy of incident 
plane wave. The short wavelength limit gives Einstein 
deflection, e=- 4M/b, for large impact parameters. 

Making use of the eikonal approximation, 5 we can find 
the scattering amplitude f(O) , for small angles, as 

f (0* 0) = - ik r db b Jo(kbO) exp[2iof WKB (k, b)] 
o 

Using the 6fwKB
, [Eq. (10)] to order kr" we find 

f(O * 0) = :k exp {(ikrs ) [(210ge/2 - 1) 

- 2 arg r(ikrs)] [ 1 + ~ (ikrs)]}. 

The differential cross section is 

du 16M2 ;\2 

dn = er- + 161T2 • (11) 

This expression gives the Rutherford law for small 
angle scattering cross section more wavelength-de
pendent correction. 

All results up to here are valid for b» rs and small 
deflection angles. For b ~rS1 the wave absorption pro
cess is important and must be taken into account. Now, 
we will calculate the partial wave absorption coefficient. 
We can find in a simple calculation the JWKB absorption 
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coefficient for waves with impact parameter such that 
k 2 is near the top of the effective potential. One sees 
from expression (3) that the maximum of Vef occurs at 

rm~=trs [1- q(l~WJ +O[(l+~/2)4]' 
For r sufficiently close to r m~.l" we can write 

k2 
- V ef '" k 2 

- Vef(r mkt) - iHo(r - r mkt)2, 

where 

and 

H _ (~)6 7 [ JL 1.)21 [ 1 ] 
0- 3 9r! 1 - 14 (l + 2 + ° (l + 1/2)2 

The quasiclassical approximation yields the following 
expression for the absorption coefficient 3 

DrB = 1/(1 + exp(- 21TE)) , 

where 

We obtain 

+O(l+1
1/W] . (12) 

The total capture cross section is given by 

(13) 

For large values of kr50 the partial wave series can be 
approximated by an integral because the main con
tribution comes from the higher angular momenta. Cor
respondingly, we see from Eq. (13) that the capture 
cross section is 

(14) 

If we take for the absorption coefficient the JWKB ex
pression given by Eq. (12), the integral in Eq. (14) can 
be solved exactly. 6 One obtains 

;U 2 ,2 /24 a CaIlt = 4 1T r s + "- / 1T , 

in agreement with the geometrical optical result for 
krs - 00.

7 The absorption cross section is increased by 
the X-dependent corrections, because the waves can 
"tunnel" through the potential barrier. 

IV. SCATTERING FOR LOW ANGULAR MOMENTA 

We will study now the radial wave equation (4) for the 
low l case, l« krs' As we are interested in the short 
wavelength solutions, this case corresponds to b« rs' 
In this case, the capture coefficient is expected to be 
large. 

When r - r50 we see by expression (5), that 

v(r)--(k2+~) (l-!slr)2 +O(r~rJ' 
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For b« r., the wave "will see" mainly this internal 
part of the potential. By this reason, we consider as the 
approximate potential 

2 },2+1/4r; 1 [ 2] 
Vo(r) = - k - (1 _ rslr)2 + 4rI 1 + (r/r

s
) _ 1 . 

This expression taken for Vo(r) reproduces the behavior 
of the exact potential for r - r s and also gives the cor
rect behavior for r- 00. 

The radial wave equation (4) for the potential Vo can 
be solved exactly, and the effective interaction V(r)
Vo(r) will be treated as a perturbation. This approxi
mation is expected to be good for 

l« h rs» 1. 

Introducing the variable 

z =r.'rs - 1, 

we solve for the potential V o, 

d2~O [h
2
r;+1/4 2 k

2
r; k 22] ()-O 

d + 2 + + rs go z - , z z z 
(15) 

which corresponds to a purely attractive potential. 

The linearly independent solutions of the radial Eq. 
(15) can be written as 

g&-)(z) = rz exp[ - ikrs(z + logz)] 

XF(t 1- 2ikr., 2ikrsZ) 

g~+)(z)=v'Z exp[ikrs(z +logz)] 

X>l'(t 1 +2ikr., - 2 ikrsZ) , 

(16) 

(17) 

where F and >l' are the confluent hypergeometric func
tions of the first and second kinds, respectively. 8 

Both solutions are well-behaved at z = 0 (r =rs )' This 
is so, because the effective potential is singular and 
attractive at z = O. This means that from the point of 
view of regularity, both functions are physically ac
ceptable. Nevertheless, the function g6-) corresponds to 
waves going into the black hole, while g~+) describes 
outgoing waves at the Schwarzschild radius. By this 
reason, we choose g6-) 1 as the physical solution. We 
are interested in the asymptotic behavior for z - 00. 

Making use of the asymptotic development of (16) for 
large z ,8 we obtain 

g~-)(r)r_~ = exp[i(krs + 1T/411 exp[(ikrs -~) 

with 

r(1- 2ikrs) {I 
Xlog2krs] (-I)/r«1/2) _ 2i1?rs) " (-1) 

x exp[ - i(kr + l?r s log21?r)] 

- exp[2iolO)] exp[i(kr + I?rs lOg2hr)1}, 

exp(2iol O») = (_ 1)1+1 exp[i(o¢ - 2krs - 1T/2)] 
,,1(1/2)(1 + exp(41Tkr.)) 

where 

o¢ = argr(i - 2ikrs)' 

Finally, 
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(18) 

(0) 11 /1+eXP(4'ITkrs») 
Imo, =4: og\ 2 . (19) 

We see that the partial amplitude exp(2iolO» results 
in a complex quantity whose modulus is less than unity. 
The physical meaning is the presence of capture pro
cesses. The fraction of the wave that is captured is 
given by the partial wave absorption coefficient 

plO) = 1- 1 exp(2iolO) 12. 

From (19), 

p(O)_ 1- exp(- 41fkrs) . 
I - 1 + exp(- 41fkrs) 

For krs» 1, 

plO) = 1- 2 exp(- 41fkrs)' 

The absorption coefficient increases with krs ' this is 
with the energy, as expected. 

In order to improve the previous results for o,(k) and 
P,(k), we will consider the perturbation Vo - V. The 
exact radial equation (4) can be written in the form 

(20) 

with 

VI (z) = z (z : 1)r; [(1 + W + 4(z ~ 1) ] 

The Green's function corresponding to Eq. (20), which 
satisfies 

If +k2r;-r;vo(z)] Go(z,z')=o(z -z'), 

is given by 

Go(z ,z') =([ g~-) (z <). g~+) (z », 

with g~-) and g~+) given by (16) and (17), and where the 
constant ([ is equal to 

([=r(i- 2ikrs)/r(l- 2ikrs)' 

Then the differential equation (20) with the chosen 
boundary conditions is equivalent to the following 
integral equation, 

g(z) = g~-)(z) + rs2 r Go(z ,z') VI (z' )g(z') dz'. 
o 

We now make the first approximation of the Neuman
Liouville series (DWBA) and, for large distances, we 
obtain 

We obtain (see Appendix) 

.n: = f'(1 - 2ikrs)(2krs)2ikTS exp(- 1fkrs)· [ i exp(i1f/2) 

+(l+WeXp(i1f/4)(k~sr/2 +0(k!.)3/2 J 
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(21) 

(22) 

From (21) and (22), one gets 

Reo,(k) = ~c - krs 

1f 3 1 ('IT )1/2 (1 )3/2 
+2 (1+ 2 )+16 krs +0 krs ' 

" (k) _1. I [1 + eXP(41fkrs )] Imvl -. og 2 

_.!.. (~) 1/2_ ~ (1 + 1/2)2 
16 krs krs 2Y2: ( 

1 ) 3/2 +O-k . 
rs 

Then, the absorption coefficient in the DWBA is given 
by 

pDWBA _ 1 - exp( - 41fkr s) _ 2 exp( - 41fkr s) 
I - 1 + exp(- 41fkrs) 1 + exp(- 41fkrs) 

• {exp [{ (k:J 112 + V2 (k:J (l + W 

+ o (krs)"3 12] }. 

The first term, plO), corresponds to the approximative 
potential Vo, while the second term gives the first-order 
contribution due to the potential VI' As is seen from Eq. 
(23), this second term is a small correction to the plO) 
because krs » 1. 

The sign of the contribution of VI is related to its 
repulSive character. As is seen from Eq. (23), ppWBA 
tends to one for krs going to infinity. However, the 
JWKB absorption coefficient (Eq. 12) remains always 
much less than one in its range of validity. In other 
words, the lower angular momenta partial waves are 
more absorbed than the higher ones. 

V. CONCLUDING REMARKS 

We have applied and adapted to the scattering of waves 
from a Schwarzschild black hole, apprOXimation methods 
appropriate for small wavelengths. In this way, we have 
obtained explicitly the leading behavior on the wave
length of several scalar scattering parameters. 

The methods used here can be applied to the neutrino 
equation, as the electromagnetic and gravitational wave 
scattering, in the Schwarzschild geometry. 

The formalism exhibited here can be generalized to 
the wave scattering and the quantum processes of 
particle production in the Kerr-Newmann geometry. 

APPENDIX 

With the aid of formulas (3), 

and 

}OO exp(- Az)Zr-I(F(a,y,kz)]2 dz 

° 

F(a,{3,y;z)=(1-zt-a - 6 F(y-a, y-{3, y;z), 

whereF(a,{3,y,z) is the Gauss' hypergeometric func
tion, we have reduced the integral 
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f 
~ Z-2ikTS 

"[ 1 = (l + 1/2)2 exp(- 2ikr sZ) (z + 1) 
o 

X[F(t 1- 2ikr .. , 2ikrsz)]2 dz, 

corresponding to the first term of the perturbation V I1 
to the following expression: 

"[ 1::= (l + 1/2)2 r(l- 2ikrs) 

The asymptotic expansion for kr.» 1, of the integral 
"[ 1 can be calculated by the stationary phase method,9 

"[ j::= (l + 1/2)2 r(l- 2ikrs)(2krs)2IkTs 

( 
1T )1/2 (1 )3/2 

xexp(-1Tkr.+i1T!4). krs +0 kr .. 

The integral corresponding to the second term of Vj 
follows immediately from the previous results. 
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A geometric proof of no-interaction theorems * 
Aloysius F. Kracklauert 

Department of Physics, University of Houston, Houston, Texas 77004 
(Received 30 December 1974) 

No-interaction theorems are proven, using the methods of modem differential geometry, and an example of 
a Hamiltonian yielding relativistic canonical equations of motion with interaction is presented. 

1. INTRODUCTION 

It is the purpose of this note to present a proof of 
"no-interaction" theorems using the language of modern 
differential geometryl and Cartan's principle2 of dynam
ics. The use of these tools reveals certain facets of the 
structure of these theorems which are not otherwise 
evident. 

The concluSion of a no-interaction theorem is that 
a relativistic canonical formulation of dynamics can 
only describe particles between which there is "no 
interaction." Of course, this concluSion depends on the 
conditions contained in the hypothesis of the theorem, 
of which there are two versions. The original version 
has been proven sequentially by stronger methods, first 
for two, 3 then three, 4 and finally N particles by at least 
three methods, 5-7 one of which (Ref. 7) uses modern 
differential geometry, but not Cartan's principle. This 
version is characterized by the assumption that the 
dynamics of the system is governed by a scheme 
parameterized by a single parameter-time. The sec
ond version, B which has been proved heretofore by only 
one method, is characterized by the assumption that 
the dynamics is governed by an N parameter scheme. 

Below, the no-interaction result is obtained in a new 
way by adding restrictions to Cartan's prinCiple that are 
equivalent to the conditions in the hypotheses of the 
no-interaction theorems. From this unique vantage 
point these theorems are reexamined. 

2. A GEOMETRIC PROOF 

Let (MN, n) be a symplectic manifold, 1 where MN is 
the Cartesian product of N phase spaces with a funda
mental two-form 

n=dw. (1 ) 

w is expressed in terms of the canonical momenta and 
coordinates as 

N 

w =L (pUdX,Ji' 
i 

(summation convention implied). Recall2 that a one
form on MN Xl, for example w': 

w'=w -HdT 

determines a vector field D on (MN xI) of the form 

D=£ (V" _a_ +F _a_) + ~ 
i apu u ax" / oT 

(2) 

(3) 

(4) 

via the stipulation that the exterior product of the pair 
is zero (this is the formal statement of Cartan's 
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principle); i. e. , 

DJ dw'=O, 

such that V and F satisfy Hamilton's canonical 
equations: 

aH V=-, ap 
aH 

F=--· ax 

(5) 

(6) 

Theorem (no interaction): Let (MN , n) be a symplectic 
manifold, D a vector field on MN XI, -and H a scalar 
function. Moreover, let 1 be identified with a one
dimensional subspace from each configuration space; 
for example, let 

T=a~=bx~=" ·=cx:. (7) 

Then, 

D.Jdw' =0 (8) 

implies that 

(9) 

i. e., all forces are zero, there is no interaction. 

Proof: The identification of 1 with a one-dimenSional 
subspace of the configuration space of a particle implies 
that the generator of translations along 1, namely 

a -, oT (10) 

is equal to the generators of translations along the one
dimensional subspace in the configuration space, for 
example, 

a 
a-a l' Xi 

(11) 

where it has been assumed for simplicity, without loss 
of generality, that the identification has been made the 
ith axis in the coordinate frame chosen to describe the 
configuration space of interest. When this identification 
is made for each configuration space in M N , the follow
ing equality holds: 

a a a i} 
--a--b--···-c-· oT- ax~- ax~- - ox: 

If (12) is put into (8), then the result (9) follows at 
once .• 

(12) 

Theorem (second version): The fundamental assump
tion of this version is that the dynamics of a system of 
particles is governed by an N parameter scheme. This 
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assumption is tantamount to redefining Eq. (4) as 

D=±rfV"_o- +F _0_) +_o-J, (13) 
i l\ op'" "ax" i aT i 

and Eq. (3) as 
N 

w'=w- 2:. HidTi' (14) 
i 

Proof: As above, (8) is computed to obtain 

{Hi' H;}",O, 't/ i*j. (15) 

where the brackets are those of Poisson. The indepen
dence of world lines follows from the independence of 
the Hamiltonians .• 

3. DISCUSSION AND CONCLUSIONS 

The equivalence of the first version as presented 
herein with the previous presentations follows from the 
demands made of the Hamiltonian in those versions. 
First, and most naturally, the Hamiltonian is to specify 
the dynamics through the Lie bracket relationships 

[x, Hl = V, [p, HJ =F. (16) 

Beyond this, however, the very same Hamiltonian func
tion is also to be the generator of time translations 
which together with the generators of the spatial trans
lations form a Lie group with the POincare group struc
ture constants. Imposing this group structure is a com
mon way of "relativising" the space of interest. De
manding that one function yield both sorts of generators 
at once establishes the identification used above of 
translations along T (the parameter of the transforma
tion specifying the dynamics) and x~ (a configuration 
parameter, most likely t if M" is a Minkowski space). 

The absence of reference to the Minkowski structure 
of the configuration spaces in the above proof shows 
that the essential feature of no-interaction theorems is 
not to be found in special relativity. The above theorem 
holds even if the spaces M" are not Minkowski spaces; 
the only essential needed to obtain the no-interaction 
result is the identification of the parameter of the 
transformation generating the dynamics with any of the 
parameters of the configuration spaces. In the non
relativistic case, if the time "I" were identified with 
either Y, 'V, or z (or linear combinations), the no
interaction result would follow, a fact not heretofore 
widely publicized. 

The motivation for the identification of the dynamical 
parameter with a configuration parameter in the first 
place comes from the deSire to create relativistic quan
tum theories. In nonrelativistic quantum mechanics 
time is a scalar parameter while configuration 
variables are operators. This disparity is at odds with 
special relatiVity within which time and space parame
ters are of equal status. Thus, an effort has been made 
to find a relativistic formulation of mechanics in which 
the configuration variable" I" (x4 in Minkowski space) 
can serve as the independent parameter of the trans
formation specifying the dynamics and thereby be com
patible with quantum theory as presently formulated. 
It is these efforts which are frustrated by the first 
version of no-interaction theorems. 

The second version is an exploratory attempt to find 
a structure that will accommodate interaction and be 
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consistent with relativity. As the structure hypothesized 
in this version is not compatible with quantum theory, 
it does not appear to have any significance for the con
struction of relativistic quantum theory; moreover, it 
also does not accommodate interaction. 

If the identification of time and the parameter which 
governs the dynamics is not made, as it is in the origi
nal version of no-interaction theorems, then Cartan's 
formulation of dynamics (or any equivalent) accommo
dates the construction of canonical relativistic theories 
at will; it is only necessary to find a suitable single 
parameter Lorentz invariant scalar function H. What 
is not so easily done, however, is to show that theories 
so constructed do in fact describe interactions employed 
by nature. This can be done only by showing that a 
particular choice of H leads to calculated trajectories 
that have observable correspondents. For an example 
of a Hamiltonian that may describe the electromagnetic 
interaction, conSider the following: Let m t be the rest 
mass of the ith particle and let X, and Xi be defined as 
follOWS: 

Xi ~Xi' Yi' Z;, ieii; Xi ~dx/dT. (17) 

If now the Lagrangian L, where 
N mi..x N 

L(xi(T),Xi(T))==~ i2 i -2ftteiej 

xL' X/·Xj 6«X,(T)-XPI.))2)dX" (18) 

is pOSited (dot products are with respect to the Lorentz 
metriC), then by employing the well-known definition of 
canonical momentum, 

Pl~~?' (19) 
uX/ 

H(Xj(T), Pi(T) =t (Pi - 2 t. e iej 
t 1 rt 

X f~ Xj 6«xi(T) - Xj (A»2) dAr 12mi' (20) 

is deduced. This Hamiltonian leads to equations of 
motion which are differential-delay equations of motion 
coupled together by two and only two interactions, each 
derived from a Lienard-Wiechert potential. Although 
Cauchy -type initial data is insufficient to determine a 
particular solution to these equations, they can be 
integrated numerically given the orbits between the past 
and future of a light cone centered at an arbitrary point as 
initial data. The results of such a study will be reported 
elsewhere; the point here is only that Cartan's principle 
does accommodate canonical relativistic dynamics with 
interaction if the effort to give time a role distinct from 
space is abandoned. 

*The results contained herein constitute part of a dissertation 
submitted to the University of Houston. 
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The Kirkwood-Salsburg equation and phase transitions 
W. Klein 

Institut fiir Theoretische Physik, Universitiit zu Ko/n. 5 Ko/n 41. Germany 
(Received 21 July 1975) 

A perturbation expansion solution of the Kirkwood-Salsburg equation is used to investigate the hard 
sphere phase transition. A necessary condition for the phase transition identical in form to one obtained by 
Kirkwood is obtained. However, it is shown that this condition is not sufficient and that other conditions 

must also be satisfied. 

I. INTRODUCTION 

In a previous paperl a perturbation expansion of the 
solution to the Kirkwood-Salsburg equation was intro
duced. It was shown in that paper that each term in the 
expansion for a given distribution function was obtained 
by solving an integral equation, the kernel of which 
remains the same to each order. It has been proved 
that this expansion converges only for small z; it is 
possible, however, that-due to the alternating signs 
of the terms in the series -the radius of convergence is 
much larger than the proven one. To test this possi
bility, the properties of the perturbation solution for 
hard spheres are investigated in the region of Z = Zc 
where multiple solutions seem to be possible. These 
solutions are characterized by a single particle distri
bution function which is not constant but oscillates as a 
function of Xl with a fixed period. 

A necessary condition for such a solution is derived. 
The condition is identical in form to the condition 
Kirkwood2 derived for the instability of the solutions to 
the Born-Green hierarchy. We also show that this con
dition cannot be considered to indicate a first order 
phase transition but is at best an indication of an 
instability. 

II. PERTURBATION EXPANSION 

In this paper we consider only the hard sphere inter
action, i. e. , 

¢(1')c~O, 1'>a, 

¢(1')=co, y,,;:a, 

although the results can be extended to all symmetric 
positive pair potentials such that 

¢(Y)=O, Y>A. 

We will consider the K-S equation 

fu = exp[ - (3¢( I x ij I ) - 1, (11.1) 
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which can be written concisely as 

p=z+zKp, 

K is a bounded linear operator. 3 K can be broken up into 
a perturbation K' 4 which we argue has a small effect4 
and an unperturbed operator K I • K' is defined as 

and 

K=K'*K I • 

If we consider the eq~ation4 (1) 
p=za+z(Kl+EK)p, a= 0 , 

o 
expand p in a power series in E, equate powers of E, and 
solve, we obtain for E = 1 

One can also write an equation for the first nonzero 
contribution to each of the distribution l functions 

p/xI ) = z + Z jpI(x2)fI2dx2 

(11.2) 

It is important to note, as was pointed out in Ref. 
1, p. 1052, that solving the K-S equation by means of 
this method involves the solution only of (11.2) with 
changing inhomogeneous terms. Therefore, the proper
ties of the sOlution(s) of the (K-S) hierarchy which 
depend only on the kernels in (11.2) will be the same for 
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each order. Clearly the existence of multiple solutions 
is such a property. We will investigate therefore the 
solutions of the above first order hierarchy. 

III. UNIQUENESS OF SOLUTION 

We will first investigate the uniqueness of the solu
tions of (n. 2) for the hard sphere potential. We will 
prove that for values of z for which 

1 - z j ( IK I ) ;< ° 
i( I K I ) == j exp( - zK . x) j( ! x I ) dx (III. 1) 

for every K real the solution of (II. 2) is unique. Clear
ly, if each equation in (II. 2) has a unique solution than 
the total hierarchy (II.2) has a unique solution. 

It is trivial to prove, using the convolution theorem 
for the Fourier transform, that under the assumed con
dition the first equation of (II. 2) has a unique solution. 
We now prove that the solution of 

1'1 
PN(X1 ' •• xN) = z II (1 + II) [PN-l(X2' •• XN) 

,.2 

+ jPN(XN+!> x2, ... ,XN>Jl,N+ldxN+l] (111.2) 

is also unique. 

Proal: Since the operator is linear, we must prove 
that the only solution to 

(Ill. 3) 

is PN = 0. We assume there exists a nonzero solution 
Po(x1 ' •• xN) and define PN(X1 ••• xN) by 

PN(Xl> ••• , xN) = z j Po (x 1'1+1> x2 ' •• x 1'1) 11,1'1+1 dxN+U 

which can be written as 

PN(X1'" XN) =Po(X1 •• , XN) +p/X2 '" xN)· 

pix]' •• xN ) is nonzero only if 

1 x] - xI} I < a for some j E {2 <0 • N}. 

(Ill. 4) 

Using definition (Ill. 4) and taking the Fourier trans
form gives 

[1-zj(\K\)jPo(K,x2 "'XN )=-PI(K, xz " ·xN ). (Ill. 5) 

As [1 - zj(1 KI )]* ° if, for all K, PI(K, X 2 '" XN ) =0, 
then for all K 

PolK, Xz' .. xN) = ° = po(xll ••• ,X 1'1) = O. 

Therefore we assume i>iK, x2 ' •• xN) is not identically 
zero. We now multiply each side of (ill. 5) by 
pci(K,x2 '" xN) (* denotes complex conjugate) and inte
grate with respect to K 

I(1- zj(K») \ PolK, Xz" . xN) \ 2dK 

(111.6) 

The left-hand side of the above is pOSitive definite, the 
right-hand Side is identically zero as can be seen from 
the fact that 

J pri(x1 ••• xN)Pj(X1'" xN)exp(-zK'· xj)dx] =0 

for all K', 
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= j pci'(K - K', x2 ••• xN)Pr(K, xz ' .• XN) dK, 

setting K' = 0. We have a contradiction and the deSired 
result is proven. 

We have therefore for such z that 

l-zj(!K!)*O 

for any K a unique solution to (II. 2). This implies that 
the solution, via this expansion, of the exact K-S 
equation (II. 1) cannot have a solid structure, i. e., the 
distribution functions are functions only of the distances 
between particles. This ceases to be the case when 

1-zj(IKI)=o 
for SOme K. For such z the first equation in (n. 2) has 
the solution 

where 

For hard spheres 

j( IK I) = (47T/IK 12) [cos 1 KI - (Sin IK 1 )/1 K IJ, 
and we obtain Kirkwood's2 criterion with z playing the 
role of iI.. We now Show, however, that the solutions 
which correspond to the minimum value of z = 20 for 
which 

1-zo!(IKI)=o 
for Some K cannot be those of a stable SOlid, and hence 
Kirkwood's criterion does not indicate the onset of the 
phase transition. 

It should be pointed out that Kirkwood stated this as 
a possibility. 

IV. ADDITIONAL CONDITIONS 

To be stable, a solid must not be invariant under 
arbitrary rotations. This means that the K-S equation 
should have at least one solution (for given boundary 
conditions) which is not invariant under arbitrary rota
tions. In this section we Show that the solutions corre
sponding to z = 20 do not have this property. This leads 
to the introduction of additional criterion which must be 
satisfied along with the Kirkwood criterion. 

ConSider the equation 

P2(XU x 2 ) = z(l + 112)[P2(X2) + J P2(X3 , X2>J12 dX3J. 

If we perform an arbitrary rotation A of x, about X 2, we 
find 

P2(X] + A, x2) = z(l + 112)[PI (x2) + J P2(X3 + A, x2)/,3 dX3J· 

Subtracting the two equations gives 

P2(Xl1 x2) - P2(X1 + A, X2) 

= z(l + 112) J (P2(X3 , Xz) - P2(X3 + A, X2))/13 dx3' 

Since A is arbitrary, the above equation must have a 
nonzero solution in a stable solid. This line of reasoning 
can be extended to all the equations in (II. 2) and in fact 
to the entire solution to any order. It is instructive to 
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carry this out to the next order. For P3(XU X2 , x3) we 
have 

P3(XU xz, x3) = z(1 + I1Z)(1 + 113)[PZ(xz, x3) + 

+ J P3(X4, x z, x3)/14 dx4]· 

We rotate particles 1 and 3 about 2 so that 

P3(X1 + A, xz, ~ + A) = z(1 + 112)(1 + 113)[P2(XZ' ~ + A) 

+ J P3(~ +A, Xz, ~ +A)/14 dx4J, 

where all particle distances are held invariant. Since 
P2(XZ ' x3 ) is the solution of the above two particle equa
tion, it is invariant under the rotation. The necessity 
of a nonzero solution to 

P3(XU X2 , ~) - P3(X1 + A, X2 , ~ + A) 

= z(1 + 112)(1 + /13) J (P3(X4 , xZ, x3) 

- P3(X4 + A, X2 , X3 + A») 1'4 dX4 

follows immediately. 

To see that the same thing holds true to second order 
for P2(X" x2), one need only note that 

J P3(X4 , X2 , X3 }f13 114 dX3 dX4 

is invariant under a rotation of Xl about X2 as long as 
P3(~' X2 , x3 ) is a solution of the above equation for 
P3(XU X2 , x3 ) (with the obvious variable change) which 
has the invariance property. 

To recapitulate, we have shown that an additional 
criterion to the Kirkwood is necessary in order to have 
a stable Solid. This criterion is that at least one of the 
equations 

N 0 

PN(X"", ,x,,)= n (1 + I,j») PN(XN+II X2" 'xN)/, N+ldxN+' 
1=2 ' 

(IV. I) 

must have a nonzero solution. We now show that this is 
not possible for z = zo. 

From Eq. (III. 5) we have 

There are two possibilities. Either p/K,x2 " ·XN ) is 
identically zero or it is not. If it is not, the proof pro
ceeds identically to that in Sec. 3. In this case, how
ever, we have the possibility that p /K, x2 ••• XN) is 
identically 0 and that Po(K, x 2 ' •• XN ) is nonzero only on 
the point support IKI =K", where 

This implies, however, that the Fourier transform of 
J\(K, X· •. XN ) is an analytic function of Xl' This follows 
from a theorem in the theory of distributions which 
states that the Fourier transform of a distribution de
fined on bounded support is analytic. 4 This is clearly 
not possible in this case due to the factor 

N 
n (1 + /,) 
j=2 ) 

unless the function is identically zero. This concludes 
the proof. There exist now two possibilities. Either 
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the values Zc is a limit point of the eigenvalue spectrum 
in which case it would indicate an instability of the solid 
phase, or the spectrum starts at a higher Z in which 
case the phase transition to a stable solid would be at 
a higher Z. As this result is identical to Kirkwood's, 
the former is expected to be correct although no proof 
is available at present. 

V. ONE-DIMENSIONAL CASE 

It is interesting to see what this theory predicts in 
one dimension for hard rods. Since this is a perturba
tion theory, it is not consistent with the assumption of 
convergence that the symmetry of each individual term 
not be the symmetry of the solid. With this in mind we 
note that for rods of length 2L 

j(K) = (sinKL)/K. 

We require z > 0 so that for 

1-zj(K)=0, 

sinKL <0 

so that 

KL>7f, KL=(27f/A)L>7f, A<2L. 

Therefore 

P1(X,) = z/[l - z-j(O) J + LAJexp(iK"x1 )± exp(- iK"x1 ) j. 
" 

Since p,(x,) must have the symmetry of the SOlid, the 
K", are reciprocal lattice vectors and hence A. is the 
lattice constant in one dimension. But A. <2L, which 
means this solution is not physical. In this regard it is 
interesting to note that a nonphysical solution for hard 
rods was found by Gallavotti and Lebowitz. 5,6 

VI. RESULTS AND CONCLUSIONS 

We have obtained a result identical in form to 
Kirkwood's. This result is known to be incorrect as a 
prediction of the hard sphere freezing transition. How
ever, as we have shown, this condition seems to indi
cate an instability. It has been Shown, however, 7 that a 
rigorous statistical mechanical treatment of the distri
bution functions and the free energy show no such in
stability. However, this approach and Kirkwood's have 
in common the omission of higher order correlation 
functions. This is shown clearly in Ref. 7 as the inclu
sion of terms in eliminate the instability of Kirkwood. 
It is of interest, however, to conSider the above treat
ment and Kirkwood's as a "mean field" type of approach 
which might show spinodal points, such as appear in 
the work of Hoover and Ree, a as instabilities. This 
has been done and will be reported in a future 
communication. 

The value for Zc in the units chosen is 11.6. As the 
machine calculations indicate a much higher Z for the 
phase transition, it seems that the series to be useful 
must be renormalized. 
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Rigorous derivation of the Kirkwood-Monroe equation for 
small activity 
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We show, for small values of z, that the solution of the Kirkwood-Salsburg equation approaches, in the 
norm topology, the solution of the Kirkwood-Monroe and van Kampen equations if the potential of 
interaction is the Kac potential </>( xu) = 'Y'g( 'Y Xl') and the limit 'Y~ is taken. We have to assume that the 
function g is bounded and absolutely integrable and that 'I.i"'j g(-yxi;);;;'- mB (B < 00), the sum 
being performed over all pairs of the m particles. 

1. INTRODUCTION 

In 1941 Kirkwood and Monroe1 introduced a theory of 
freezing. The main result of the theory is that the den
sity distribution obeys an integral equation of the form 2 

p(x) = C· exp[ - {3 f dSx' p(x')K(x - x')] (1.1) 

where C is a constant, s the dimensionality of the sys
tem and {3= l/kB T. Arguments have been given1

,3 that 
indicate that Eq. (1. 1) has periodic solutions which are 
taken to represent the crystalline phase. The above
cited authors, however, made no attempt to place (1. 1) 
on a rigorous basis. 

Gates4 has presented an argument that Eq. (1.1) can 
be derived in the limit y - 0 from a variational principle 
developed by Gates and Penrose5 ,6 in the special case 
where the potential of interaction has the form 

</>(X:J -Xl) '= </>(X12 ) = ySg(YX12 ), 

where g consists of two parts g1 and g2 with 

g1(X)?- 0, 1 dSxexp(- ikx)g2(X)?- ° for all k. 
JRS 

This is the well-known Kac potential. 

(1. 2) 

(1. 2/) 

However, as Gates pointed out, the above-mentioned 
variational principle has not been rigorously established 
for such potentials. Moreover, even if one assumes the 
existence of such a principle, the derivation of (1. 1) is 
not rigorous. 

The results that we wish to communicate were in
spired by another result in the above-quoted paper of 
Gates. 4 He showed that the solution of (1.1) would, for 
small enough density, be a solution of the following set 
of linear equations: 

Pm (xu ... ,xm) 

z = [6m ,l + (1 - 6m ,l)Pm _1(X:J, ••. ,xm) 

., 1 i + 2:; - dSx 0 0 0 dSx 
n ' m+l m+n 

n=1 . m"S 

with 

K n(x1 ;xm+l' ... 'xm+n ) = (- {3)n mri
n 

g(x1j ) 
J=m+l 

(1. 3) 

and z being the activity, if one defines the higher order 
distribution functions by 
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Pm (x", . . ., xm) = I'r p(xj ). (1.4) 
j =1 

Equation (1. 3) bears a strong resemblance to the Kirk
wood-Salsburg7 equations. They can be written con
ciselyas 

p=za+ zQoP, (1. 5) 

where P=~1(X1),P2(XU~)' ."), <r-=(1,0,0,' 00) and the 
effect of Qo on p is given by (1. 3). 

We show, for those values of z and {3 with I z I .:; z 1 ({3), 
Zl depending on bounds for the function gu that the solu
tion of the Kirkwood-Salsburg equation in the case of 
g2 -= ° approaches the solution of (1. 3) as y - ° in the 
topology generated by the vector norm (2.5). In addition 
it is shown how the proof can be extended for a more 
general potential (1. 2), 

This establishes that the Kirkwood-Monroe equation 
has, in this range of z and {3, a rigorous foundation in 
statistical mechanics. We also indicate how one can 
generate, for potentials of this type, a power series in 
yo for the distribution functions. 9 

2. RESULTS CONCERNING THE OPERATORS 

We consider a system where particles interact via 
a Kac potential of the form (1. 2). For the function g 
we demand that 

° .:; g(x) .:; A < 00 , 

(2.1) 
f dSxg(x)"=C <00 (v=I,2). 

JRS " 

The corresponding Mayer function is 

j(x)=exp[-{3</>(x)] -1, {3=1/k B T. 

Property (2. 1) implies the regularity of the pair 
potential </>8: 

C({3): = 1 s dSx I j(x) I .:; {3C1 < 00. 
JR 

(2.2) 

(2.3) 

This is easily seen from 0.:; 1 - exp( - x) .:; x for x?- 0. 

The Kirkwood-Salsburg operator is defined by 

n+l 
X n f(x1j ) d"x

j
, 

3 =2 
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(Krp}m(Xu ... ,xm) 

= i'i (1 + f(xlj})['Pm_I(X2, . 
j=2 

It acts on the Banach space E! of sequences of functions 
rp=('P I ,'P2' "'), where 'Pn: lRns-a: is Lebesgue-mea
surable and bounded, the norm being 

~ > ° fixed. (2.5) 

It has been shown by Ruelle8 that the Kirkwood
Salsburg operator is bounded in the operator norm II II, 
corresponding to the vector norm (2. 5), in the special 
case of our potential by 

(2.6) 

We will get this result as a consequence of Lemma 1. 

In the next section we will be concerned with solutions 
of the Kirkwood-Salsburg hierarchy of equations: 

(J - zK}K = Z (Jt, j = Unit operator. (2.7) 

Our general aim is to show that the Kirkwood
Salsburg equations in certain limiting cases can be ap
proximated by a simpler hierarchy. A special difficulty 
arises from the I!roduct of [1 + j(xlj)]-factors in the de
finition (2. 4) of K. Depending on the choice of arguments 
the effect of n;"=2 [1 + j(xl)] can become very large for 
high enough 111. Therefore, we first introduce a 
decomposition of Ii, 

A ~ A 

K=PQ, (2.8) 

where the operator P provides the multiplication with 
this product, 

(Prp)l (Xl) = 'PI (Xl)' 

(prp}m(Kr, ... ,Xm)= (n [1 + j(xlj}])'Pm(Xu ••• ,xm ), 
j =2 

(2.8a) 

and Q contains the rest of K: 
(Qrp}m(XU ' •• ,xm )= (1 - 0m)'Pm_I(JS, ... ,xm ) 

(2.8b) 

It is easy to give bounds for these two operators: 

Lemma 1: (1) II P II -% 1, (2) II Q 11-% Z;l. 

Proof: Part (1) follows immediately from the fact 
that, for all x? 0, 0-% 1 + f(x) ~ 1. With the use of 
I 'Pm (Xu ... ,xm}1 ~ IIrpll!. ~m (rpE E!) and of (2.3) we 
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have 

I (Qrp)m(Kr, •.• ,Xm ) I 

-% II rp II (' ~m-l(1 - om, 11+ fr !~ If IR/(X) dSX In) 

-% II rplll' ~m-lexp[~C(i3l]. 

This implies II Q II ~ (1/ ~) exp[ ~C(m] = Z;l. 

N.B,: Since IIKII ~ Ilpll' IIQII~ IIQII, IIKII ~Z;l. QED 

In practical calculations it will be necessary to 
truncate the Kirkwood-Salsburg hierarchy, which is of 
infinite order. This concept is also useful as a tool in 
our considerations. 

The truncation can be described by use of a projection 
operator 

T rp=(rpU 'P2 , •• • ,'Pm ,0,0,'00) (2.9) 
rno 0 

with mo E lNfixed which prOjects onto the Banach sub
space E~me) of all sequences of functions out of Ep 
whose components with order higher than mo are zero. 
Operators a can be confined to this subspace in the 
following way: 

o(ma) = l' 01' . (2.10) 
rna ma 

A vector rpE E( whose belonging to Eime) shall be stated 
explicitly will be marked as rp(mo). 

As it is possible to expand the Mayer functions in the 
restricted Kirkwood-Salsburg operator Q in powers of 
ySg(yXlj ) we expect a series representation of the form 

(2.11) 

where the operators Qv are bounded, their norm being 
independent of Y. This last property arises from the 
fact that the Y dependence of the Qv can be eliminated by 
rescaling the arguments of vectors rpE E( because of the 
special form of the Kac potential. 

In the following we restrict ourselves to the zeroth 
order approximation: 

(Qorp)m(XU " .,xm)=(1-0m )'Pm_l(X2", .,xm) 

+:t (- j3y s)n f m·n 
n=l n! IRns 'Pm • n_l (x2, ... ,xm~) n g(Yxlj}dSxj • 

j=m+ 1 

(2.12) 

By rescaling the arguments Xl' ... ,xm and changi!:g the 
variables of integration with Y, it is obvious that Qo 
goes over into that one defined in (1. 3), (1. 5) acting on 
the rescaled space E(. 

The norm of Qo can be bounded as follows: 

Lemma 2: IIQoll-% Zil with Zt(m = ~ exp[ - ~)3CI] -% zo(f3). 

Proof: The proof of II Qoll -% Zil is analogous to that of 
Lemma 1 using (2.1) instead of (2.3). (2. 3) then proves 
Zl ~ ZOo QED 

It remains to show that the difference between Q and 
Qo is of order Y S in the norm: 

Theorem 1: IIQ- Qoll~ys.~j32C2~zil. 
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Proof: We first note that the difference of the two 
nonnegative constants (3C 1 and C({3) can be bounded by 

Therefore, 

I «Q - Qo)r,o)",(x1, ... ,Xm ) I 

~ t -+ I r dSXm+1 ' •• dsxm+ rr 
"=1 n. J lRns 

m+n m+n 

x( n [{3y Sg(YX1J )]- n [-fiX1})]) 
j=m+l J=m+l 

X<Pm.""l(~' .•• ,Xm+,,) I 
~ Ilr,oll~' ~mt ~rr~l [({3C1)"-C(f3l"] 

"=1 n. 

rr·1 

X6 ({3C1)VC({3),,·l.v 
11=0 

We now want to compare Qo directly to the original 
Kirkwood-Salsburg operator K. To eliminate the dif
ficulty with the operator P, we have to confine ourselves 
to the subspace E~mo), where mo is arbitrary but fixed. 
Then we are able to give a bound to the difference be
tween P<mo) and the unit operator [(mol: 

Lemma 3: IIP(mo) - J(mo)1I ~ y S{3A(mo -1). 

Proof: «p(mo) - j<mo»)r,o)",(xu ... ,xm
) = 0 for m = 1 and 

m > mo' For 2 ~ m ~ ma we have with 0 ~ 1 - exp( - x) 
~x (x>-- 0): 

I «P<ma) - J(mo»)r,o)m(X
U 

••• ,x
m

) I 

~ II <pIll' ~m./ j~2 [1 + fiX1,)] -1/ 

= Ilr,oll~·~m·1 exp( -(3£ ¢(x1j )) 
J=2 

-1/ ~ Ilr,oll~·~m{3j~ 1¢(x1j )/ 

~ Ilr,oll~·~mys{3A(mo-l). 

Now the above inequality is easily seen. QED 

With the help of Theorem 1 and Lemma 3 we can es
timate the difference between K(mol and Q6"'o): 

Theorem 2: IIK-(mo) - Q6mo ) II ~ Y'{3[A(m o -1) + H{3C2]zi1• 
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Proof: 

IIK(mo) - Q6ma) II = IIp(ma)Q(mo) - Q6ma ) II 

~ II p(ma) Q(mo) _ Q(ma) II + II Q(mo) - Q6ma ) II 
~ IIp('''o) _rma) II • II i mJ' II QII '1/ i 771) 
+ II T m II • II Q - Qa II • II T mo II· 

a 

Here we have used :p. a = T a' Clearly the norm of the 
A m m 

projector T ma is equal to 1. With this, Lemmas 1, 3, 
and Theorem 1 we finally have 

II K(ma) - Q6ma ) II ~ y S {3A(ma - l)z(jl + ys. t~C2~Z;:1. 

The theorem now follows from Zl ~ zo' 

3. RESULTS CONCERNING SOLUTIONS OF THE 
HIERARCHIES 

QED 

We first ask for the consequences of Theorem 2 con
cerning solutions K(mo) and P6ma ) of the corresponding 
truncated hierarchies: 

(J<ma) - ZK("'o»)K(ma) = z~, 
(3.1) 

(j<mo) _ zQ6ma ) )Pbma) = za. 

From these two equations we have the following property 
of K(ma) and P6ma): 

Lemma 4: (1(ma) - zK<ma») (K(mo) - P6ma») = z(K(mo) 

- Q6ma»)P6ma). 
Proof: The lemma is easily proven by subtracting the 

second equation from the first one and adding a term 
zK(mo) P6ma ) on each side. QED 

Theorem 2 and Lemma 4 enable us to make a state
ment about the quality of P6 ma) as a solution of the trun
cated Kirkwood-Salsburg equations in dependence of the 
parameter y: 

Theorem 3: 1I(J<ma) - zK(ma»)(K(ma) - P6ma»)II~ ~ Y'I z I Mm 
with Mm = (3[A(m a - 1) + t~{3C2] • Zi1 • Ilp6mo) III independen~ 
of Y. a 

Proof: Lemma 4 and Theorem 2 give 

II (fma) - zK(ma) )(K(ma) - P6ma ») III 
~ I z I • II K(ma) - Q6ma ) II • II Pb"'a) III ~ yS I z I Mm . 

o 

It remains to be shown that IIPbmO)lI
l 

does not depend 
on Y. But this results from the fact that the dependence 
of Qa (and therefore of Q6mO») on y can be eliminated by 
rescaling P6mo ) , which does not change its norm. QED 

Theorem 3 states that for small y the difference K(ma) 
- P6'"o) is close to the kernel of the operator ;'ma) 

- zK(ma), so that Pbma) is in the neighborhood of a solu-
tion of the truncated Kirkwood-Salsburg equations. 

Additional information can be derived inside the circle 
I zl < Zl' The reason for this is that the operators K, 
K(ma), Qa, Q6mo ) all have norm less or equal Zil. There
fore, the following Lemma can be used: 

Lemma 5: Let 0 be a linear operator on El with 11011 
~ zi1

• Let wand w(mo) be solutions of the equations (1 
- zO I w = za and (J<ma) - zo(ma) )w(mo) = za, respectively, 
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with I zl < Zl' Then: 

Il
w-w(molll -'S2~ (lzl/z1)mo+

1 

~ ~ 1 - I Z II Zl 

Proof: Using Neumann's theorem, we know that (] 
- zO) and (J<mol - zo(mol) have both an inverse on E~ and 
E:mol respectively, which are given by 

(J - ZO)-l = t (z())" , 
11=0 

"=0 
Since zo/ E E:mol, w, and w (mo l are both uniquely deter
mined, their difference can be bounded in the following 
way: 

mo-! 
IIw_w(molll~-'S Izl o( ~ lI(zo)"O/-(zo(mol)"O/II~ 

11=0 

+ t lI(zO)"a-(z6<mol)"0/1I~). 
v=mo 

In the first sum each term gives zero. This is be
cause only the first component of 0/ is different from 
zero and in 0" 0/ only the fir st lJ + 1 components, so that 
all vectors in the first sum are in E~Cmo). Since 0 and 
o (mo l are identical on E :mo l, we have the desired 
result. Then 

IIw-w(mo)lI~ 

-'S Izl' t (lizoll"+ IIzo(molll")IIO/II~ 
v=mo 

00 (IZI)" 1 -'S21zl ~ - .-
Vem Zl ~ 

o 

_2~(~)mo 1 
- ~ Zl 1 - I z I / Zl 

-2~ (lzl/z1)mo+1 
- ~ 1 - I zll Zl 

Q.ED 

Now we are able to give a bound to the difference of 
the (uniquely determined) solutions of the full Kirkwood
Salsburg equations and the Q"a hierarchy inside the circle 
I zi < Zl: 

Theorem 4: Let K and Po be the uniquely determined 
solutions of (j - ZK)K=Zo/ and (J - zQo)Po=zO/, re
spectively, with I z I < Zl' Then for any mo E IN, 

with the same M as in Theorem 3. mo 
Proof: With Theorem 2, Lemmas 4,5, Neumann's 

theorem, and K(mO l ,p~mo l as in (3.1), we have 

11K - Po II ~ -'S 11K - K(mO l II ~ + II K(mo l - p~mo l II ~ + II p~mo l - Po III 

-'S4~ (lzl/z1)mo+1 + II (i(mo) _zi(mo»)-lll 
~ 1 - I zl / Zl 

• I z I ·11 k(mo l - Q~mo) II 0 II po(mo) II~ 

-'S4~(lzl/zI)mo+1 + 1 IZlysM. QED 
~ 1 - I z I / Zl 1 - I z I / Zl mo 

which causes the first term to be small, and then using 
a properly small Y in the second term. 

We will conclude this section with some remarks 
about the hierarchy corresponding to the operator Qo' 

As Gates has pointed out,4 the equation 

(] - zQo)Po = zO/ 

is reduced by an ansatz of the form 

Po = (PI' P2 , • • .), 

to the Kirkwood-Monroe and van Kampen equation: 

(3.2) 

(3.3) 

(3.4) 

For all positive z we have a constant solution, uniquely 
determined by 

(3.5) 

Whether or not there are additional solutions for large 
enough z containing a sinusoidal term is a question of 
high physical interest, which is discussed in the paper 
of Gates, 4 but has remained still unsolved. 

Nevertheless, in the circle I zl < Zl the unique solu
tion of the Qo hierarchy is po=(pl,pLp~,· •• ), where PI 
is a solution of (3. 5). In fact, this equation for PI can 
have more than one solution, for example, in the 
interval - (e{3C1)-I< z< 0 there are two. But all of them, 
except the one w~th smallest I PI I do not correspond to 
solutions of the Qo hierarchy. They are ruled out be
cause of p) ~ > 1 which makes the norm of the corre
sponding vector Po infinite. 

4. EXTENSION OF THE RESULTS AND CONCLUDING 
REMARKS 

In the proofs of the previous sections 2 and 3 we re
stricted ourselves to positive potentials, i. e. , g2'" O. 
This was needed to obtain the result that n;"e2 [1 + f(x lj )] 

was bounded. Potentials of the type y Sg2(yXI2 ) do, how
ever, present a more serious problem as they allow 

L: g2(YX I) < - mD, 
I;<j 

(4.1) 

where D is an arbitrarily large positive constant and m 
is the number of particles. These potentials are not 
stable8 and can lead to nonthermodynamic behavior. If, 
however, we restrict ourselves to potentials such that 

~g2(YXI) ~ - mB, 
j;tj 

(4.2) 

where B is a finite positive constant, then the previous 
proofs can be amended to include such potentials. 

This is done~by defining, following Ruelle, 8 a permuta
tion operator IT, which permutes the particles such that 

In fact we can make the difference between the two solu
tions as small as we want by chosing first a large mo E lN, (Ilql)m(xu "" xm) = 'Pm(XI1 , X12 , .•• ,XI) 
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with 
m 

r1 [1 + fix! j )J < exp(y"{3B) (m E IN) 
Jo 2 1 J 

(4.3) 

We then have the following: 

Theorem 5: In the norm topology the solutions of 

(t-rIzK)K=za and (f-rrzQo)po= z(l (4.4) 

become arbitrarily close as Y- 0 in a circle I zl < Z2' 

N.B.: (1) One can show, following RuelleB and 
methods employed in the proof of Lemma 1, that IIKII, 
which, of course, depends on Y, is uniformly bounded 
in Y in an in!erval 0 < y< Yo' Then choose: Z;l 

= supo<l'<l' IIKII. o 

(2) (4.4) clearly implies that Po corresponds to a 
solution of the Kirkwood-Monroe and van Kampen 
equations. 

The obvious drawback to the theorems proven above is 
is that they do not say enough about the solutions of the 
mean field theory near the freezing transition. The dif
ficulty in proving a theorem similar to Theorem 5 for 
I zl ;?- Z2' is that the limit Y- 0 of r1j=2 (1 + fiXjlj ) is not 
equal to 1, but is a function of the positions of ~articles 
i j relative to i 1 • The proof of such a theorem requires 
a theory which can, as Ruelle did for small z, state ex
plicitly how the distribution functions of lower order are 
influenced by the distribution functions Pm(XU ••• ,xm) 

in the limit m - "". 10 

As mentioned in the Introduction, one can generate 
from this formalism a power series in Y' for the dis
tribution functions. One has merely in each term of the 
Neumann series to expand the Mayer function j(x1j ) 
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=exp[-!3Y"g(YxlJ )]-l in a power series in ySg(yXlJ ) 
and redefine the independent variables as Y' and YX jJ in 
place of i' and xli' One actually obtains a double series 
in z and YS. It is clear from Ruelle's work that the error 
made in truncating the series at a given order of z and 
Y can be bounded and made arbitrarily small. 11 

lJ. G. Kirkwood and E. Monroe, J. Chern. Phys. 9, 514 
(1941). 

2For these potentials the Kirkwood-Monroe and van Kampen 
equations are, as shown by Gates in Ref. 4, identical. See 
N. G. van Kampen, Phys. Rev. 135, A366 (1964). 

3R. Brout, Physica 29, 1041 (1963). 
4D.J. Gates, Ann. Phys. CN.Y') 71,395 (1972). 
5D.J. Gates and O. Penrose, Commun. Math. Phys. 15, 253 
(1969). 

6D.J. Gates and O. Penrose, Commun. Math. Phys. 17, 194 
(1970). 

7J. G. Kirkwood and Z. W. Salsburg, Discuss. Faraday SOc. 
15, 23 (1953). 

3D. Ruelle, Statistical Mechanics Rigorous Results 
(Benjamin, New York, 1969), Chap. 4. 

9This was accomplished for potentials of the type V(x) 
+r3g(rx), where V(x) is the hard core potential, by J. L. 
Lebowitz, G. Stell, and S. Baer. J. Math. Phys. 6, 1282 
(1965). 

l~evertheless, it would be desirable to work along these 
lines, fo r one knows that in certain cases mean field theory 
may be exact in the limit r- O. See F. S. H,!Sye, Phys. Rev. 
B 9, 2390 (1974). 

llRecently, a somewhat different approach to the theory of 
freezing has been made by Raveche and Stuart. 12 It strongly 
indicates the possibility of a density distribution function with 
a periodic structure occuring at the limit of the metastable 
liquid phase. WOrk connected with this question is also in 
progress in the frame of the r expansions presented in this 
paper. 

12H. F. Ravech~ and C. A. Stuart, J. Chern. Phys. 63, 1099 
(1975). 
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Spontaneously broken symmetry and cosmological constant 
M. Y. Wang* 

Center for Theoretical Studies, University of Miami, Coral Gables, Florida 
(Received 12 May 1975; revised manuscript received 30 July 1975) 

A solution of the Einstein equation with cosmological term produced by spontaneously broken symmetry is 
presented. The solution implies that the universe will recontract. 

In those years the theories of spontaneously broken 
symmetry and Higgs phenomena have been a topic of 
active investigation in elementary particle physics. 1 

The crucial pOints are that spontaneously broken sym
metry requires a nonzero vacuum expectation value of 
scalar meson, and the vector meson acquires mass 
from Higgs mechanism. These mechanisms have been 
applied to unify the theories of weak, electromagnetic 
and strong interactions. 1 Recently the question of possi
ble relationships between the spontaneously broken 
symmetry and the cosmological constant was raised by 
several authors. 2,3 Their arguments, based on the con
jecture of Zeldovich and Novikov4 are that the vacuum 
value of energy momentum tensor T", v appears in the 
form of a cosmological term in the vacuum field 
equations. 

In this paper, a solution of the Einstein equation with 
cosmological term produced by spontaneously broken 
symmetry is presented. The solution is shown to be 
consistent with the conjecture of Zeldovich and Novikov. 
The implications of the result are discussed. 

Let us consider a system of the triplet scalar and 
80(3) gauge fields coupled with the gravitational field. 
The action of the system can be written as5 

13 = - ~ f r-g(D"'QaD", Qa) - ~ f..L 2Q~ - tA(Q~)2. 

where A is the cosmological constant and 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

Wa and Qa are a triplet of vector fields and scalar fields 
respectively. We choose the parameter f..L 2 to be nega
tive so that field Q yields a nonzero vacuum expectation 
value: 

(9) 

Now we ask for a solution of the field equations that 
is static and spherically symmetric, i. e., 

(10) 
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Following the ansatz of Wu and Yang, 6 we can write Qa 

and Wla as 

Qa(X, t) = x"Q(r), 
(11) 

WI.(X, t) = E lab xbW(r), 

where Elab is the usual E symbol. The most general static 
and spherically symmetric tensor g",v in the cartesian 
coordinate is shown to be of the form 7 

goo = - QI(r), gOI = 0, 
(12) 

glj = I)lj - (1 - f3)x l x j /r, 
where QI and f3 are function of r only. After some alge
bra, the Lagrangian L becomes 

L = _ 47Tf r2{QI'1/2(~~~) ()1/2 + ~QI'1/2(~;) ()1/2 

_ ~ Ql1/2(df3)f3'3/2 +!. Ql1/2 f3'1/2 _!.QI'3/2(dQl)2 f3'1/2 
r dr r2 2 dr 

x(~~r +4(j -1) W 2 
+%Q

2 

+rQ(~~)+2er2WQ2 +}(~ -1) Q2 +r(~ -l)Qe~) 

+ r2(dQ )2 + !.(..!. _1) r2 fd Q )2 
2 dr 2 f3 \dr 

+ e2r4W2Q2 _ A:2 r2Q2 + ~r4Q4 _ 2A ]}. 

The field equations can be obtained from Eq. (13) by 
varying QI, f3, Q, and W. The final forms are 

Copyright © 1976 American Institute of Physics 
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+4W 2 +-+rQ - +- - a Q2 (dQ) r2 (dQ) 2] 
2 dr 2 dr ' 

~[2J3-'0(~~)+4J3-' y3W] a ' / 2 J31/ 2
} 

= [4r2W+6er4W 2 +2e2r SW3 +4J3-1r3(~~) 

+8J3-1r2W +2er4Q2 +2e2r SWQ2]a 1/2 13' / 2, 

d~ {fl y3Q + 13- 1 r4e~)Ja1/2 13' /2} 
= [2Qr2 + 4er4WQ + J3-1Qr2 +y3 t:r1(~~) 

+2e2r 6 W 2Q _ iI.[2 r4Q +} rSQ3] a'/2 13' /2. 

It is easily verified that 

W(r)=-I/er2, 

Q(r)=F/r, 

a(r) = J3-1(r) = 1 - 2m/r + 1/4e2y2 
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(14) 

(15) 

(16) 

(17) 

(18) 

is a solution of Eqs. (9) and (14)-(17). The cosmologi
cal constant is found self-consistently to be 

A = - te Ar (19) 

The following remarks on the above solution are in 
order: 

1. Solution (18) reduces to the t'Hooft's magnetic 
monopoles in flat space -time. 

2. The cosmological constant A is consistent with that 
of Dreitlein. 3 Thus, if the universe at the present epoch 
is isotropic, the result indicates that the universe will 
eventually contract, as has been pOinted out by 
Dreitlein. 3 

Recently Coleman and Weinberg9 have investigated 
the possibility that radiative correction may produce 
spontaneous symmetry broken down. In that case, the 
radiative correction can be viewed as the dynamical 
origin of cosmolOgical term. This problem is under 
investigation. 
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Bethe-Salpeter spinor equation at Pp. = 0 and SO( 5) spinor 
spherical harmonics * 

E. G. Floratos 
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We study the B-S equation. in the ladder approximation, for the zero energy bound states of a spinor and 
a scalar particle interacting via the exchange of a massless scalar particle. Constructing and using a 
complete set of SO(5) spinor spherical harmonics. we find the SO(5) degenerate spectrum of the coupling 
constant and the bound state amplitudes up to a normalization constant. It turns out that the S0(5) 
symmetry is broken by these amplitudes in a peculiar way. 

I. INTRODUCTION 

During its long story, the Bethe-8alpeterl relativistic 
covariant equation has been proved2 a useful theoretical 
laboratory for attacking, in the framework of the quan
tum field theory, the two particle interaction problem. 
Many authors, studying the asymptotic behavior of the 
em form factors of the nucleon, have considered the 
nucleon as a bound state of a spinor-scalar particle 
system, interacting by the exchange of a massless 
scalar particle and have found good agreement with the 
experiment. 3_6 However, the above bound state problem 
has not yet been solved exactly but has been considered 
only for the asymptotic behavior of the bound state am
pUtudes. Until now we have analytic solution only for the 
the spectrum of the coupling constant, for zero energy 
of the bound states. 7 

In this paper we study in the latter approximation the 
zero energy bound states of the spinor-scalar particle 
system. In 8ec. II we write down the B-8 equation for 
spinor bound states in momentum space and we trans
form it using the stereographic projection method. 8 In 
8ec. III we construct the appropriate for the problem, 
five-dimensional spin or spherical harmonics which are 
bases for the (e = N + ! ,/= !)9 irreducible representa
tion spaces of the 80(5) group. In 8ec. N we find the 
bound state amplitudes up to a normalization constant 
and the known spectrum of the coupling constant. 

II. B-S EOUATION FOR SPINOR BOUND STATES 

We suppose that the interaction between the spinor 
(spin ~) particle <p and the scalar particle ¢ is due to 
the exchange of a massless scalar particle a that comes 
from the interaction Lagrangian 

(2.1) 

The corresponding bound state B-8 equa.tion in momen
tum space and in the ladder approximation is the 
following: 

[m2 - (1PB + p)2J[m + (iJln -p1]X(P;P ) 
B 

= ia f d4 X(q;PB) 
1T2 q (q _ p)2 + iE ' (2.2) 

where PB is the bound state four-momentum, a= >.g/ 
16r, and we have taken the equal mass case t.Yl</J = m. 
=m. 
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Going to the rest system of the bound state and choos
ing the mass units so that m = 1, we obtain after the 
Wicklo rotation 

(1 - EV 4 - ipoEB + p2)[1 + (EB/2 - ipO)yO - ip 0 Y]X(p;EB) 

= (a/1f)j ~qX(q;EB)/(P-q)Z, (2.3) 

where the metric is now Euclidean p2 = P; + pi + p~ + P; 
and {Y", Y"}= 20"", ll,v=0,1,2,3. If we use 80(4) spinor 
spherical harmonics, 7,11 we cannot, except when EB=O, 
separate even the angular variables from the radial one, 
because the (EB/2)yO, iPoEo terms do not commute with 
the space-time generators of the 80(4) group. Although 
we study the EB = ° case, instead of using the 80(4) 
spinors, and obtain a coupled system of two integral 
equations for the radial dependence, we shall investi
gate in what way the spinor character of the problem 
has changed the known 80(5) symmetry of the scalar
scalar case at EB = 0. So we apply the usual stereo
graphic projection of the four-dimensional Euclidean 
momentum space on the surface of a five-dimensional 
sphere unit radius: 

In these variables the volume element of the momentum 
space is connected with the surface element of the 
sphere by the relation 

(2.5) 

Introducing the above transformation into Eq. (2.3), we 
obtain for EB = 0 

(y5 _ 'if)Y(7) = (a/ 41T2)y5 J d!15WY(O/(1 - ~ 07), (2.6) 

where 

(2.7) 

and 

(2.8) 

From the form of Eq. (2.6) we see that the appropriate 
80(5) representations are the spinor ones and especial
ly those which are obtained from the coupling of the rel
lative orbital angular momentum of the interacting parti
cles and the spin of the spinor par tic Ie. 
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III. SO(5) SPINOR SPHERICAL HARMONICS 

In this section we construct the appropriate, for the 
problem, SO(5) spinor spherical harmonics. As is 
known 9 the irreducible unitary representations of the 
SO(5) ~roup are classified according to the values of 
two Casimir operators 

C
1 
= iMab,'I{ab and C2 = waw·, 

where 

(3.1) 

with Eahed' the complete antisymmetric tensor of five 
dimensions, and the M ab are the SO(5) generators which 
obey the following Lie algebra: 

[Mab,MedJ = i((jadMbe + I5beMad _l5abMcd _I5 CdM ab ), 

a,b,c,d= 1,2, ... ,5 (3.2) 

where l5ab is Kronecker delta. The reduction of the SO(5) 
irreducible representation in SO(4) ones is controlled 
by two integers or semi-integers simultaneously, e,/ 
such that e ~ j~ 1. This reduction is 

where li is, the following set: 

li = {UUj2) I : jl + jz + 1 = j,j + 1, ... , e - 1, e, 

jl - j2 = 1 - j, 2 - j, ... ,j - I}. 

(3.3) 

(3.4) 

On these spaces the two Casimir operators C 1> C2 act 
as follows: 

CIB.d = rete + 1) + j(j - 1)- 2JH • .I' 

C2He.t = rete + l)j(j -l)]H',f" 

(3.5) 

(3.6) 

Knowing that the orbital angular momentum in SO(4) 
language is characterized by the pairs (j,j), j=n/2, 
n = 0,1,2, 00 " and the spinor particle in its rest frame 
by (i,O)EB(O,i),lI we see that the representations which 
concern us are determined by the relation 

I
· . 1 1 h -h =2' (3.7) 

Indeed this relation restricts completely the j to the 
value j = ~, but the e can take all the values: 

e = N + ~ , N = nmru = 0, 1,2, ••. . 

We construct the bases of the SO(5) irreducible spaces 
(j= ~, e = N + ~), considering the following representa
tion of the Mab: 

where 

M~~=i (17a o~b _1)b o:a), 
a,b=1,2,3,4,5. 

As bases of the SO(4) irreducible spaces we take those 
restricted by I jl - j21 = i, that is characterized by the 
pairsll «n± 1)/2,n/2) and (n/2, (n± 1)/2). These are 
known inatwo component formalism. 7,11 ~onowing 

Rothe, 11 we denote the bases by Z,.. and Zn~ respective
ly, omitting the SO(3) indices. These are functions of 
the polar angles of the four-dimensional EUClidean 
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space °2 , 0u 4>: 

P4=pcos82 , p"p,,=p2
, J.I.=1,2,3,4 

P3=P sin 82 cos 81 , 

P2 = P sin 82 sin 81 sin4>, 

Pl=psin82 sin 81 cos«/.>, 

and they satisfy the following identitiesl2
: 

(P IL uIL )Zn~ = ipZ(nd)'" 

(PIL u)Zn~= - ip' Z(nd)'" 

.- [d (n+1+1)] 
(uIL ' a IL)Zn~= ZZ(,..IH dp 'I' P , 

_ - [d (n + 1) 'I' 1] 
(u,,·a)Zn~=-iZ(n~I)~ dP'f p , 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

where uIL =(U,U4 ), O"IL=(U, -(4 ), U= (UU u2 , ( 3 ) are the 
Pauli matrices, u4 =i, and OIL = %p". Now because we 
are using a four-component formalism we construct the 
four -component analog of the Z's. These are normalized 
on the surface of four-dimensional sphere: 

(3.14) 

(3.15) 

where j, J.I. are SO(3) indices and P denotes the set of 
angular variables °2 , 0u 4> which determine the direc
tion of the vector P IL' 

First it is straightforward to show that In, ±), In, ±)* 
satisfy analogous relations to (3.10)-(3.13): 

Jlln,±),,=pln±l,'f);, (3.10') 

JI In, ±); =P In± 1, 'f)", (3,11') 

~In,±) = [.i. 'I' (n+ 1'1'1)] In±l,'f)t, 
" dp P (3.12') 

I * [d (n + 1'1' 1 )] I /J n, ±)p = dp 'f P n± 1, 'f)p, (3.13') 

wherejl=PILYIL , /J=YILo IL , and 

Yo = [I 0 J ' y= r 0 iO"l. 
o - I l:- iO" OJ 

Now using the fact that, Zn,,' Zn" are bases for the SO(4) 
irreducible spaces «(n±1)/2,n/2) and (n/2,(n±1)/2) 
respectively,l1 we can easily obtain the action of the 
Casimir operators of the SO(4) group, in the represen
tation (3.7)-(3.8) on the In, ±), In, ±)*, and we find that 
they belong to the same representations that is to the 
«n ± 1)/ 2, n/ 2), (n/2, (n ± 1)/2), the only difference lying 
in the number of components. 

Finally going to a polar coordinate system of the five 
dimensional Euclidean space, 

7/5 =17 COSW, 7/ IL = 17sinw17IL' J.I.= 1,2, 3,4, (3.16) 

where ~" is a unit 4-vector with polar angles (82 ,81 ,«/'», 
and defining the functions 
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IN, n, ±, j, 11\ '= SG N,n(W) • In, ±, j, Il)~, 

IN,n, ±, j, Il)~ '= SGN)w) In, ±, j, Il)~, 

where 

SG (w)= [(N+3/2)(N-n)!]n / 2 p'J:!t(cosw) 
N ,n (N + n + 2) ! sinw 

(3.17) 

(3.18) 

(3.19) 

we solve the eigenvalue problem for the first Casimir 
operator C1 of the 80(5) group for e=N+~, f=~ [(3.5)]. 
In the representation (3.7)-(3.8) the C1 operator is 

C l = Cl,o + 11,0 + (i/2)M"O:( ySy" - y"'lS) + 1, 

where 

(3.20) 

and a, b = 1,2, 3 , 4 , 5, 11, v = 1, 2 , 3,4. If we denote by n 
the operator 

D'= (i/2)il,f5O:('l5 y" _ Y"yS), 

we can find, using the relations (3.10/ )-(3.13/ ), the 
action of the oper ator D on the functions (3. 17) - (3. 18): 

DIN, n, +, j, 11)"= - wN,n I N, n + 1, -, j, Il)~, 

nIN,n, -, j, 11)"= WN,n_lIN,n -1, +, j, Il)~, 

DIN,n, +,j,Il)~=wN,nIN,n+l, -,.1,11)", 

(3.21) 

(3.22) 

(3.23) 

nIN,n, -,j,Il>~=-wN,""lIN,n-l, +,j,Il>", (3.24) 

wherew N =[(N-n)(N+n+3)]1 /2. 8incethefunctions 
(3. 17)_(3,.nI8 ) are eigenfunctions of the operators C1 0, 

11> II 0 we find that the required normalized eigenfun~
tions'of C1 for (e=N+~, f=~) will be eigenfunctions of 
the C2 too and will be of the following form: 

IN, +, «n+l)/2,n/2),j,Il)" 

",cN,nIN,n, +,j,I1)"+DN,nIN,I1+1, -,j,I1>~, (3.25) 

IN+ 1, -, «n+ 1)/2,n/2), j, 11)" 

'" n N+1,n IN + 1, n, +, j, 11)" - C N+1,n IN + 1, n + 1, -, j, Il)~, 

(3.26) 

IN, +,(n/2,(n+1)/2),j,/1)" 

,=DN,nIN,n+1, -,j,Il)"-CN,nIN,n,+,j,Il)~, (3.27) 

IN+l, -, (11/2,(n+l)/2),j,Il)" 

'= C N+1,n IN + 1, n + 1, -, .1, 11)" + D N+l,n I N + 1,17, +, .1, Il)~, 

(3.28) 

where 

C _(N+n+3)1/2 
N,n- 2N+ 3 ' (~) 1/2 

2N+ 3 

and the indices run as follows: 

n=0,1,2, ... ,N, j=O,I,2, ... ,17, 

1111=0,1,2, ... ,). (3.29) 

In the Appendix we show that the constructed (e = N + ~, 
f=~) 80(5) spinor spherical harmonics satisfy the fol
lowing useful relations: 
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1ifIN,+/~=-IN+l, -I", 

1if IN + 1, -I" = - IN, +)", 
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(3.30) 

(3.31) 

'lSIN, +,«n+ 1)/2,n/2»" 

= - [PN.n I N, +, «n + 1)/2, n/2»" 

+ erN ,n \ N, -, «n + 1 )/2, n/2»"], 

'lSIN+ 1, -, «n+ 1)/2,n/2»" 

= - [erN+1•n \N+ 1, +,«n+ 1)/2,n/2»" 

- PN+1,nIN+ 1, -, «n+ 1)/2,n/2»"1. 

yS \ N, +, (17/2, (n + 1)/2»" 

=-[-PN,nI N , +,(n/2,n+l)/2»n 

+ erN,n I N, -, (n/2, (n + 1)/2»"], 

y5\N+ 1, -, (n/2,(n+ 1)/2»" 

=-[erN+1,n\N+l, +,(n/2,(n+l)/2»~ 

(3.32) 

(3.33) 

(3.34) 

+PN+1,n!N+l, -,(n/2,(n+l)/2»)"], (3.35) 

J dSG 5W IN, ±)I/ (1 - ~ 0 n) = [81T2/(N + 1)(N + 2)J I N,±)n, 

where 

iJ~ ",yo, a ~ 1,2, 3,4,5, y' ~ Y'Y'YV o {: ~ J 
and 

PN,n=(2n+3)/(2N+3), aN,n 

= 2[(N - n)(N + n + 3)]l/2/2N+ 3. 

(3.36) 

(3.37) 

In the above relations we have omitted 80(3) or SO(4) 
indices where they were unnecessary. 

IV. SOLUTION OF THE 8-S EQUATION AT E8 = 0 

In this section we solve the B-8 equation in the form 
(2.6). Considering Eq. (2.6) and the relations (3.30)
(3.36), we are sure, first of all, that the known SO(5) 
symmetry of the Wick-Cutkosky model for EB = 0 here 
is absent, but it is obvious that there is SO(4) sym
metry. For this reason the bound state amplitude must 
be of the form 

Y(7])= 6 (XN,nIN,+,«n+l)/2,n/2»n 
N~No 

+ YN,nIN+ 1, -,«17+ 1)/2,n/2»"J 

or of the form 

1'(7])= 6 (XN.nIN, +,(n/2,(n+l)/2»" 
N;;!:.N o 

(4.1) 

+ YN,nIN+1, -,(n/2,(n+l)/2»n]' (4.2) 

where No'" n. 

Introducing the first form into Eq. (2.6) and using the 
relations (3.30)-(3.36), we find the recursion relations 

[
X

N
+
1
,nJ 1 l-! PN+l,n J [XN,n] Y -0 -__ N+l 

NO' n -, Y - a . Y , 
N+l,n N+l,n PN+l,n 1 _ aN+l N," 

(4.3) 

where 

N>-No, aN =(No+l)(No+2)/(N+l)(N+2), 

and PN,n' aN,n are given in (3.37). 
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The solution of the recursion relation (4.3) is 

[

1/ (1 - ak+1) 

Plt>l,n 

For the spectrum, if X N n"* 0, we obtain 
0' 

a=t(No+l)(No+2), No=0,1,2,3, '00. 

(4.5) 

(4.6) 

If we substitute the second form (4.2), we find the same 
spectrum, but now the solution of the corresponding "re
cursion relation is 

(4.7) 

V. CONCLUSIONS 

The use of the SO(5) spinor spherical harmonics, 
which are bases for the classf=t, e=N+t, N=O,I, 
•• 0, of the unitary irreducible representations of the 
SO(5) group, has given us in a natural way the spectrum 
of the coupling constant for EB = 0 and the bound state 
amplitudes. 

The spectrum is SO(5) degenerate and coincides with 
that of the Wick-Cutkosky model, but the SO(5) sym
metry is broken for the bound state amplitudes. This 
is due to the presence of the spin in the Yukawa type 
interaction. 

The normalization problem13 at EB =: 0 requires the 
knowledge of the coupling constant dependence from E B 

in a neighborhood of the point EB = O. In the framework 
of our treatment, at least, this is rather cumbersome 
to obtain because it requires diagonalization of perturba
tional terms which break even the existing at EB = 0 
SO(4) symmetry of the interaction. 
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APPENDIX 

In this appendix we prove the relations (3.21)-(3.24) 
and (3.30)-(3.36). First from the representation 
(3.8) of the operators ~o: we find that the operator D 
has the form 

(AI) 

where 4~ = YjJ.o/ a1)", il= YjJ.1) ... , M = 1,2,3,4. Using the 
polar coordinate system (3.16) and the relations (3.10')-
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(3.13'), we find 

DIN,n, ±)~ 

= [sinw--
o
-±(n=fl+1)cotW]ON (w)ln±l,=f)*, (A2) ° cosw ,n 

DIN,n,±): 

= - [sinw-
o- ± (n 1'1 + 1) cotW]ON (w) I n± 1, 'f). o cosw ,n 

(A3) 

The definition of ON,n(W), (3.19), and the recurrence 
relations of the Legendre functions (3.8), (11), (13), 
(14), (19) of p.161 of Ref. 14 permit to us to extract 
the required relations (3.21)-(3.24). For the relations 
(3.30)-(3.31) we have to observe that 

Ysln, ±)=-In,±), (A4) 

Ysln, ±)*= In, ±)"' (A5) 

and that, for n.1)a=l, a=1,2,3,4,5, 

1j IN, ±)= [cosw"Ys + sinw(ry>J] 'IN, ±), M= 1,2,3,4, 

(A6) 

Where 11jJ. is the unit four-vector in the relation (3.16). 
Using the relations (A4), (A5), (3.10')-(3.13'), (3.25)
(3.28), and the recurrence relations (3.8) (12), (13), 
(14) of p.16l in Ref. 14, we find the truth of (3.30) and 
(3.31). 

For the relations (3,32)-(3.35), we solve the rela
tions (3.25)-(3.26) with respect to IN,n, ±), IN,n, ±)*, 
and using (A4)-(A5), we substitute them in the action of 
yS on the IN, ±)'s. 

For the relations (3.36) we observe that15 

f dOsWYNnlm(~)/(l- ~. n)= [87T2/(N+ l)(N+ 2)]YNnlm(n), 

(A7) 

where YNnl"'(~) are the five-dimensional spherical har
monics. Because our IN, ±) are columns of linear com
binations of such functions for different n, l, m, we see 
immediately the truth of the relations (3.36). 
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Asymptotic solutions and conservation laws for the 
nonlinear Schrodinger equation. I 

Harvey Segur and Mark J. Ablowitz 

Clarkson College of Technology. Potsdam. New York 13676 
(Received 26 September 1975) 

In the absence of solitons. the nonlinear Schriidinger equation has an asymptotic solution which decays in 
time as t- 1I2

, and contains two arbitrary functions (in the amplitude and phase, respectively). For 
appropriate initial data, the amplitude function is uniquely determined in terms of the initial data by the 
conservation laws; the other function is undetermined. This method determines the leading two terms in 
each of the asymptotic expansions for the amplitUde and phase, but no more. The method makes no direct 
use of th Marchenko integral equations. 

INTRODUCTION 

The "method of inverse scattering" has been applied 
to a number of special nonlinear partial differential 
equations (e.g., see Ref. 1), including the nonlinear 
Schrodinger equation2,3 

(1 ) 

Here a = ± 1, and the two equations have significantly 
different solutions. If a = + 1, the equation has an N
soliton solution,2 and the general solution consists of 
solitons (and bound states) traveling in a background of 
dispersive, decaying oscillations. As shown in Ref. 1, 
no permanent waves can arise if 

J~ iu(x,O)idx<O.904, 
-~ 

(2) 

and the solution that evolves from such initial data con
sists entirely of decaying oscillations. If Q! = - 1, any 
initial data that vanish as Ix 1- 00 evolve into decaying 
oscillations. In either case, the oscillations are as
sociated with the continuous spectrum. 

The detailed asymptotic structure of the oscillations 
was examined for the KdV equation in Ref. 4, and for 
the nonlinear Schrodinger equation in Ref. 5. In the 
former paper, we have found an error in the evaluation 
of certain integrals. We shall discuss this later. In 
both of the above papers, attention was restricted to the 
cas e of no solitons and the authors examined the 
Marchenko integral equations in the limit t - 00. 

In this and the companion paper (I and II) , we deter
mine the asymptotic solution to (1) by an alternative 
method which uses the conservation laws rather than the 
integral equations. In the simplest case of no solitons 
(I), this method reproduces (in a slightly stronger form) 
the results obtained in Ref. 5. If a = - 1, this is the 
general asymptotic solution. If a = + 1, this is the 
asymptotic state only if the initial data are "small, " in 
the sense of (2). Without such a restriction, the asymp
totic state contains both solitons and decaying oscilla
tions, and is discussed in the following paper. 6 

II. ASYMPTOTIC SOLUTION 

There is a closed form similarity solution7 to (1), 

( ) -112 {.J1(x)2 2lnt ¢J} u x, t = t A exp zt L'4 t + 2aA -t- + t . 
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Guided by this solution, we seek another solution to (1) 
in which A, ¢ are slowly varying. The appropriate ex
panSion turns out to be 

u(x, t) =r1/2R exp(itB) , 

R(~,t)=f(T) + E E (l~~)k fnk(T) , 

o(y,t) =~(Yr + EE (In:t On.(Y) , 
where R, 0 are both real-valued functions. By direct 
substitution into (1), one finds that 

f(x, t) arbitrary, 011=2a/, 

fl1 =4 Q!f[3{f')Z +ff"] , eto =g(x/t) , arbitrary 

(3) 

fl0=fg"+2g'j' ezz =16{fj')2, (4) 

+ 4 af[3{f'}2 + ff"], e21 = 2f[f'g' - 8{f(f,)2 + f2f'?] , 

The expansion in (3) can be carried to any desired order 
in n. All the subsequent coefficients in the expansion 
can be found explicitly in terms of two arbitrary func
tions, f(x/O and g(x/t). The two functions are unre
stricted by Eq. (1), and are expected to be fixed by the 
initial data. In the subsequent analysis, we assulile 
that the solution of (1) evolves from appropriate initial 
data into forms (3) and (4). We show that the conserva
tion laws uniquely determine f, but place no restric
tions on g. The SimplectiC form in the Hamiltonian 
formulation of this problem suggests what g might be, 
but this conjecture cannot be proved by this approach. 

III. CONSERVATION LAWS 

Zakharov and Faddeev8 noted that for the KdV equa
tion, the infinite set of conserved quantities can be 
identified with certain moments of the scattering data. 
This identification has since been shown to be a general 
property of inverse scattering problems, 9-12 and is 
summarized below. The key ingredient that is added 
here is to observe that if the conservation laws are 
written in terms of the asymptotic solution, (3) and (4), 
then this infinite sequence of equations uniquely deter
mines f(x, t), the asymptotic amplitude. 

We review here certain aspects of the inverse scat
tering solution of (1); complete details are given in 
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Refs. 1 and 2. We assume throughout that the initial 
data u(x, 0) is infinitely differentiable and vanishes 
rapidly as Ix 1- 00. The associated linear eigenvalue 
problem is 

Vlx +i!;v l =UV2, (5) 

V2x - i!;v2=- au*vl' 

Two linearly independent solutions (not complex con

jugates) are defined by i 
¢(x, t) - (~) exp(- itx), x-- 00. 

<P(x, t) - (~l) exp(itx) , 

The scattering data are then defined by 

(
a(t) exp(- itX») 

¢ - bet) exp(itx) , 
x-+ oo • (6) 

;;; _ [b(?;) exp(- i!;x)\ 
\- aCt) exp(itx)/' 

The time dependence of the scattering data can be 
written 

a~ (lna)=o=a~ In(1_al~12), 
a~ (argbW)=4~2, 

by making use of the identities (for real ~) 

aa+bb=1, b=-ab*, a=a*. 

(7) 

In the absence of any discrete spectrum, lna(~") (lna(t» 
is analytic in the upper (lower) half-plane, vanishes 
as It! - 00 there, and is a constant of the motion. An 
asymptotic expansion of Ina for large t gives the infinite 
set of conserved densities2 

Ina(t) = t (2ittnCn, 
1 

where 

C n = 1.: dn(x) dx, 

d l (x) = a lu(x) 12; 

and for n ?- 1, 

As examples, the next two conserved quantities are 

C 2 == f_: (au u~) dx, 

(8a) 

(8b) 

(8c) 

(8d) 

(9) 

A second asymptotic expansion of Ina yields the 
"trace formulas. " Based on the analytic properties of 
Ina and Cauchy's integral theorem, it is not difficult 
to show that 

1 '" 
Ina = +-. :0 t-n 

2m 1 

(10) 

It follows from (8) that In[1- a I (b/a) 12] is transcenden
tally small as ! 1; ! - 00, so that all the integrals in (10) 
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converge. Equating coefficients in (8a) and (10), one ob
tains for n = 1,2, ••• , 

(2i)-nC n =;: (27Ti)-t f: i;n-tln (1- a I~ j2)di;. (11) 

These identities were first obtained (for KdV) in Ref. 7. 

The conserved quantities Cn, when written in terms 
of the asymptotic solution, (3) and (4), take on a simple 
form. The first three are 

C l =0' f: f2(i) d(i), 
C2 = a f: (~t) f2(7 )d(7) , 
C3 =O' f: (2:tYf(i)d(i)· 

We clain that every conserved density has the form 

Ix) n-l (x) (lnt) 
dn = a \2it f"[ + 0 -t- . 

(12) 

(13) 

The proof is by induction. Certainly d l , d 2 , d 3 obey (13). 
If the first n conserved densities obey (13), then it 
follows from (8d) that dn• l does as well. Consequently, 
the identities (11) become, for all n ?- 1, 

a f: (~:r-lf(i)d(T)=; f: 1;n-l1n(1-O'I~Wn di;. 

(14) 

This infinite set of moment equations can be satisfied 
only if 

~=-x/4t, (15) 

f(- 41;)= 4~ In(1- a \~W n· 
Equations (15), along with (3) and (4), completely re
late the leading two terms in the asymptotic solution 
of (1) to the initial data. Combining these results, we 
obtain 

U(x, t) = t-1I2R[ (x/t) , t] exp{ite[ (x/ t), t]}, 

where 

and 

1 (X)2 Ix) Int (1) 8='4"[ +2O'f\"[ -t-+ O "[ , 

R=f(i) +4O'~i)[3(f'U)Y 
+f(nr{i)] l~t +o(i), 

(16) 

This is the main result in this paper. In Ref. 5, the 
first terms of these series [(16b) and (16c)] were ob
tained, but (16d) was only obtained in an integral sense. 
Those results, combined with Eqs. (3) and (4), are 
exactly equivalent to (16). 
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IV. INVERSE SCATTERING AS A CANONICAL 
TRANSFORMATION 

In the Hamiltonian formulation of inverse scatter
ing,8-t2 In[l- a 1 (b/a) 12] is shown to be an action vari
able, and therefore a constant of the motion. Equation 
(15b) suggests that the asymptotic amplitude also can 
be considered an action variable. We now pursue this 
line of reasoning, which suggests (but does not uniquely 
determine) the relation between g(x/t) and the initial 
data. With 

(17) 

three canonical formulations of (1), or equivalently of 
(7), are 

Pt=u*, Qt=iu, Ht =.(lux I2-aluI 4)dx, (18) 

(19) 

p = ~ In (1 _ a /~ /2), q = argb, 
(20) 

K = ~a f~~ ~2In(l- a I~ 12)d~. 
The transformation between (18) and (20) was shown to 
be canonical in Ref. 12, and one easily verifies that the 
Poisson brackets between (18) and (19) are invariant. 
It follows that all these transformations are canonical, 
and preserve the simplectic form: 

(21) 

where lit, 02 refer to independent variations. For (20), 
this form is 

For (19), using (3) and (4), we obtain an infinite 
sequence of forms, asymptotically ordered in t. Within 
these forms, there are only three independent varia
tions, involving!(x/t), g(x/t), and t. The first nontrivial 
form in this sequence is 

and all others vanish asymptotically. Equating these 
two forms and using (15), one obtains 

f: d [In (1- a \~ \2) JAd(g(- 4 ~) + argb(~» d~ = 0. (22) 

It is tempting to conclude that 

(23) 

and this is a possible solution. Another possibility is 

(24) 

which will be convenient below. In fact, (22) allows us 
to add to g(x/t) any function of f(x/t). Practically, this 
means that the first two terms in the expansion (3) can 
be determined from the initial data, but that no higher 
terms can be obtained by this approach. 
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V. DISCUSSION OF RESULTS 

Let us first relate the results obtained here to the 
solution of the linearized problem. In the linear limit, 
where 

u(X,O)=Eq(X), E«1 and .C Iqldx=O(I), 

one can show thatt 

aW= 1 +O(E2), 

b*W =- w r)(x) exp(- 2i~x)dx +O(E3) (25) 

=-Wq(-2~)+O(E3). 

Choosing (24), and expanding in power of 1 b/ ai, our 
result can be written 

u(x,t)=- (41Tt)-1I2~: (- ttj(t_*\~\2 + ... ) 

xexp{i[~ (if -~ + :1T /~ f2 lnt + ... J}. (26) 

For comparison, one could linearize (1), solve the 
linear equation by Fourier transforms, and evaluate the 
results asymptotically by stationary phase. The result, 
after using (25), is 

u(X,t)~-(41Ttt1l2~: (-:t)exp{{~(ir-~J}. (27) 

A comparison of (26) and (27) yields several conclu
sions. First, the justification for the choic e (24) is 
that it is consistent with the linear result. Given this 
choice, the linearized limit of the nonlinear solution 
reproduces the linear solution exactly. Second, the 
appropriate small parameter for this linearization is 
max( 1 b/a I), or 

J~ lu(x,O)ldx«l, (28) 
-~ 

rather than any local amplitude. Third, (15a) can be 
interpreted as defining the group velocity, a concept 
which is ordinarily associated with linear problems, 
but which appears naturally in the solution of this non
linear problem. Thus, the "nonlinear" part of this 
problem consists of mapping the initial data into trans
form space. The subsequent evolution of the oscillatory 
waves is essentially linear. 

Next, we wish to comment upon the asymptotic eval
uation of the Marchenko integral equations in Ref. 4. 
We have found that there are errors in the stationary 
phase calculation of certain multiple integrals in the 
OSCillatory region of KdV (there are also regions of 
exponential decay, and similarity). Due to these errors, 
the results in Ref. 4 are incorrect in this region. In 
the nonlinear Schrodinger equation, the asymptotic 
state (without solitons present) is decaying oscillations 
on - 00 < x < 00. The methods in Ref. 4 apply formally, 
but the correct stationary phase evaluation of the re
sulting integrals makes the calculation extremely 
complicated. 

A typical integral one has to compute in the oscilla
tory region is 
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[
00 100 lnt q(x,y) exp(ixyt) dxdy - iq(O,O)-t-' 

o 0 t- 00 
(28) 

Due to the fact that the stationary point lies at x = y = 0, 
and to the form of the rapid phase, we have a logarith
mically larger contribution than one usually obtains 
by conventional multidimensional stationary phase. 13 In 
Ref. 4, the leading terms were found by multiplying the 
standard stationary phase result by a factor depending 
on the dimension of the corner. This is true only if the 
rapid phase in the integrand is a "center" (see Ref. 13), 
and is oscillatory on the boundary. 

In order to correct the results in Ref. 4, one must 
keep the lntlt and lit terms in each of the integrals. 
Whereas the procedures suggest an asymptotic solution 
such as (3), the detailed analysis is quite complicated. 

In summary, when no solitons exist, the asymptotic 
solution of (1) has a linearlike structure: waves propa
gate with their (linear) group velocity; the decay rate 
(ri /2) can be attributed entirely to (linear) frequency 
dispersion. The dominant nonlinear effects comes in 
mapping the initial data into transform space. This 
asymptotic solution can be obtained either by solving 
the integral equations approximately or, as demon
strated here, by utilizing the infinite set of conservation 
laws. 

In terms of the method, the asymptotic (t- co) form 
of the solution contains two arbitrary functions, related 
to the amplitude and phase. The conservation laws de
termine the leading contribution to the amplitude. The 
leading two terms in the phase are found explicitly, but 
the third term, which is 0(1), is not. 

It is well known that the conservation laws are related 
to the action variables (cf. Ref. 8), which are "half" 
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the information needed to solve the equation. It is re
markable that it is exactly this half of the information 
which determines the asymptotic amplitude. The other 
half, the angle variables, give some information about 
the asymptotic phase, but no explicit formulas. 
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We find the dominant asymptotic behavior of the solution of the nonlinear Schrodinger equation when 
there is one soliton and decaying oscillations. The solution behaves like the soliton near the soliton, and 
like the solution found in the preceding paper (I) elsewhere. The method of solution uses the conservation 
laws, rather than the integral equations. 

I. INTRODUCTION 

Asymptotic solutions of the nonlinear Schrodinger 
equation! 

iu t +uxx +2IuI 2u=0, _oo<x<oo (1) 

have been found for several classes of initial data. The 
soliton solution associated with the eigenvalue (~+ i1) 

is 

u(x, t) = 21) exp[i¢(x, t)] sechl/J(x, t), 

where 

¢ = - 2[~x + 2(~2 - 1)2)t] + ¢o, 

1/J=21)(x +4U) +I/Jo• 

(2) 

More generally, N - soliton solutions and multisoliton 
bound states, both associated with purely discrete 
spectra in the related scattering problem, are dis
cussed in Ref. 1. Alternatively, if the spectrum is 
purely continuous, the asymptotic solution consists of 
decaying oscillations, as found in Ref. 2 and in a pre
ceding paper3: 

u(x, t) = r 1l2R[ (x/t) , t] exp{ite[(x/t), t ]}, (3) 

where 

(x) 1 { [b ( x) [2}! /2 (In t) R t' t = 47T In 1 + a - 4t + 0 -t- , 

e(T,t)=~(Tr +o(~t). 
Here (b/ a) is related to the initial data through the as
sociated scattering problem (see Ref. 3). Arbitrary 
initial data, of course, can generate both discrete and 
continuous spectra, and one expects the general asymp
totic solution to be some combination of solutions like 
(2) and (3). 

In this paper we derive the dominant asymptotic be
havior of the solution of (1) which contains both a soliton 
and decaying oscillations. It will turn out that in this 
case the asymptotic solution has the form 

u(x, t) = 21) exp(i¢) sechl/J 

+t-tl2R (ex (ite) (~+x/4t+i1)tanhl/J)2 
p (~+X/4t)2+1)2 (4) 

. . 1)2 sech2lf! ) 
+ exp(2z¢ - zte) (~ + x/4f)2 + 1)2 + 0 00 , 
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where we have used the notation of (2) and (3). Thus, 
the solution behaves as in (2) near the soliton, and as in 
(3) away from the soliton. [The phase of the solution, 
which is not entirely specified by these formulas, may 
differ between (4) and the other two problems Cited.] 

The method employed here also can be applied to the 
case of N solitons plus decaying oscillations, but the 
calculations become unwieldy and have not been per
formed. However, if the N solitons travel with N 
different speeds, the generalization is immediate. The 
solitons separate after a short time, and the long-time 
evolution of each soliton is as described herein. 

As in Ref. 3, the method used to obtain the solution 
uses the conservation laws, rather than the integral 
equations. The leading terms of an asymptotic solution 
of (1) contains decaying OSCillations, whose amplitude 
is an arbitrary constant. This solution is valid 10 cally, 
and there is a neighboring asymptotic solution in which 
the amplitude is an unknown, slowly varying function of 
(x/f). Finally, the trace formulas, when written in 
terms of this asymptotic solution, uniquely determine 
the unknown amplitude function, and thereby the domi
nant asymptotic behavior of the solution. As found in 
Ref. 3, the phase of the solution is not entirely de
termined by this approach. 

II. ASYMPTOTIC SOLUTION 

It is necessary to find a solution to (1) in which the 
leading term is given by (2) and the next term decays 
like 1-112 . In order to do so, one can either perturb 
the soliton solution of the differential equation (1), or 
perturb the corresponding solution of the integral equa
tions. Either method is legitimate; we describe the 
former. 

USing the definitions in (2) and (3), we seek a solution 
of (1) in the form 

u(x, I) = 21) exp(i¢) sechl/J + r! /2 (f(I/J) exp(it£l) 

+g(l/J) exp(2i¢ - it£l» + 0 0 0 • 

(5) 

Substituting into (1), one finds thatf andg must satisfy 
a coupled set of linear ordinary differential equations: 

f" + 2i(a/1)f' + 2 sech21/J(2f +g*) = 0, 

(g-*) II + 2i(a/1)(g-*)' - 2[1 + (a/lJfJg* (6) 

+ 2 sech21/J(2g* + f> = 0, 
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where 

Q! = ~ +x/4t= (l/t)[(1/!-1/!o)/B7)], 

( )* denotes complex conjugate, and we treat (x/t), or 
equivalently 1/!/t, as a constant in this multiple scales 
approach. Equations (6) have bounded solutions 

where A, which determines the amplitude of the oscilla
tions, is an arbitrary constant. 

Thus, to leading order, an asymptotic solution of (1) 
is 

u(x, t) = 27) exp(i</l) sech1/! 

+ rt/2[A (0' + i7) tanh1/!)2 exp(ite) (8) 

+ A *7)2 sech21/! exp(2i</l - itO)] + •••. 

In order to carry this expansion procedure to higher 
orders, A is considered constant with respect to the 
"fast" variables (1/!, </l, te), but can depend on the "slow" 
variable (x/t, or 1/!/t). The expansion generated in this 
way is not uniform in 1/!, and we cannot write the nth 
term of the expansion. Fortunately, none of these terms 
are needed in the subsequent analysis. Henceforth, we 
assume that (8), with A =A (x/t) , is an asymptotic 
representation of the solution of (1) when there is one 
soliton. It remains to determine A (x/t) from the initial 
data. 

III. CONSERVATION LAWS 

If the initial data for (1) is infinitely smooth and 
vanishes rapidly as Ix I - 00, there are an infinite num
ber of constants of the motion, the "conserved densi
ties."t As in Ref. 3, the trace formulas relate these 
densities to the scattering data via asymptotic expan
sions (for large 1;) of lna(l;)o In the case being con
sidered, the spectrum contains one discrete eigenvalue 
(1;0 = ~ + i7), 7) > 0) and a continuous spectrum. The ap
propriate expansion of Ina(l;) is 

(9) 

Meanwhile, the expansion of Ina in terms of the con
served densities is unchanged from Ref. 3: 

Ina (I;) = 6(2nrncn , 
1 

where 

Cn=.Cdn(x)dx, 

dt(x) = lu(x)12, 

and for n? 1 

(lOa) 

(lOb) 

(10c) 

(10d) 

Equating coefficients in (9) and (10), one obtains for 
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n=1,2,3, ... , 

(2WnC
n 
= (I;t)n - 1;0 

n (11) 

+ (27Tit t f~ kn
-

t ln(l + \~(k) \2 )dk. 
It there were no continuous spectrum, one could com

pute, from (2) and (10), the conserved densities asso
ciated entirely with the soliton. For example, 

Ct(x) =47)2 sech21/!, 

c2(x) = 8i~7)2 sech21/! - 87)3 sech21jJt anh1jJ, 

and we denote by cn(x) the integrand for the nth con
served density associated entirely with the soliton. 
Moreover, the integral in (11) would vanish, and the 
densities themselves could also be computed simply 
from (10): 

1~ C (X)dx=(2i)n(I;W-I;O). 
_00 n n 

(12) 

(13) 

When there is a continuous spectrum, the conserved 
densities still take on a simple asymptotic form when 
written in terms of the asymptotic solution (8). Each 
cn(x) is now the leading term in the expansion of the 
corresponding dn(x) , but in each such expansion there is 
an 0(t-1) term whose integral is 0(1). For example, if 
n=l, it follows from (8) and (lOc) that 

dt(x)=Ct(x) +r1l2{ ••• }sech1/! + t-1 IA(x/t) 12 
(14) 

where { ••• } denotes bounded quantities and Ct(x) is de
fined in (12). Integration yields 

(15) 

We claim that every dn(x) has the form 

dn(x) = cn(x) + rl/2{ • •• } sech1jJ (16) 

+ t- 1(x/2it)n-l IA (x/t) 121 ~ + x/4t + i7) tanh1/! 14 + .... 
The proof is by induction, as shown in the Appendix. 
The conserved densities are obtained by integration 

f~ - f~( x )n-tl (X)12 Cn = _~ Cn(x) dx + .~ 2it A t 

X[(~+:tr + T}2rd(T) +0(t"1I2). 
(17) 

Combining (11), (13), (15), and (17), 
n? 1, 

one obtains, for 
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These equations have a unique solution 

II = - x/4t, 

IA(~)12_ J...ln[1+I(b/a)(-x/4t)12] 
t - 41T W +x/4t)2 +1)2]2 . 

(19) 

Substituting this result back into (8), and absorbing the 
unknown phase of A (x/t) into an O(l/t) correction of 8, 
one obtains the asymptotic solution of (1) given in (4). 

As in Ref. 3, Eq. (19a) can be interpreted as defining 
the group velocity of the decaying oscillations. Thus, 
the complete solution, Eq. (4), consists of two distinct 
and largely unrelated parts. First, the soliton is a 
permanent, local and essentially nonlinear wave. It 
cannot be obtained by any linearization procedure. 
Second, the oscillations propagate with their linear 
group velocity, and decay in amplitude because of their 
linear frequency dispersion. Away from the soliton, 
they propagate almost as if (1) were linear. 

IV. GENERALIZATIONS AND LIMITATIONS 

We conclude with two comments about the implications 
of these results about other problems. First, in similar 
problems4,5 methods have been developed and applied in 
which arbitrary initial data are assumed to evolve into 
N solitons (only), and the conservation laws are then 
used to identify these N solitons. It is obvious from the 
results derived here that although the nonsoliton part 
of the solution eventually disappears, it is not true that 
its contribution to the conserved densities disappears. 
Consequently, these methods can only be employed in 
problems in which there is a priori knowledge that the 
solitons contain a large fraction of the total energy 
available in the initial data. 

Second, as pointed out in Ref. 6, the linear eigen
value problem associated with (1) allows a real discrete 
eigenvalue (1:0 = ~ +i1), n=O). In such a case the 
Marchenko integral equations, as derived in Ref. 1, 
become singular. However, the trace formulas used 
here also break down. If we simply take the limit n - 0 
in (4), the solution exhibits a logarithmic singularity 
near xli = - 4~. [Note added in proof: More recent work 
suggests that, in this singular case, the local decay 
rate changes from (1/t)1/2 to (lntlt)1/2. Details will be 
published latero ] It is worth noting that this logarithmic 
singularity, which occurs here as a special case, ap
pears to be a general feature of the oscillatory solution 
of the Korteweg-deVries equation. 

This work was supported by NSF Grant Nos. 
DES75-06537 and MPS75-07568. 

APPENDIX 

We prove by induction that every dn(x) has the form 
given in (16). It was shown in (14) that d 1(x) has this 
form. We assume that each dj(x) (j = l, ... ,n) is of 
this form, and show from (lOd) that dn+1(x) is as well. 
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First, the contribution from the product is 

~ 
2...i CkCn_k + r1l 2 sechiP { ••• } + •.•. 
1 

(A1) 

Second, for the derivative in (10d), we use the notation 

A= (~+x/4t + i1) tanhiP)2, u=21) exp(i¢) sechiP, (A2) 

so that 

dn(x) 

u(x) cn(x) +,-1 (x/2it)n-1IA 121 A 12 + ,-112 sechiP { ••• } + • •• 
= U + r 172 (AA exp(it8) + ••• ) + ••• 

One can show that 

d (dn(X») (u)2(d/dx)(cn/u) 
U dx -U- =u+r172 (AAexp(it8)+ ••• )+ ••• 

(IA 1
2A/t3 12)(x/2it)n 1 A 12A exp(ite) 

+ - + ... 
U + r1l2(AA exp(it8) + ... ) +, .. 

(A3) 

The first term on the right-hand side is Significant only 
near iP = O. In this region, the leading contribution of 
the first term is 

(A4) 

and the second term provides only a higher-order cor
rection to this term. Far away from I/J=O, the first 
term vanishes, u vanishes, and the second term 
becomes 

(A5) 

Collecting terms from (AI), (A4), and (A5), one obtains 

dn+1(x) =u d~ (~n) + ~ CkCn_k 

+t- 1 IA 1
2(-2:t)n IA12 + ... 

=Cn+l(X) +rl[A 1
2(-2:t)" 

x[(~+ 4~r + 1)2 tanh
2I/Jr + .... 

This completes the proof. 

(A6) 
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All subalgebras of the Lie algebra of the de Sitter group 0(4,1) are classified with respect to conjugacy 
under the group itself. The maximal continuous subgroups are shown to be 0(4), 0(3,1), DO E(3) (the 
Euclidean group extended by dilatations), and 0(2) 0 0(2,1). Representatives of each conjugacy class are 
shown in the figures, also demonstrating all mutual inclusions. For each subalgebra we either derive all 
invariants (both polynomial and nonpolynomial ones) or prove that they have none. The mathematical 
results are used to discuss different possible sets of quantum numbers, characterizing elementary particle 
states in de Sitter space (or the states of any physical system, described by this de Sitter group). 

I. INTRODUCTION 

The aim of this paper is to study some properties 
of the de Sitter group 0(4,1), i. e., the group of motions 
of a four-dimensional space-time continuum with con
stant positive curvature. We shall provide a complete 
analysis of the continuous subgroup structure of 
0(4,1), i. e., classify all subgroups into equivalence 
classes with respect to inner automorphisms of the 
group itself and construct a lattice of its continuous 
subgroups. We also consider the Lie algebra of each 
subgroup and find all its invariants, if they exist, or, 
as the case may be, prove that none exist. Invariants, 
in this article, will be defined to include Casimir 
operators (polynomials in the generators), harmonics 
(ratios of polynomials), and general nonpolynomial 
invariants. 

The de Sitter group 0(4,1) [as well as the other de 
Sitter group 0(3, 2)] is of considerable interest in rela
tivistic cosmology, elementary particle theory, and 
also atomic physics. Indeed, the de Sitter spaces with 
positive or negative curvature1 are the simplest gen
eralizations of the flat Minkowski space-time of special 
relativity, capable of providing a model of the expand
ing universe which we live in, All laws of physics in 
such a universe would be invariant with respect to one 
of the de Sitter groups,2,3 rather than with respect to 
the Poincare group. Kinematic conservation laws (en
ergy, linear, and angular momentum, position of the 
center-of-mass, etc.) will be related to the Lie algebra 
of the de Sitter group (and its enveloping algebra). 

The de Sitter groups are of interest in elementary 
particle physics for several reasons, First of all, by 
definition, an elementary physical system in a de Sitter 
world would be a system described by a wavefunction 
transforming according to an irreducible unitary rep
resentation of the de Sitter group, Complete sets of 
commuting operators in the enveloping algebra of the 
de Sitter algebras (L e., the Casimir operators of the 
entire group plus, e, go, Casimir operators of a certain 
chain of subgroups) will then provide the quantum num
bers of such particles in definite states, A large amount 
of literature exists on elementary particle theory in 
de Sitter space, in particular dealing with problems of 
localization, the positivity of energy (or lack thereof), 
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generalizations of the Dirac equation and other invariant 
equations, etc. (see, e. g., Refs, 4-:-11 and many 
others). A large body of work also exists on the repre
sentation theory of the de Sitter group (see, e. g., the 
classical papersI2 - 14), 

Aside from the aspect of considering particle or field 
theory in curved space and thus incorporating some 
aspects of gravitational interactions, the de Sitter world 
may be of interest in that it provides a possible way of 
avoiding the O'Raifeartaigh theorem. 15 Indeed, while it 
is not possible to combine the Poincare group and an 
internal symmetry group, like SU(3), into a larger 
group, providing a discrete mass spectrum, such a 
unification is possible if one of the de Sitter groups 
is taken as the space-time group, 10,16 

From a different point of view the de Sitter group 
0(4,1) is of interest in ordinary elementary particle 
theory in Minkowski space. Indeed, it has been shown17 

that certain canonical momentum dependent transforma
tions of the ordinary free-particle Dirac equation exist 
and form an 0(4,1) group. Different subgroups of 0(4, 1) 
then provide different specific transformations of inter
est, e. g., the Foldy-Wouthuysen transformation18 is 
associated with an 0(4) subgroup of 0(4,1). 

It should also be remembered that the de Sitter 
groups are among the maximal subgroups of the con
formal group of space-time, isomorphic to SO(4, 2), 
Thus, it may be of interest to consider interactions, 
breaking down the exact 0(4,2) symmetry, e. go, of 
relativistic zero-mass equations or of some conformal
ly invariant field theory, to a de Sitter symmetry and 
further to lower symmetries, corresponding to sub
groups of the de Sitter groups. Such reductions of con
formal symmetry have been considered in the 
literature. 19,20 

A further reason why it is of interest to study the 
de Sitter groups and their subgroups is that within 
certain restrictions all possible "kinematical groups" 
can be considered to be contractions21• 22 of the de Sitter 
groups. 23,24 Indeed, taking the speed of light and/or 
the radius of curvature to infinity in various ways, we 
can obtain the Poincare group, the Galilei group, and 
several other groups of interest. Again, knowledge of 
the subgroup structure of the de Sitter groups will make 
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it possible to systematically study contractions with 
respect to which certain subgroups of physical interest 
remain invariant. 

Finally let us mention that the 0(4,1) group has made 
its appearance in atomic physics as one of the possible 
"dynamical noninvariance groups" of the hydrogen 
atom. 25-35 Indeed, the hydrogen atom is well known to 
have an 0(4) symmetry group, responsible for the ac
cidental degeneracy of its bound state levels, and an 
0(3,1) symmetry for the Coulomb scattering states. 
Both of these can be embedded into a larger group 
(0(4,1), 0(4,2), SL(4, R), etc.), the Lie algebras of 
which contain raising and lowering operators that do 
not commute with the Hamiltonian. In turn, a study of 
the subgroups of the corresponding invariance and 
noninvariance groups will provide a classification of 
possible symmetry breakings (e. g., by external 
fields). 

At this point it may be appropriate to summarize the 
reasons why we are interested in the subgroups of the 
de Sitter group 0(4, 1) and more generally in the sub
groups of any group of interest in physics (and other 
applications). Indeed, we have already written four re
lated articles. In the first36 we found all conjugacy 
classes of maximal solvable subalgebras of the alge
bras of the pseudounitary groups SU(p,q) and all sub
algebras of LSU(2, 1). In the second37 we classified all 
maximal solvable subalgebras of LSO(p, q). In the 
third38 and fourth39 we provided complete lists of all 
classes of continuous subgroups of the Poincare group 
and of the similitude group (the Poincare group extended 
by dilations). The general motivation for our program 
was discussed previously. 36-39 In connection with the 
0(4,1) group let us just stress a few points (also hav
ing general validityL 

1. In a quantum theory in de Sitter space a lattice 
of subgroups of the de Sitter group will provide us with 
different complete sets of quantum numbers for elemen
tary physical systems. It should be noted, however, 
that Casimir operators of continuous subgroups, while 
providing the Simplest types of observables, by no 
means provide all possible sets of observables. For a 
discussion of nonsubgroup type observables see, e. g. , 
Refs. 40-43. 

2. A knowledge of the subgroup structure is impor
tant in group representation theory. Thus different sub
groups can be used to induce representations44 of the 
group and in particular provide different parametriza
tions of the group itself. Further, different chains 
of subgroups provide different bases for representa
tions and lead to different special functions as basis 
functions. 

3. A classification of subgroups provides a classi
fication of different homogeneous manifolds, upon which 
the group acts transitively. 45 It is often of interest to 
construct physical wavefunctions as functions on such 
homogeneous manifolds (and not necessarily simply as 
functions on the space-time manifolds)46-48 

4. Since most symmetries in nature are broken ones, 
it is of considerable interest to discuss symmetry 
breaking interactions, boundary conditions, etc., re-
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ducing the symmetry with respect to a group to that 
with respect to a subgroup. 

It should be noted that we are using Lie algebraic 
techniques and thus can only provide a classification 
of continuous subgroups. From the point of view of phy
sical applications in particular those mentioned above, 
discrete subgroups of Lie groups are also of very 
considerable interest and we plan to return to this 
problem. For relevant literature see, e. g., Refs. 
49-51. 

The subgroup structure of the Lorentz group 0(3, 1) 
has been studied in detail (see, e. g., Refs. 40, 46), 
in particular in connection with two-variable expansions 
of relativistic scattering amplitudes. Each subgroup 
reduction provided a different expansion. Thus, 
0(3,1) :=)0(3) was related to partial wave analysis, 
0(3,1) :=)0(2,1) to Regge pole theory, 0(3,1):=) E(2) to 
eikonal expansions. For a review of this field see 
Ref. 52. 

In Sec. 2 of this paper we derive a list of all con
jugacy classes of subalgebras of the de Sitter algebra 
LO(4,1)0 Results are presented in figures and conjugacy 
is considered with respect to 0(4,1), SO{4,1), and 
SOo(4,1) [the continuous component of identity of the 
0(4,1) de Sitter group] and in some cases also with 
respect to the subgroups themselves. In Sec, 3 we find 
the Casimir operators for all subgroups of 0(4,1) that 
have them and construct a lattice of these subgroups, 
We also construct coordinates on an 0(4,1) hyperboloid, 
allowing the separation of variables in the Laplace 
operator and corresponding to the individual subgroup 
chains. We discuss the meaning of the occurring quan
tum numbers, Our results and future outlook are sum
marized in Sec. 4. 

2. CONTINUOUS SUBGROUPS OF THE DE SITTER 
GROUP 0(4,1) 

I. Definitions and general method 

We shall make use of two equivalent definitions of 
the algebra LO(4, 1) of the group 0(4, 1), Thus, the 
usual definition of 0(4,1) as the group of linear homo
geneous transformations of a real five-dimensional 
space xI' (J1. = 0, 1, ... ,4), leaving the quadratic form 
x2 = xi + xi + x~ + x1- x~ invariant leads to the Lie alge
bras of 5 x 5 real matrices X satisfying 

XT1 +IX= 0, 

where 

1 0 0 0 0 
0 1 0 0 0 

1= 
0 0 1 0 0 
0 0 0 1 0 
0 0 0 0 -1 

and T indicates a transposed matrix. The elements g 
of the group 0(4,1) then satisfy 

(1) 

(2) 

glgT =1. (3) 

This group has four components, similarly as the 
Lorentz group 0(3, 1). Proper de Sitter transforma
tions, constituting the group SO(4, 1), satisfy 
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detg= 1 (4) 

in addition to (3), and proper orthochronous transforma
tions 800(4,1) satisfy (3), (4), and 

goo? 1 (5) 

[within 0(4, 1) we could also have detg= - 1 and/or 
goo~-l]. 

An alternative realization of LO(4, 1), also useful 
for our purposes, is obtain by replacing the matrix 
lof (2) by 

J= [: ~ ~ ~ u: o 0 0 1 0 
1 0 0 0 0 

in Eqs. (1) and (3). In this realization the LO(4, 1) 
matrices X satisfy 

(6) 

(7) 

We choose a basis M,," (M, v=4,3,2,1,O) for LO(4,1) 
satisfying 

[M,,", 2\;["T] =1"" M"T - I"T LVI"" + 1"T M.u - 1"u M"T (8) 

with 1ik=oik, i,k=4,3,2,1, 100=-1, and 10i=1io=O. 
In the realization (1) this basis consists of the matrices 

Mik= Yik - Yki and !'v[iO = MOt = YOi + Y iO , i, k = 4,3,2, 1. 

(9) 

The matrices Y,," have 1 on the intersection of the M th 
row and vth column and zeros elsewhere. 

The matrices X of realization (7) are related to 
those of realization (1) by the transformation 

X=Zxz·1, 

where 

0 0 0 
1 0 0 

z= 0 1 0 , Z-l=ZT. 
0 0 1 
0 0 0 

(10) 

(11) 

Making use of either of these realizations, we dis
tinguish two types of subalgebras of LO(4, 1), namely 
those imbedded irreducibly and those imbedded reduci
bly in LO(4, 1), The irreducibly imbedded ones, by 
definition, do not leave any nontrivial real subspace 
in the 0(4, 1) space invariant. It can be shown53 that 
the LO(4, 1) algebra [contrary to the LO(3, 2) algebra] 
has no subalgebras of this type, Thus, we only have 
to classify all reducible subalgebras, and we start out 
by finding all maximal subalgebras of LO(4, 1). To do 
this, we simply consider a representative of each con
jugacy class of subspaces of the 0(4,1) space [con
jugacy is considered under 0(4, 1)] and find the subalge
bra that leaves this space invariant. We then find all 
subalgebras of each maximum subalgebra and we can 
make use of methods and results obtained earlier. 36-39,54 

II. Maximal subgroups of the 0(4,1) de Sitter group 

A general LO(4, 1) matrix in realization (1) can be 
written as 
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0 a b c 
0 e f 

X= -e 0 h 
-f -h 0 

g j k 

In realization (7) we have 

-d 
a-g 
72" 

a+g 
- -;rr 0 

X=ZXZ·1 = -e 

-f 

o a+g 
5 

b - j c-k 
12 $ 

e f 

0 h 

-h 0 

b +j c+k 
5 $ 

o 

a-g 
- 12 

b - j 
-12 

c-k 
-5 

d 

(12) 

(13) 

Let us now consider subspaces of the five-dimensional 
space of real vectors (X4' x3' Xv Xl' Xo) with metric 
x~ + x~ + x~ + xi - x~ = inv, The subspaces will differ by 
their dimension and signature. 

A. One-dimensional subspaces 

Al. Timelike subspace [signature (-)}: Consider the 
space T generated by the column vector (00001) (which 
we write in row form to save space) and require that 
the operator X of (12) leaves if invariant: XTc;, T. This 
implies d=g=j=k=O and we obtain the algebra LO(4) 
of the four-dimensional rotation group, generated by 

Mik with i,k=4,2,3,1. (14) 

A2. Spacelike subspace [signature (+) J: Consider the 
space S generated by the vector (10000) (which again 
should be a column) and require that it be invariant 
under (12). This implies that a = b = c =d = 0 and we 
obtain the algebra LO(3, 1) of the homogeneous Lorentz 
group, generated by 

Ll = M 32 , L2 = - M 3l , Ls = M 2l , Kl = M 10' 

K 2=M20, and K3=Mso. 
(15) 

A3. Lightlike subspace [signature (0)]: Consider the 
space L, generated by the vector (1000-1) in the reali
zation (1). Applying operator Z to it, we obtain 

in realization (7). Requiring that S be invariant under 
Xof(13), wefindg=-a,j=-b, k=-c, i,e., weob
tain a seven-parameter algebra, generated by 

D=M40 , L l =M32 , L 2=-Msl , L3=M2l' 

Pl=N[41- M 10' P2=M42-M20' and P 3=M4S -}\,f30' 

(16) 

These generators satisfy the commutation relations 
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A1,A2 ,A 3 , 8 1,82 ,83 , 

0(4) 

A3+ -8 3 
0< xCCD. x,.. 

0(2) 

FIG. 1. 80(4) conjugacy classes of subalgebras of LO(4) and 
the groups they generate. 

[L i , Lkl =EikIL I, [L i , Pkl = EiklPI, 

[D, Lil = 0, [D, pJ = - Pio 
(17) 

Thus, we obtain the algebra DDLE(3), io eo, 
of the Euclidean group in three-dimensions, 
by dilations. 

the algebra 
extended 

B. Two-dimensional subspaces 

BL Signature (+ +): We use realization (1), consider 
the space (SS) = (X4' x3' 0, 0, 0), and require that 
X(SS) c:; (SSL This implies b =c =d =e =/=g= ° in (12), 
i, eo, we obtain the algebra LO(2) EI1LO(2, 1), generated 
by 

L3 '" )\1/21 , Kl '" Ml0' K2 '" }\lI20 , and A'" .'\143 

with 

[L 3,K1l=K2, [K2,L3l=Kp [K1,K2l=-L3, 

[A, Kll = [A, K2l = [A, L3l = 0. 

(18) 

(19) 

B20 Signature (+ -): Using realization (1), we require 
that the space (ST) = (x4' 0, 0, 0, xo) be invarianL This 
implies that a=b =c=g=j=k=O in (12), i. e., we ob
tain the algebra LO(3) e LO(l, 1), generated by 

L 1=A132 , 0.=-J'vl3, L 3=M21 , and D=M40• (20) 

However, any transformation leaving space ST invariant 
also leaves space L invariant and indeed we see that the 
subalgebra (20) is contained in (17) and is hence not 
maximaL 

B3. Signature (+ 0): We use realization (1) of LO(4, 1) 
and require that the space (x, y, 0, 0, - x) remains in
variant. This implies e=/=O, g=-a, j=-b, k=-c. 
This leads us to the subalgebra (D EBLO(2» 0 T 3, gen
erated by 

L3 = M 21 , D = M40' Pi = 2\1141 - lVI10, 

P 2 = :VI42 - 1l,120 , P 3 = A143 - 11,130, 
(21) 

Again, this subalgebra is contained in (17) and is hence 
not maximal. 
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We have thus considered all one- and two-dimensional 
subspaces of the 0(4,1) space that are not conjugate 
under 0(4,1)0 Subalgebras that leave three- or four
dimensional subspaces invariant will automatically also 
leave their two- or one-dimensional orthogonal comple
ments invariant and will hence coincide with those ob
tained above, or be contained in themo 

To summarize, the algebra LO(4, 1) has exactly four 
0(4,1) conjugacy classes of maximal subalgebras, 
namely LO(4) of (14), LO(3,1) of (15), DO LE(3) of 
(16), and LO(2)EI1LO(2, 1) of (18)0 8ince an arbitrary 
one- or two-dimensional subspace of the 0(4,1) space 
with the corresponding signature can be transformed 
into one of the spaces S, T, L or (SS) by an 800(4,1) 
transformation the above algebras also represent all 
800(4,1) classes of maximal subalgebraso 

We now proceed to classify all subalgebras of each 
maximal subalgebrao 

III. Subalgebras of LO(4) 

The algebra LO(4) is isomorphic to LO(3) EB LO(3L 
Its subalgebras can be obtained using the "Goursat 
twist method" and were originally classified by 
Goursat. 55 The method, in application to Lie algebras, 
was discussed in a previous publication, 38 so here we 
omit all details. 

Let us introduce the notation 

A1 = tUv132 + M 41 ), A2 = ~(- ,'\II31 + :1142 ), 

A3 = t(:VI21 + ivId, 

B l = Wv132 - M 41 ), B2 = ~(M31 + }\lId, 

B3 = t(- ;'\1121 + ,l'v1d, (22) 

so that 

[Aj,Akl=E/klA I, [Bi,Bkl=EikIBI, [Ai,Bkl=o, (23) 

The algebra LO(4) - LO(3) EB LO(3) will have two types 
of subalgebraso The first type, "nontwisted subalge
bras, " are obtained by taking direct sums of subalge
bras of the one LO(3) with those of the other. The sec
ond type, "twisted subalgebras," involve generators 
that are not conjugate to either Ai nor Bio Only two 
such subalgebras exist: the LO(3) algebra generated 
by Al + B 1, A2 + B 2, and A3 + B 3, contained reducibly 
in LO(4) and a one- dimensional subalgebra A3 + xB3, 
depending on one parameter x. An 80(4) transforma
tion changing A3 + XB3 into A3 - XB3 can easily be con
structed; hence we can take ° < x < 00. 

A lattice of 80(4) conjugacy classes of subalgebra 
of LO(4) is given in Fig. 1. 

If conjugacy is considered under 0(4), rather than 
80(4), then Ai and Bi are conjugate 

gA i g-1 =B i , 

go C -1 - 1 -J (24) 

The lattice of Fig" 1 simplifies under 0(4), in that all 
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coa cL 3+lincKli• L.+K2.L2-K. 

O<c<". c"'"./2 
5(3) 

algebras in the furthest to right column become con
jugate to those in the left-hand column and the param
eter x can be restricted to 0 < x < 10 

Imbedding 0(4) into 0(4,1), we replace (24) by 

1 
-1 

g==- -1 (25) 
-1 

with detg==-l, goo==- - 10 Thus g is contained in 80(4,1), 
but not in 800(4,1). 

IV. Subalgebras of LO(3,1) 

The subalgebras of LO(3, 1) are known. 40 For com
pleteness we give a lattice of SOo(3, 1) classes of sub
algebras of LO(3, 1) in Fig. 2. If we consider conjugacy 
under 0(3,1), i. e., include parity, then 0< C < 7T/2 in 
S(3) and S(l). This transformation is contained in 
SOo(4,1). Note that the algebras LO(3) and LO(2) in 
Fig. 2 are already contained in Fig. 1. 

V. Subalgebras of 0 0 LE(3) 

The continuous subgroups of the Euclidean group 
E(3) have been classified earlier. 54 The E(3) conjugacy 
classes of subalgebras of LE(3) are given in Fig. 3. 

If we add parity to E(3) then a> 0 in L3 + aP3 and 
{L3 + aP3, Pl' P 2}. The corresponding transformation 

g ~ e', 1 J (26) 

is contained in SO(4, 1) but not in SOo(4, 1). 

Let us now add the dilations, generated by D, to E(3). 
Since [D,L 3]=0 but [D,P3]==-P3, we can transform 
the parameter a in L3 + aP3 into a ==-1. All subalgebras 
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FIG. 2. 800(3,1) con
jugacy classes of sub
algebras of LO(3, 1). 
The group generated by 
the algebra is also 
given. Here B(4) indi
cates the Borel sub
group, i. e., the maxi
mal solvable subgroup 
of 0(3, 1); the 8 in 8(3) 
and 8(1) stands for 
"screw" (a combina
tion of a rotation about 
an axis with a boost 
along the same axis; 
T(l) stands for trans
lations along one axis, 
E(2) for the Euclidean 
group, and D for dila
tions. An asterisk in
dicates subalgebras 
conjugate to ones con
ta'ined in Fig. 1. 

of Fig. 3 (with a == 1) will then also be subalgebras of 
D OLE(3) and none of them will be conjugate to each 
other. Further subalgebras will involve D and will be 
of two types. The first type is obtained by simply add
ing D as a generator to all subalgebras of E(3) that 
split over their intersection with the translations (i. e. , 
subalgebras not containing the generator L3 + P 3). The 
second type of algebra can be written as 

(27) 

where E", is one of the subalgebras of LE(3). We must 
now run through all subalgebras E a , spell out the addi
tional generator i5 ==D + aiLi + X/Pi' and set all ai and 
Xi equal to zero, if the corresponding Li and Pi are con
tained in Ea. Then we simplify i5 further, using trans-

FIG. 3. E(3) conjugacy classes of subalgebras of LE(3) and 
the groups they generate. An asterisk indicates subalgebras 
conjugate to ones contained in Figs. 1 or 2. 
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formations leaving E,. invariant and finally we enforce 
that D and E,. together should form a closed algebra, 
The last two steps can be performed in an elegant man
ner, using cohomology theory, 38,39 In the present case 
the task is so simple that we just proceed in a straight
forward manner, Note that new subalgebras are ob
tained only if at least one of the a j or Xj is nonzero, 

The only subalgebras of LE(3) leading to such non
trivial subalgebras of DOLE(3) are those not contain
ing any rotations, L e" {Pi' P 2, P 3}, {Pi' P 2}, {P3}, and 
{o}. Consider them individually. 

_ a. {Pi' P 2, P 3}, Write the additional element as 
.i5 =D ± aiL j, Performing an 0(3) rotation, we can trans
form.i5 into D =D + aL3, a> 0, We obtain the algebra 

D + aL3, Pi' P 2, P 3, a> 0, (28) 

b, {Pi' P 2}, We write D =D + aiLi + xP3, Since [D, P 3] 
= - P 3, the group transformation exp(yP3), contained in 
E(3), can be used to transform x into zero. The com
mutation relations (D, P l ] = - P l - a2P3 + a3P2 and 
[.i5, P 2] = - P 2 + alP 3 - a3Pl imply a l = a2 = 0 and a rotation 
through 7T about axis 1 or 2 can be used to change the 
sign of a3• We find the algebra 

D + aL 3, Pi' P 2, a> O. (29) 

c. {P3}. WewriteD=D+ajLj+xlPl+X2P2' The 
transformation exp(xPl ) and exp(yP2) can be used to 
transform xl and x2 into zero. The relation (D, P 3] 
= - P 3 - alP 2 + a2P l implies al = a2 = O. A rotation 
through 7T about axis 1 or 2 will change the sign of a3• 

We find 

(30) 

d. {O}, We have D=D+ajL j +XiPi , A rotation can be 
used to obtain a l = a2 = O. Transformations of the type 
exp(aL3) and exp(yjP j ) can be used to obtain Xl =X2 =%3 
= O. We obtain the algebra 
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D+aL3, a> O. 

FIG. 4. Subalgebras of 
DC LE(3) and the 
groups they generate. 
An asterisk indicates 
subalgebras conjugate 
to ones contained in 
Figs. 1 or 2. 

(31) 

None of the obtained subalgebras of DOE (3) can be 
further simplified by 0(4, 1) transformations, The con
jugacy classes [under the Euclidean group extended by 
dilatations and parity and also under 0(4,1)] are sum
marized in Fig, 4, 

All algebras of Fig, 4 leave a one-dimensional light
like space L invariant, Many of them also leave a one
dimensional timelike or spacelike vector space invari
ant and are thus contained in LO(4) or LO(3, 1), This 
can easily be established for each subalgebra separate
ly. We denote by an asterisk in Fig, 4 those subalge
bras that are conjugate, under 0(4,1), to algebras in 
Figs. 1 or 2, 

VI. Subalgebras of LO(2) Ell lO(2,l) 

All subalgebras of this algebra can be obtained either 
as the direct sums of subalgebras of LO(2) and LO(2, 1) 
(including the trivial ones) or by applying the Goursat 
twist method, The results are given in Fig, 5, All of the 
subalgebras in Fig, 5 also leave a one-dimensional vec
tor space invariant and will thus already have been 
listed in Figs, 1, 2, or 4, This can easily be estab
lished by inspection, and we indicate all previously 
listed subalgebras by an asterisk in Fig, 5, 

VII. All subalgebras of lO(4,l) 

Figures 1, 2, 4, 5 can now be used to compile a 
complete lattice of subalgebras of LO(4, 1) presented 
in Fig, 6, We consider conjugation under 0(4,1), so 
as to keep the size of Fig, 6 manageable, 

This completes our investigation of the subalgebras 
of LO(4, 1) and thus also of the continuous subgroups 
of 0(4, I), 
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3. INVARIANTS OF SUBALGEBRAS OF LO(4.1) 

I. General method for finding invariants of Lie algebras 

Having thus provided a classification of all subalge
bras of LO(4, 1), we now wish to determine which of the 
subalgebras have invariants, in particular Casimir 
operators and to find all of them. These will then pro
vide us with observables and quantum numbers for par
ticles in a de Sitter space [or for any physical system 
for which 0(4,1) is a relevant symmetry group], 

Let us briefly discuss our method of searching for 
invariants. Consider the Lie algebra L generated by 
the operators Ai"" ,An' satisfying 

[Aj,Ah] =t l:hAl' (32) 
1=1 

FIG. 5. Subalgebras of LO(2) 
Ef)LO(2,l). If conjugacy is 
considered under S[O(2) 
x 0 0(2, 1) 1 we have a ;< 0, b;< 0, 
e'" O. Conjugacy under S[0(2) 
x 0(2, 1)] gives a > 0, b> 0, 
e> O. Conjugacy under 
SOo(4, 1) gives a ;< 0, b = ± I, 
e'" O. Conjugacy under 
SO(4, 1) gives a> 0, b = I, 
e> O. An asterisk indicates 
algebras conjugate under 
0(4, 1) to algebras in Figs. I, 
2. or 4. 

We shall represent the generators AI as differential 
operators acting on functions F(at , . , , ,an) of 11 variables 
(n is the dimension of the algebra), Indeed, if we put 

A ~ II 0 '-1 1= LJ ih al ;;--, t - ,.,., n, 
h.l=l vah 

(33) 

the operators AI will satisfy (32). We are now interested 
in finding an operator valued function PeAt, ••• ,An), 
commuting with all Ai' This is equivalent to finding a 
numerical function P(at, ' • 0 ,an), annihilated by all 
generators (33): 

(34) 

then symmetrizing P with respect to all permutations of 
a i and replacing the variables ai by the operators Ai' 

FIG.,6. Subalgebras of LO(4. 1) and the groups they generate. We use the notationA=M43 , B =M42 • C=M41 • D=M40, E=M32• 
F=M31 • G=M30• H=M21 • J =M20• and K=M10• Conjugacy is considered under 0(4,1). 
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We thus reduce the search for Casimir operators to 
the problem of solving the system of homogeneous linear 
partial differential equations (34). If the system is con
tradictory, L e" does not have a nonzero solution, then 
the algebra has no Casimir operators, On the other 
hand, solutions may exist, but not be expressible in 
terms of polynomials in ai' We then obtain "generalized 
Casimir operators, " L eo, operators not lying in the 
enveloping algebra of L but still commuting with all 
generators and hence having a fixed numerical value 
within each irreducible representation of the algebra, 
If polynomial solutions of (34) exist, they will provide 
us with Casimir operators, Generally speaking, among 
such solutions we must find an integrity basis, L e. , 
a minimal set of operators C i such that any invariant 
can be expressed as a polynomial in C i • 

Note that for semisimple algebras the problem is 
solved-the number of Casimir operators is equal to 
the rank of the aJgebra and they are all known, 

". Invariants of the subalgebras of LO(4,1) 

Let us go through the algebras of Figs, 1-6 and find 
their Casimir operators, The Casimir operators of 
0(4, 1) itself are well known, namely 

d 2) =J\!1<>.~1$rl'\/[r610c" 

C
(4

) = :VI <>.~ l~r ,"vlro 10 , l"vl,e len i"vlnl 11<>., 

A. LO(4) and its suba/gebras 

All algebras in Fig, 1 have invariants and they are 
quite obvious. Thus LO(4) itself has two Casimir 
operators A2 =Ai + A~ + A~ and B2 = Bi + B~ + B~, For a 
one- dimensional subalgebra the generator itself is an 
invariant; for an Abelian subalgebra all generators 
are invariants, The "twisted" LO(3) (Al + B l , A2 + B2, 
A3 + B3) has the Casmimir operator (A + B)2, The in
variants of a direct sum of algebras will be the invari
ants of each component. 

B. LO(3, 1) and its suba/gebras 

The invariants of the subalgebras of LO(3, 1) are 
known. 40 Thus, using the notations of Fig, 2, we have 
the following, LO(3,1) itself has two Casimir operators 
L2 - K2 and L·K. The algebras LE(2), LO(2,1) and 
LO(3) have the invariants (L l + K2)2 + (L2 - Kl)2, 
Ki + K~ - LL and Li + L~ + L§, respectively. The gen
erators of Abelian or one-dimensional algebras are 
themselves invariants. The algebras B, S(3), 
DC] (LT(l) ifiLT(l», and C(l) have no Casimir opera
tors. However, using the method discussed above, we 
can show that both S(3) and D D(LT(l)EBLT(l» have a 
nonpolynomial invariant. Indeed, consider the algebra 
D =K3, P=L l + K 2, Q =- L2 +Kl. We have 

[D,pl=p, (D,Ql=Q, (p,Ql=o 

so that 

a a a a 
D=p ap +q aq' P=-P ad' Q=-q od' (35) 

Consider the function F(p, q, d) and require 

DF=PF=QF=O, 
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The last two equations imply that F does not depend on 
d, the first implies that F is an arbitrary function of 
plq. Hence, the invariant is the operator 

(36) 

which generally speaking is not a well-defined opera
tor, Similarly, consider S(3), generated by 

R = cosCPL 3 + sincpK3, P=L l +K2, Q = - L2 + K1, 

o < cp < 1T 12 or 1T 12 < cp < 1T. 

USing the commutation relations for S(3) we write 

R = (q coscp + p sincp) a~ + (q sincp - p coscp) a~ , 

P = - (q coscp + p sincp) a~" Q = - (q sincp - p cos¢) aOr' 

(37) 

Requiring RF=PF==QF=O, we obtain a nonpolynomial 
invariant 

[= (p2 + Q2) (; : ;~ ) Itan~ 

== (p2 + Q2) exp[2 tancp 'arctan(Qlp) l. (38) 

C. Do LE(3) and its suba/gebras 

Consider first the algebra D 0 LE(3) itself. The in
variant F(P1> Pv P3, ll' l2' l3' d) could depend on seven 
variables; however, rotational invariance LiF = 0 im
plies that it only depends on 0(3) scalars p2, 12, p-l, 
and d, Scale invariance DF = 0 implies that F only de
pends on 12 and p2 I (p '1)2. Finally translational invari
ance P iF = 0 implies that F depends only on p2 I (p °1)2. 
Thus DC LE(3) has no Casimir operators, but has 
one nonpolynomial invariant, the harmonic 

(39) 

The algebra LE(3) has the two well-known Casimir 
operators p2 and (p. L), i. e., the energy and helicity 
of a nonrelativistic particle, 

The algebra {D, L 3, Pt, P v P 3} can be shown to have 
only one invariant, namely (Pi + p~)lpL which again is 
nonpolynomiaL 

The algebra {L 3, P l ' P 2, P 3} has two Casimir opera
tors: pi + pi and P 3• 

The algebra {D, L t , L 2, L 3} has two Casimir operators: 
D and L2. 

The algebra {D, Pt, P 2, P 3} has no Casimir operators 
but two nonpolynomial invariants P/P3 and P 21P3. 

The algebra {D + aL 3, P l , P 2, P 3} is somewhat more 
complicated. We put 

o a a 
R =D + aL 3 = (- Pt + aP2) apt - (P2 + aPl) ap2 - P3 ap3' 

(40) 

Requiring PiF = 0 implies that F =F(Pt, P2, P3)' Requir
ing RF = 0 implies 

~_~_dP3 
Pi - aP2 - P2 + aPt - P3 . 
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These equations are solved by standard methods, 56 and 
we obtain two (real) nonpolynomial invariants 

Xl =P
3
{(P

l 
+ iP

2
t( l-ia) Il1+a

2
) + (Pi _ iP

2
r( l+ia) Ill+a

2
)}, 

X
2 
= iP

3
{(P

l 
+ iP

2
) -ll-/a)1 (1+a2 )_ (P

l 
_ iP

2
t (l+ja)1 (1+a

2 
I}. 

(42) 

The invariants of all other subalgebras are obvious 
(or have been obtained above), as are those of subalge
bras of LO(2) ED LO(2, 1). 

The situation is best summarized by the diagram of 
Fig. 7, where we give a lattice of subgroups of 0(4, 1), 
listing only those which have Casimir operators. More 
specifically, we only list a subgroup if it has a new 
Casimir operator, that is not also a Casimir operator 
for a larger subgroup, higher in the chain. 

III. Quantum numbers 

All chains of subgroups providing us with a complete 
set of observables are shown on Figs. 6 and 7, and we 
see 16 possible independent sets. In addition to the two 
Casimir operators of LO(4, 1), characterizing the sys
tem as such, we have the following possible choices of 
operators, characterizing the particle states. 

A. Reduction to 0(4) 

Using the notations (22), we see that the complete set 
of commuting operators would contain: 

A2, B2, 

and either 

(A+B)2 and A3+B3 

or 

(43) 

(44a) 

A3 and B 3. (44b) 

8. Reduction to Of3, 1) 

Using the notations (15) we write the observables 

L2 - K2 and L • K, (45) 

supplemented by one of the following pairs: 

L2 and L 3, (46a) 
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FIG. 7. Subgroups of 0(4, 1) that have 
Casimir operators. 

~ +K~ -L~ and L 3, (46b) 

~ +Jq -L~ and Kt , (46c) 

~ +Jq -L~ and K2 +L3, (46d) 

(Lt + K2)2 + (L 2 - Kl)2 and L 3, (46e) 

(Lt + K2)2 + (L2 - Kl)2 and L1 +K2, (46f) 

L3 and K 3• (46g) 

C. Reduction to £(3) 

Using the notations (16), we write the observables 
as 

p 2 and pOL, (47) 

supplemented by one of the following pairs: 

L2 and L 3, (48a) 

P~ + P~ and L 3, (48b) 

P~ + P~ and P3 (or P l , P2 and P 3). (48c) 

D. Reduction to 0(3) X OfT,T) 

This reduction, using notations (20), provides us 
with three quantum numbers: 

L2, L 3, and D. 

£ Reduction to 0(2) @ 0(2,1) 

(49) 

Using notations (18), we obtain three quantum num
bers given by 

A, ~ +Jq -L~ 

and one of the three operators 

L 3, K1, or K2 + L 3• 

(50a) 

(50b) 

The physical interpretation of each set of observables 
is open to discussion and depends on the specific physi
cal system considered. We have however clarified the 
group theoretical significance of each set. 

Several comments are in order: (i) While the "canoni
cal" reductions of 0(4,1) to 0(4), 0(3,1), and E(3) pro
vide us with complete sets of observables, the reduc
tions to 0(3) ® 0(2) and 0(2) ® 0(2,1) provide only three 
quantum numbers and we are faced with a "missing 
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label problem," These have been discussed extensively 
in the literature in other connections, in particular in 
relation to the SU(3) ::l0(3) reduction. One way to pro
vide the missing quantum number, completely specify
ing the states, would be to add a further operator to 
the set (49) or (50). This would have to lie in the en
veloping algebra of LO(4, 1), not, however, of the sub
group 0(3) 00(1, 1) [or 0(2)00(2,1)] and be a scalar 
with respect to the corresponding subgroup, For a dis
cussion of this problem, see Refs, 57, 58 and refer
ences therein, 

(ii) We have not touched upon "nonsubgroup" type 
observables, i. eo, complete sets of operators that can 
specify a state, but are not Casimir operators of any 
Lie subgroup, Examples of such observables in connec
tion with 0(3) and other little groups of the Poincare 
group have been studied,40-42 They can be related to 
discrete subgroups of the corresponding group-a ques
tion that is itself of considerable interest. 

(iii) A question that to our knowledge has received 
no attention at all is the Significance of invariants of 
Lie algebras, that do not lie in the enveloping algebra 
(are not polynomials in the generators) and their possi
ble use in representation theory and physics. We have 
constructed such invariants for all subalgebras of 
LO(4, 1) for which they exist, 

(iv) Diagrams characterizing subgroup reductions of 
the type shown in Fig, 8 have been used previously40 
for the Lorentz group 0(3, 1L Similar diagrams have 
been used to characterize coordinates in O(n) and 
O(n,l) spaces (the "method of trees")59,60 

IV. Separable coordinate systems 
Let us consider the upper sheet of the two-sheeted 

hyperboloid 

x~ - xi - x~ - x~ - xa = L (51) 

If we consider a space of scalar functions 1/!(x) defined 
on this hyperboloid and require that a set of such func
tions transforms irreducibly under the group 0(4,1), 
then i/J(x) must be eigenfunctions of the two Casimir 
operators of 0(4,1). However, the fourth-order Casimir 
operator is identically zero on such a space and the 
second order one reduces to the Laplace operator to. on 
the hyperboloid (51lo 

DIMENSION 

2 Iy ! i t i ! :3 

6 

10 

We can now choose a basis by requiring that the func
tions 1/!(x) be eigenfunctions of to. and of one of the com
plete sets of. commuting operators, corresponding to 
one of the group reductions discussed above and repre
sented in Fig, 8. It is interesting to note that to each 
subgroup reduction there corresponds a system of co
ordinates for which all the equations separate, For 
future convenience we write out these coordinate sys
tems. It would be quite simple to present the Laplace 
operator in each system and also the eigenfunctions, 
but we do not do this here, 

A. Reduction 0(4,1) :J 0(4) 

xo=cosha, x1=sinhaxt , O-"'a<oo, i=1, ... ,4, 

x~ +xi +X§ +x~ = 1. (52) 

On the sphere Xi we then either introduce spherical 
coordinates [reduction to 0(3) ::J 0(2)], or cylindrical 
coordinates [reduction to 0(2) EBO(2)]. For a complete 
discussion of all subgroup and nonsubgroup type co
ordinates on an 0(4) sphere, see Ref. 61. 

B. Reduction O{4,1) :J 0(3,1) 

x" = sinhax", X 4 = sinha, - 00 < a < 00, (53) 

J.L = 0,1,2, 3, x~ - xf - x~ - x~ = 1. 

On the 0(3,1) hyperboloid x" we introduce one of the 
seven types of subgroup coordinates, discussed earli
er. 40,62 These are spherical coordinates for 0(3,1) 
::J0(3), hyperbolic of three types for 0(3,1) =>0(2, 1), 
horospheric of two types for 0(3,1) => E(2), and cy
lindrical for 0(3,1) ::l 0(2) ® 0(1, 1), Olevshli also lists 
27 nonsubgroup type coordinates for the 0(3,1) 
hyperboloid. 

C. Reduction 0(4,1) :J E(3) 

Xo = coshy + -Hx2 + y2 + Z2) e"Y, 

X4 = sinhy + ~(x2 + y2 + Z2) e"Y, (54) 

xl=e"Yx , x2=e"Yy , x3=e-Yz, _oo<y<oo, 

On the Euclidean space x, y, z we can use spherical 
[E(3) =>0(3)], cylindrical [E(3) => E(2) =>0(2)] or Cartesian 
[E(3)::l E(2) ::IT(l)] coordinates, All 11 subgroup and 
nonsubgroup type separable coordinates in E(3) space 
are discussed in the literature, 63,64 

I y 
0(4,1)=> 0(4):> , __ 0(4,1)=> 0(3,1)=> , __ 

FIG. 8. Chains of subgroups of 0(4, 1) 
providing quantum numbers and separa
ble coordinate systems. A semicircle 
indicates an O(p, 1) group,a circle an 
O(n) group and a square an E(n) group. 

3 

f I I V vvv 4 

6 

10 

0(4,1)=> E(3)=> , __ 0(4,1)=> 0(3) .. OU,I)=> ... 0(4,1)=> 0(2 ,Il .. 0(2)=> ,- -
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D. Reduction 0(4,1) :> 0(3) Ell 0(1,1) 

Xo = cosha coshb, X2 = sinha sinO coscp, 

Xl = cosha sinhb, x3 = sinha sinO sincp, 

x4 = sinha cosO, 

O<sa<oo, _oo<b<oo, O<SO<S1T, 0<scp<21T. 

£ Reduction 0(4,1) :> 0(2,1) Ell 0(2) 

xk=coshaxk , x3=sinhacoscp, 

X4 = sinha sincp, 

k= 0,1,2, x~-xi-xi=l, O<sa<oo, 0<scp<2rr. 

On the 0(2,1) sphere xk we introduce spherical 
[0(2,1) ::J0(2)J, hyperbolic [0(2,1) ::J0(1, l)J or horo
spheric [0(2,1)::J T(l) J coordinates. 

(55) 

(56) 

The connection between Lie theory and the separation 
of variables has received a lot of attention in the litera
ture. 40-43,59-61,65 The results of this section, aside from 
listing all subgroup type separable coordinates, suggest 
a recursive method for introducing separable coordi
nates in arbitrary O(p, 1) and more generally O(p, q) 
spaces. 

4. CONCLUSIONS 
The main result of this paper is that we have pro

vided a complete classification of the continuous sub
groups of the de Sitter group 0(4, 1). Thus, we have 
shown that 0(4, 1) has four maximal subgroups, namely 
0(4), 0(3,1), DO E(3) and 0(2) @ 0(2,1). All continuous 
subgroups of these maximal subgroups were classified 
into conjugacy classes, where conjugacy was considered 
under the maximal subgroup, under SOo(4, 1) [the con
nected component of 0(4,1) J, under SO(4, 1) and under 
0(4,1). The results are summarized in Fig. 1-6. In 
particular representatives of all 0{4, 1) conjugacy class
es of subalgebras of LO(4, 1) are given on Fig. 6 which 
also shows their mutual inclusions. 

In Sec. 3 we have found the invariants of all subalge
bras of LO(4, 1) (if such exist), both Casimir operators, 
i. e., polynomial invariants, lying in the center of the 
enveloping algebra, and also nonpolynomial invariants. 
These were used to present different possible sets of 
commuting operators, providing quantum numbers for 
an elementary physical system, described by an irredu
cible unitary representation of 0(4, 1). A lattice of sub
groups with Casimir operators is given in Fig. 7. A 
graphical representation of all different chains of such 
subgroups is shown in Fig. 8. We have also given a list 
of all "subgroup type" systems of coordinates, allow
ing the separation of variables in the Laplace equation 
on the hyperboloid X5 - xi - x~ - x~ - x~ = 1. 

It should be mentioned that the subgroup structure 
of 0(4, 1) is relatively simple-much more so than that 
of the other groups of immediate physical interest, 
like the Poincare group, 38 the similitude group, 39 the 
0(3,2) de Sitter group, or the conformal group of 
space-time. These last two groups will be the subject 
of subsequent publications. 

We have not gone deeply into any applications, how-
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ever, the physical context in which the present results 
should be useful was discussed in the Introduction, and 
we plan to return to this separately. 
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n-body scattering into cones with long-range time
dependent potentials 
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Modified wave operators are shown to exist for n particles with long-range, time-dependent potentials. 
Bound states must be assumed to be "slightly better" than L 2. As an application of these temporally 
inhomogeneous modified wave operators, results of Dollard on scattering into cones are extended to this 
context. 

The purpose of this paper is to establish the existence 
of modified wave operators for n particles with long
range, time-dependent potentials. Results of Dollard1 

on scattering into cones are extended to this context. 
If one considers the Dollard modified wave operator, 

W",D = s-lim exp(itH) exp(- itHo - i lot V(pr) dr ), 
t _±.o 

where P = - i'i1, and Ho = - ~/2, one notes that 

Uo(t, 0) = exp(- itHo - i Jot V(pr) dr ), 

where Uo(t, s) is the evolution operator for the time
dependent Hamiltonian Ho + V(pt). From this perspec
tive on the "anomalous term" - Hot V(pt) dr, the meaning 
of the modified wave operator is clear. The existence 
of the standard wave operators for a short-range poten
tial VS(x) asserts that the dynamics of Ho + V'(x) are 
asymptotically approximated by those of the simpler 
free Hamiltonian Ho. Similarly, the existence of the 
Dollard modified wave operator for a long-range poten
tial ~ (x) asserts that, while the asymptotic dynamics 
are too complex to be approximated by the simple free 
motion, they may be approximated by the dynamics of 
H 0 + ~ (pt). While H 0 + yL (pt) is time-dependent and, 
therefore, looks complicated, it is generally easier 
to work with than the original Hamiltonian Ho + yL (x) 
since it has no "x" dependence and, therefore, pre
serves momentum and commutes with functions of "p. " 
The natural way in which this time-dependent Hamil
tonian arises suggests that time-dependent Hamiltonians 
form the proper context for the study of modified wave 
operators. 

In an earlier paper, 2 the author generalized the long
range, modified wave operator existence theorem of 
Alsholm and Kat03 to include time-dependent Hamil
tonians: the temporally inhomogeneous modified wave 
operators 

W±,D(s) = s-lim U(s, t)Uo(t, s) 
t ... ±GO 

were shown to exist, where U(t, s) and Uo(t, s) are the 
evolution operators for H(t) =Ho + V(t, x) and Ho + V(t,pt) 
respectively, and where uniform growth conditions on 
V(t, x) were assumed. In the present paper we wish to 
illustrate the generality and validity of temporally in
homogeneous modified wave operators by generalizing 
the existence theorem to n bodies and by showing that 
they behave nicely, conforming to Dollard's work on 
scattering into cones. 

729 Journal of Mathematical Physics, Vol. 17, No.5, May 1976 

Our notation closely follows that of Dollard. Because 
of the confusing amount of notation, we have made the 
assumptions that all particles have mass 1 and that 
there is no static potential. Neither assumption affects 
the argument in Theorem 1. In the presence of static 
potentials certain limits in TheoreJ!l 2 would have to 
be replaced by limits in the Cesaro sense, cf. Dollard. 1 

Considering n particles in R3 gives the 3n-dimensional 
coordinates x = (Xl' ••• ,xn ) E ffi3n, each Xi E ffi3. If r 
={r 1, ••• , r m} is a partition of the n particles into frag
ments of r l + 1 particles each, 1 = 1, •.. ,m, we define 
the following internal coordinates: 

Yl =_1_ L xi> (center of mass coordinates) 
r l + 1jErl 

z,=(zL .•• ,Z~') 

coordinates) . 

Let ¢Ci. (za) = ¢1 (zl)¢2(Z2) • 0 0 ¢m(zm) be bound states for 
the fragments. Then O! = (r, ¢Ci.) is a channel. We write 
YCi. = (Yl' ••• , Ym) and za = (Zl' ..• , zm) and omit the O! 

where the context is clear. If El is the energy of ¢I ( .), 
we write Ea = L;;"=l Ez for the energy of ¢. Note: 

Xf-(Ya, z,,) has Jacobian 1, 

3 a 
-= L -='iP" 
3YI jEri 3xj 

write PCi. = (Pl'" ,Pm) = - i'i1 Y" 

-~ 
Ho=-=H +H 2 Y" ZCi. 

where 

Hyo< = - ~y,,/2, 

Hz" = f HZI and each HZI is a function only 
1=1 of the partials with respect to Zl' 

Given a function F( 0), we shall often write F(x) 
=F(y, z). We also shall often write "j E l" to mean "the 
jth particle is in r 1 • " 

Naturally, restrictions must be imposed on the poten
tial V(t, x). To begin with, it must be assumed that 
U(t, s), the evolution operator for H(t) =Ho + V(t, x), 
exists. For relevant conditions on V(t, x) see Goldstein 
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and Monlezun4 or Kato. S Since there is no static poten
tial, V(t, xl is of the form 

V(t,X)= 6 
iEI .. f3i 

i~j 

Each Vii (t, x) is the sum of a short- range and a long
range potential where growth conditions are imposed 
on the long-range potential; that is, 

(AI). Assume Vii(t, XI - x j ) = V:j(t, Xi - x) + ~j(t, XI - X il 
for all i, j = 1, ... , nand 

(a) There exist positive constants c, €, 13, Y such that 
1?- 13 > ~ and y> (1 _13)2W1 and such that the following 
hold for all i,j= 1, ... , n: 

(b) IVfi(t,Xi-Xj)l~c(I+lxi-Xjl)-1"', 

(el D;1D~2vti(t, Xi - Xj) E LLc(R3n
+
1) for 1 ~11 = 0,1 and 

I ~zl = 0, 1, 2, 3 where the derivatives are taken in the 
sense of distribution theory, 

(d) ID~Vtj(t, Xi - Xj) I 

~ {C(I+ Ix j _xj l)-1-<l, 

c(l+ Ixi-xjl)-Z-l', 

1 ~I = 1, 

I ~I =2,3, 

(e) IDtD~vtj(t, Xi - X) I 

{
C(I+ Itl)"1(1+ Ixj _xj lt

1-<l, 

~ c(l+ Itl)-1(1+ Ixj-xiltZ-', 

I ~I = 1, 

I ~I =2, 3. 

Corresponding to the channel 01, we partition V(t, x) 
as follows: 

V(t, x) = v~ (t, x) + ~ (t, x) + ~ (t, x), where 

~ (t, x) = L_ ~j(t, Xi - Xi)' 
iEI<l3j 
m 

~(t,x)=L L Vjj(t,Xi-X)' 
1=1 i,iEI 

V!(t, x) and ~ (t, x) are the short and long-range poten
tials between fragments while VI(t, x) is the internal 
potential within the fragments. The assumption that we 
asymptotically have stable fragments with energy Ea 
means that the interval potential must stabilize at in
finity and H. a + ~ (t, x) must converge in some sense 
to Ea. 

(A II) Assume that the L2 - norm of {Hea + ~ (t, x) 
- Ea)CPa(z) as a function of Z (L e., II [H"a + ~(t, x) 
- Ea lcp", (za) II L Z(B3n-m) is integrable as a function of t. 

This is now sufficient notation to define the channel 
operator Ha(t) =HYa + ~ (t,Pat, 0) + Ea. The short-range 
potential between fragments does not appear since it is 
asymptotically negligible. The long-range potential be
tween fragments is written as a function of the relative 
coordinates (Ya,za)' As in the one body case, Ya is re
placed by Pat = - i''Vyat; the internal coordinates za have 
been ignored since the distance between fragments could 
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be expected to soon overwhelm the distances within 
fragments. To insure that this happens quickly enough, 
we assume: 

(A III) z'" I- CPa (z",) I z'" I is square integrable. This is 
similar to, though stronger than, Dollard's condition1 ,6,7 
and appears to be reasonable because of "the usual ex
ponential dampin of bound-state wavefunctions."7 

Theorem 1: Let P '" project onto the closed subspace 
D" generated by {j(ya ) CPa (z,,) If E L2(lRm)}. Assume that 
the evolution operator for H(l) exists. Assume (A 1), 
(A II), and (A III). Then the temporally inhomogeneous 
modified channel operators, 

~,D(s) = s-lim U(s, t)U<Y.(t, s)P~ 
t "'±0Ilc 

exist, where U(t, s) and Ua(t, s) are the evolution opera
tors for H(t) =Ho + Vet, x) and Ha(t), respectively. 

Before proving Theorem 1, we state the following 
four propositions. 

Proposition 1: Let F: lRm-lR be measurable. Then 
the following identity of operators holds, 

exp(it Ip '" 1
2/2)F(y",) exp(- i Ip a 12/2) 

= exp(- i IYaIZ/2t)F(Pat) exp(i IYaI 2/2t) . 

Proposition 2 : U a (t, s) commutes with P", . 

Proposition 3 : If ~,D(s) exists for one s E R then 
~,D(r:) exists for all rE lR and ~,D(r) = U(r, s)~,D(s) 
XUa(s,r). 

Proposition 4 : 

I Ua(t, s)f(twb ••• , tw m) I ~ ct-3m / 2(1 + Wf)"1 ••• (1 + W;)-1. 

For the proof PropoSition 1, see Hendrickson8 or 
Alsholm.9 The proof of Proposition 2 is evident. The 
proof of Proposition 3 follows from the one-body case2

,8 

and Proposition 2. 

Proposition 4 is derived in the same way as Dollard's7 
equation (66) and is based on the identity: 

U(t,s)f(Y)=J dy' n [21Ti(t_s)]-3/2 exp[i(Yl_y;)2/2t] 
1=1 

using integration by parts and (AId). 

Proof of Theorem 1: The complications of the proof 
that are due to the time dependence are handled in the 
same way as in the time-dependent one-body case.Z

•
8 

Those complications due to the n-bodies are handles as 
in Dollard's time-independent n-body proof.7 Therefore, 
the proof given here will be brief. The channel 01 is 
constant throughout and will often be omitted as a sub
script. By PropoSition 3, we may assume s = o. It suf
fices to show convergence on the dense set where j, the 
Fourier transform of f, is C~ with compact support 
bounded away from the lines PI =Pr for l * l. Write Xt 

= Jot VL (T, pT, 0) dT. By the standard Cook reduction, 2 
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it suffices to show the integrability of 

a(t)= II [H{f)-H",(t)]U",(t,s)f(Y)¢{z) II 

~ IIv~(t,x)U",(t,s)f(y)¢(x)1I 

+ II [V~(t,y, z) - ~(t, y, O)]U",(t, s)f(y)¢(z) II 

+ II [V~(t,y, 0) - ~(t,pt, O)]U",(t, s)f(Y)¢(z) II 

+ II [Hz + vr (t, x) - E", ]U" (t, s)f(Y)cp(z) II 

=' llt (l) + a2(t) + a3(t) + a4(t). 

For j E [, xJ =YI +L::!i A~Z~ for some A~. If i,jE [, 
then Xi - X J is a function only of z and then a4 

== II U" (t, s)f(y) II y' II [H .. + V~ (t, x) - E" ]¢(z) II .. is inte-
grable by (All) where II II yand II II z are the L2_ 
norms in RIn and R 3n-

m with respect to y and z. 

a3(f) = II ¢(z) II z II [~(t, y, 0) 

- ~(t,Pt, O)]U",(t, s)f(y) II y 

is in the form of the one-body problem and is bounded 
using Proposition 2.2 al (t) will be bounded as ~(t) 
below. 

In bounding a2(t) we use the notation WI =YI/t, 
== 1, ... , m, and, for i E [ < r 3 j, define 

r l ri 
h;,,(z) =L A~Z~ -.0 A~Z} =x i - xJ - YI +Yi. 

k=l k=l 

Then 

a2(t)", sup II 1: [v'xV(l,y,Az)[ • [z[d~UO!(t,s)f(y)cp(z)11 
~E[O,lJ 

'" c~ sup 11(1 + [YI-Yf +h; J{Az) [)"l-8 
iEI</3J ~E[O,lJ ' 

x [z I U" (t, s)f(y)¢(z) II 

=' cL; a(i,j,t), 
;EI<f3J 

for some constant c. Taking for convenience the case 
[ == 1 and letting Wo = Yl - Yf for some fixed r, we get 

[a{i,j, t)]2 

'" sup II [z [(1 + Wo + hiJ(Az) [)-1-8 
~E[o,l) 

xU" (t, s)f(y)¢(z)112 

= sup 11 [z[(1+ [Wo +hij{Az) [)-l-8 
~E[O,l) 

xu" (t, s)f(wo, Y2' .. 0, Ym)¢(z) 12 dwo dY2 0 0 • dy mdz 

'" sup t 3 (m-l) 1 II z I (1 + I Wo + h;,(Az) 1)-1-8 
~E[O.ll 

x U",(t, s)f(wo, tw2, "', twm)cp(Z) 12dwodW2' 00 dwmdz 

~ sup t 3 (m-UI dZ[Z[2[<;b(Z)[2[SUp 31 IU",(t,S) 
~E[O.ll wOEIR 

x f(wo, tw2, •• 0, tWm) 12 dW2 •• 0 dWm] . 1 (1 + [ Wo 

+ hiJ(Az) 1)-2-28 dwO 

using (AI), Proposition 4, and (3 > ~. • 
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Now that we know that at least some temporally in
homogeneous modified channel operators exist, we may 
reasonably assume their existence and see if they be
have in a reasonable manner. Suppose that in a scatter
ing experiment one" sent in" n particles with asymptotic 
energy Ha(t) along channel /3; they interact somehow, and 
then leave with asymptotic energy H(JI. (I) along channel 
O!. If fs(s, ) represents the" semifree" state governed 
by Ha(t) at time s, then the actual state at time s is 
given by u(s, ) = W:(s)!s(s, ), and at an arbitrary time 
t is given by u(t, ) = U(t, s)W:(s)fs(s, ). If Cl , ••• , Cn 

~ R3 are cones with vertices at the origin, then the 
probability that one would asymptotically find the ith 
particle in C i for i = 1, 0 • 0, n is 

F(fe) = lim IClx",xc n [ U(t, s)W:(s)!e(s, x) [dx 
toe 

= lim IClx",xc
n

[ U(t, r)~(r)!s(r, x) [dx. (1) 
t _ e 

The second equality follows from Proposition 3 and is 
given to illustrate the independence of P(fs) on time. 

P(fs) is what we wish to look at. What result should 
one expect? Consider first a free particle. Intuitively, 
the probability that a free particle is asymptotically in 
a cone should be the same as the probability that its 
momentum is in the cone. (To see this just draw a cone 
and the straight-line path of the particle in the direction 
of its constant momentum.) Switching to a single, non
free particle, it follows that the probability of an in
coming particle ending up in a given cone is determined 
by the probability that the momentum of the outgoing 
particle is in the cone. In generalizing to the n-body 
case, where one visualizes each fragment clustered 
around its center of mass, one should only need to look 
at the probability of the center-of-mass coordinates 
being in the intersection of all the cones associated with 
the particles of the fragment. This is what Dollardl 

showed in his paper. Since the semifree Hamiltonian 
Hs(t) preserves momentum, the same analysis should 
be valid in the present context. This is what we wish to 
check. In what follows, s is held constant and Is{s, ) is 
abreviated as fs. 

Let fs E De. Definel g~s by 

S(JI.s(s)fs(x) =' W';,v (S)-lW:,v (s)fs(x) = ~s(y)<;b", (z), 

where O!= (r, ¢) and r ={rl , .•. , r J. Define 1"1 
= nJErl C" [= 1, ... , m. Then Theorem 2 follows. 

(2) 

Theorem 2: Assume limt_"",1/tUI It D~Vt(T,pT, O)dT 
= 0 uniformly in p on compact sets for 1'" I ~ I '" 3n; 
assume there is no static potential, and assume -w.:,v (s) 
exists for fixed s and for all O!, and are asymptotically 
complete. Then 

We first make some comments on the restrictions in 
the theorem. The first assumption is not very strong 
since archetypical examples of long-range, time-depen
dent potentials have the basic form 1/(1 + I tx I) or c(t)/ 
(1 + I x I) where c( .) is the characteristic function of 
some finite interval. Also the growth requirements of 
the existence theorems are much stronger than this re-
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striction, although for fewer derivatives. Static poten
tial is assumed zero to avoid bound states which are not 
eventually in any cone. By the term "asymptotic com
pleteness" it is meant that w<:r,(s) exist for all channels 
a and fixed s (which implies for all s); that if R:(s) 
is the range of ~,D(s), then R~(s) =R;'(s) for fixed s 
(which implies for all s by Proposition 5 below); and 
that R±(s) =U",R~(s) is the orthogonal complement of the 
bound states of the static potential. Thus, zero static 
potential will imply R±( s) = L 2(R3n) . 

Proposition 5: If R~(s) =R~(s) for fixed SEO R, Then 
R~ (r) =R~ (r) = U(r, s)R~(s) for all rEO R. 

Proof: ~,D(s) = U(s, r)~,D(r)U",(r, s) implies that 
R~(sh~ U(s, r)R:(r). Also 

U(s, r)~,D(r) = U(s, r)~.D(r)U,,(r, s)U",(s, r) 

= ~,D(s)U",(s, r), implies that 

U(s, r)R~ (r) C;~ R: (s). • 

The general outline of the proof of Theorem 2 is dic
tated by the following equality derived from Eqs. (1) 
and (2): 

P(fe) = lim ic1< ••• <c,i6U",(t, S)S",8(S) 
t .. oo CIt 

(3) 

where fa is the incoming state at time s. Again, to re
place 8 by r, also replace fs with U(r, s)ff',' The body of 
the proof is contained in a number of lemmas which 
evaluate the terms of the above series. Aside from mo
dification of the lemmas to handle the additional term 
V(t,pt,O), the main change from Dollard's proof is the 
elimination of the somewhat cumbersome "Qt" and "Ct" 
transformations of Dollard by use of Proposition 1. We 
begin, unfortunately, with some more notation: 

Xc(X)={l, 
0, 

if x EO C1 x ... xC" 

otherwise. 

otherwise. 

{
1' ifrEOI",z~R3, 

XI"z(r) = 0, otherwise. 

Lemma 1: Letf±=L;" ~(s)f" withf" EOD". Let 
U±(t,s)f±=L;"U"(t,s)f,,. Then 

lim II U(t, s )f. - U±(t, s )f±11 = O. 
t ... ± DO 

Proof: See Dollard. 1 

Lemma 2: 

s-limXe /yv ... ,xn)1 pt=XI Z(P/) forPI*O. 
t .... ±oo CIt YI = l a 

Proof: See Dollard. 1 

Lemma 3: If A(t) is uniformly bounded and linear for 
all t, then 

s-limA(t) exp(- i IY zI 2/2t) - exp(- i ly I 12/2t)A(t) = 0 
t -± 0() 
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Proof: Let B(t) = exp(- i IYI 1
2/2t). Then 

IIA(t)B(t) - B(t)A(t)11 

= IIB(t)[B(t)-1A(t)B(t) - A(t) ]11 

~ IIB(t)II[IIB(t)-1A(t)B(t) - A(t)B(t)11 + IIA(t)B(t) - A(t) II] 

~ IIB(t)II[IIB(t)-1_ 111 ·IIA(tlB(t)11 + IIA(t)11 ·IIBU) -1111 

- 0 as t -± ao. 

Notation: Let 

X~= f V;(T,PT, 0) dT. 

Lemma 4: 

s-lim exp(iX~) exp(i I YI 12/2t) XB I 
t-±~ al y/=plt 

x exp(- i IYI 1

2/2t) exp(- iX~) 

= XI"I(PZ)' 

Proof: Let A(t) = exp(iX~) and B(t) = exp(i 1 YI 12/2t) 

and XB =xB",plyz=Plt. We use Lemma 2, Lemma 3, the 
fact that A(t) and XB commute, and the fact that IIXB II ~ 1. 

IIA(t)B(t)XBB(WlA(t)"1 - XI"p(PI)11 

~ IIA(tlB(tlxBB(t)-lA(tl-1 - B(t)A(tlxBB (tl-l A(t)-111 

+ IIB(t)A(t)XBB(t)-1A(t)-1 - B(t)A(tlxBA(t)-1 B(t)-111 

+ IIB(t)A(tlXBA(tl-l B(t)-1 - XI (PI)II 
"P 

~ IIA(t)B(t) - B(f)A(tlll IlxBB(t)-lA(tl-111 

+ IIB(t)A(t)xB II IIB(t)-1A(t)-1 _ A(t)"l B(t)-lll 

+ IIB(t)XBB(t)-l- XI"p(Pzlll 

- 0 as t _±oo 

Lemma 5: 
m 

s-lim U,,(s, t)XcU",(t, s) = n XI"'I(Pll. 
t -± ~ 1=1 

------Proof: Weare using the notation F(P )u(x) = F(P )u(P) 
where F: R n _ R, and A and ~ are a Fourier transform 
and its inverse. The proof of Lemma 5 uses Proposition 
1 and Lemma 4, i. e. , 

s-lim U" (8, t)xc U" (t, s) 
t .. too 

= s-lim exp(iX~) IT exp[i(t - s)(- ~/2) lxB"p 
t _tOO I =1 

x exp[- i(t - s)(- ~/2)J exp(- iX;) 

= s-lim n exp(iXt
s) exp[- ilyI 12/2(t- S)]XB", I I 

t-±~ 1=1 YI=PI (t-S) 

x exp[i IYI 12/2(t - s)] exp(- iX~) 
m 

= nXI (PI)' 
1=1 "I 

Lemma 6: If a and i3 are two channels with the same 
partition r, then 

s-lim Us(s, tl><cU,,(t, s) 
t-±<IO 

- exp[- i(t - s)(E", - Ee)] n XI ",I (PI) = O. 
1=1 

Proof: Corollary to the proof of Lemma 5. 
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Lemma 7: Let F(k, t) : Rm+l - R be such that 
limt~,. .. (l/t l tl )D~F(k, t) == 0 uniformly on compact sets 
for 1"':: 11; 1 ",:: m, then limt ~,. .. fllkexp[ikt + iF(k, t) ]t(k) dk 
= 0 for any integrable function f. 

Proof: It is sufficient to assume f is C" with compact 
support. If m = 1, then, by integration by parts, 

1m exp(ikt) exp[iF(k, t) ]t(k) dk ex~iikt). exp[iF(k, t)] 

X f(k) I: -fb eX~~ikt) DkF(k, t) • exp[iF(k, t) 1f(k) 
a 

+ exp[iF(k, t)1t'(k)dk - 0 

where support fe;;,. [a, b]. Just as integration by parts is 
based on (kg)' == h'g+ g'h, for general m, use integra
tion by parts based on 

am (HG) 
ilk l ••• akm 

==t L aSH am-sG 
s.Op.,.tltlon of akll ••• akls ak; .. 1··' ak1m 

(R1"" ,km) 

Solve for the term s == m and integrate. Let amH/ 
ilk1···ilkm=exp(ikt) and G==exp[iF{k,t)1f(k). Note that 
m - s, the number of times exp(ikt) must be integrated 
in each of the other terms, is always greater than or 
equal to the number of derivatives of F(k, t) that are 
present. (It could be greater because of the product 
rule on G.) 

Lemma 8: If QI and i3 are channels with distinct par
titions, then 

w-lim UB(s, tho U" (t, s) == O. 
t -:i: DCI 

Proof: Since Us(s, t)-X",U,,(t, s) == Us(s, t)Uet(t, s) 
xU",(s,t)x"U(t,s), where Uet(s,t)x"U,,(t,s) converges 
strongly by Lemma 5, it need only be shown that 
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(Us(s, f)Uet(t, s)u, v) - O. But this will follow from Lemma 
7 and the assumption in Theorem 2. Compare Dollard1 

and Donaldson, Gibson, and Hersh. 9,10 

The evaluation of the series (3) now proceeds just as 
in Dollard's paper, and we do not reproduce it here. 
Briefly, Lemma 8 says the terms where QI and (J have 
distinct channels are zero by the Riemann- Lebesgue 
Lemma. Those terms where QI * {3 have the same parti
tion are zero by the orthogonal choice of bound states. 1 

The terms where QI == i3 are then evaluated by Lemma 5. 
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The behavior of scalar wave propagation in a wide class of asymptotically conservative, dispersive, weakly 
inhomogeneous and weakly nonstationary, anisotropic, random media is investigated on the basis of a 
stochastic, collisionless, Liouville-type equation governing the temporal evolution of a phase-space Wigner 
distribution density function. Within the framework of the first-order smoothing approximation, a general 
diffusion--<:onvolution-type kinetic or transport equation is derived for the mean phase-space distribution 
function containing generalized (nonlocal, with memory) diffusion, friction, and absorption operators in 
phase space. Various levels of simplification are achieved by introducing additional constraints. In the long
time, Markovian, diffusion approximation, a general set of Fokker-Planck equations is derived. Finally, 
special cases of these equations are examined for spatially homogeneous systems and isotropic media. 

I. INTRODUCTION 

A general wave-kinetic method has been developed by 
Besieris and Tappert, 1-5 which makes possible the 
systematic derivation of generalized transport (or 
kinetic) equations that are valid even for partially co
herent waves in inhomogeneous, dispersive, anisotropic 
media. The theory has been extended to include also 
media which are slowly varying in time and weakly ab
sorbing (asymptotically conservative). 

In order to examine wave propagation by means of 
this technique, a phase-space description of the problem 
is developed first. Using the concept of a general analy
tic signal for wave fields, a phase-space distribution 
function is defined following Wigner's phase-space ap
proach to quantum mechanical waves. An exact equation 
of motion of this Wigner distribution function is derived 
next (it is referred to as the Wigner or wave-kinetic 
equation) which is fully equivalent to the original field 
equations. The concept of Weyl transforms (related to 
pseudo-tlifferential operators) also plays an important 
role in the rigorous derivation of the phase-space de
scription of wave propagation. 

Randomness is introduced by considering the wave
kinetic equations for an ensemble of inhomogeneous 
media with specified statistical properties. Equations 
are derived for the temporal evolution of the ensemble
averaged phase-space distribution function from which 
physically meaningful average quantities are obtainable 
by taking appropriate phase-space moments. 

The stochastic wave-kinetic method has already been 
used with success to study the behavior of scalar wave 
propagation in a wide class of random media, with ap
plications to radar, sonar, and other types of communi
cation systems. It generalizes the geometric optics ap
proximation to include coherent effects such as dif
fraction and random and dispersive spreading of wave
packets. It also provides a systematic basis for many 
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available classical transport or radiative transfer equa
tions which have been formulated for the most part on 
the baSis of ad hoc assumptions. 

It is our intent in this paper to present a statistical 
analysis of the stochastic, collisionless Liouville equa
tion 

a at j(x,p,t;O')=Lj(x,p,t;O'), (l.la) 

(
a a a 

Lj(x, p, t; 0') = - ap wr(x, p, t; 0'). ax + ax wr(x, p, t;O') 

• :p + 2w/ (x, p, t; 0'») j(x, p, t; 0'). (1. 1b) 

The medium is described by the linear dispersion rela
tion w(x,p,t;O'), and wr(x,p,t;O') and w/(x,p,t;O') are 
respectively the real and imaginary parts of w(x, p, t; 0') 
(cf. Ref. 6). Within the framework of the wave-kinetic 
technique, f(x,p,t;O') is rigorously defined as the Weyl 
transform of the wave-analytic signal. Thus, j (x, p, t; 0') 
is a Wigner distribution density function, and (1.1) fol
lows from a systematic asymptotic expansion in the 
semiclassical (or correspondence-limit) approximation. 

Equation (1. 1) generalizes the Liouville-type sto
chastic partial differential equation arising in the geom
etric, ray-optical approach to random media. 7-11 Fur
thermore, when specialized to the one-species, lin
earized, Vlasov equation, it has been studied exten
sively 12 in connection with the stochastic acceleration 
of particles, a subject of importance in various areas 
such as cosmic rays, heating of thermonuclear plasma, 
turbulence of interstellar plasma, etc. Therefore, the 
results presented in this paper are also applicable to 
these fields. 

In Sec. 2, a stochastic equation describing the evolu
tion of the phase-space Wigner distribution function is 
derived and the conditions under which the Liouville ap
prOXimation (1. 1) is valid are discussed. In order for 
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the discussion to be self-contained, general equations 
for the mean and fluctuating parts off(x, p, t; QI) are 
derived in Sec. 3 using first a nonperturbative technique. 
These results are then specialized to the weak-coupling 
limit in order to arrive at the well-known first-order 
smoothing approximation. These findings are applied to 
the stochastic, collisionless Liouville equation (1. 1) and 
a general diffusion-convolution-type kinetic or transport 
equation is given in Sec. 4. By using additional restric
tions, various levels of approximation can be achieved. 
In Sec. 5, general Fokker-Planck equations for the 
mean phase-space distribution function are obtained. 
Finally, in Sec. 6, special cases of these general Fok
ker-Planck equations are considered for spatially 
homogeneous systems and isotropic media. 

II. THE STOCHASTIC WAVE-KINETIC TECHNIQUE 

A. The analytic signal 

A large class of problems dealing with acoustic and 
electromagnetic scalar wave propagation in asymptoti
cally conservative (cf. Lewis13), dispersive, weakly 
inhomogeneous and weakly nonstationary anisotropic 
media is governed by the general stochastic differential 
equation 

{E2[:t -nj (x,t,-ie a~ ;QI)] 2 +n/ (X,t,-iE a~ ;QI)} 

(2.1) 

A distinguishing feature of this problem is the presence 
of the positive dimensionless parameter E, which can be 
taken to be inversely proportional to the scale size of 
the spatial and temporal irregularities. As such, for a 
slowly varying medium, E will be a small but finite 
quantity. In (2.1), nr

2 is assumed to be a positive, self
adjoint, stochastic operator depending on a parameter 
QI EA, A being a probability measure space. (All the 
fractional powers of nr

2 are defined and are, themselves, 
positive self-adjoint operators.) On the other hand, nj 
which arises solely from the dissipative properties of 
the medium, is assumed to be a Hermitian stochastic 
operator. In addition, u(x, t; QI), the real, scalar, ran
dom amplitude, is an element of an infinite-dimensional 
vector space. The problem is rendered closed by 
specifying Cauchy initial data and appropriate boundary 
conditions. 

We shall be interested in the time evolution of ob
servable quantities. In this sense, u and u2 have little 
physical meaning. We may, however, consider the 
total wave energy and the total wave action which are 
given in terms of u, u t and the operators nn n i by 
integrals of the form 

(2.2) 

(2.3) 

respectively. (In the absence of disSipation, Fl =unr
2u 

+e
2
u/ and F2 =unru +e2u tn;IUt ). In view of the assump

tion that the medium is time-dependent and dissipative, 
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neither of these quantities is conserved. The integrands 
in (2.2) and (2.3) are, respectively, the space wave 
energy and wave action density functions. 

The difficulty of working with the complicated ex
pressions (2.2) and (2.3) directly is circumvented by 
introducing the notion of the complex analytic signal. 
This quantity is defined by means of the relation 

(2.4) 

with the operator D t given by D t = (a/at) - ni[x, t, - ie(a/ 
ax); QI]. The total wave energy and wave action associated 
with (2.1) are given in terms of the analytic signal as 
follows: 

A =13 I/J*I/Jdx. 
R 

(2.5) 

(2.6) 

Taking the time derivative of (2.4) and using (2.1), 
one has the formal relation 

(2.7) 

By neglecting nonadiabatic terms, the analytic signal 
obeys the closed equation 

ie :t I/J= nrl/J + iE nil/J. (2.8) 

(In the absence of dissipation, the total wave action is an 
adiabatic invariant to all orders in E; E, however, is not 
conserved because of the time dependence of the me
dium. ) 

B. The Wigner distribution function 

The two-point, equal time density function is intro
duced next as follows in terms of the analytic signal: 

p(x2 , XI' t;QI) = I/J* (x2 , t;QI)I/J(xj> t;QI). (2.9) 

It obeys the von Neumann-like equation 

(2.10) 

where [A, BlF =AB 'f BA denote the usual commutation 
and anticommutation relations. 

The phase-space analog of the density function is pro
vided by the Wigner distribution function which is de
fined as followS l4 : 

f(x, p, t;QI) = (21TEt3 IR3 dy exp(ip. y /E)p(X + ty, X - ty, t;QI). 

(2.11) 

This quantity is real, but not necessarily positive every
where. In this sense, it does not qualify as a bona fide 
probability density function. One may introduce it in 
terms of other bilinear expressions of the analytic sig
nal. The relation (2.11) has been chosen because of its 
relative simplicity and symmetry. The total wave energy 
and wave action can be written in terms of the Wigner 
distribution function as follows: 

E= ~3 dx IR3dp wAx, p, t;QI)f(x, p, t;QI), 

A = f dx f 3dpf(x, p, t;QI). 
R3 R 
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Here, wr(x, p, t;a) is the Weyl transform of the operator 
nr• By virtue of (2.12), wrj can be interpreted as the 
wave energy density in phase space. Similarly, from 
(2. 13), j can be thought of as the wave action density 
in phase space. 

Given the definition of j(x, p, t;a) and using the von 
Neumann equation (2.10), it is found that the Wigner 
distribution function evolves according to the following 
equationl5 : 

a a/ex, p, t;a) 

2 . [€ (a a a a ),1 
= Wr(x, p, t;a); smLz ax • ap - op • ax jf(x, p, t;a) 

[
E (2 a a a)~ +wj(x p t'a)2cos - -.--_.- j(x p t'a) , , , 2 ax ap ap ax "" 

(2. 14) 

where Wj(x,p,t;a) is the Weyl transform of the operator 
nj • (Depending on the directions of the arrows, the 
differential operators on the right-hand side of (2.14) 
operate on Wn Wj, or j.) We shall refer to the exact 
equation of evolution of j as the stochastic Wigner 
equation. 

It is seen from (2.14) that in the "correspondence 
limit" (E - 0), the Wigner distribution function obeys the 
simpler relation 

o at j(x, p, f;a) = Lj(x, p, t;a), (2. 15a) 

(
a a a 

Lj(x,p,t;a)= - ap wr(x,p,t;a)'ax +ax wr(x,p,t;O!) 

• a~ + 2wj (x, p, t;O!») j(x, p, t;a) +0 (€2). 

(2. 15b) 

In the framework of this approximation, we shall refer 
to (2.15) as the stochastic, collisionless Liouville 
equation. 

III. GENERAL EQUATIONS FOR THE MEAN AND 
FLUCTUATING FIELDS 

In the first part of this section we derive general 
equations for the mean and fluctuating parts of the Wig
ner distribution function using a nonperturbative statis
tical approach. These results are then specialized to the 
weak-coupling limit in order to arrive at the well known 
first-order smoothing approximation. Further simpli
fications, required for the subsequent development, lead 
to the long-time and Markovian approximations. The 
discussion in this section is general and applies to both 
the stochastic Wigner equation [cf. Eq. (2.14)] and the 
stochastic, collisionless Liouville equation [cf. Eq. 
(2.15)]. 

Consider the linear, stochastic, partial different 
equationj8 

a 
at j(x, p, t;O!) =Lf(x, p, t;O!), (3. la) 

f(x, p, O;O!) =fo(x, p;a). (3.lb) 

The stochastic operator L is split into two parts as 
folows: L=Lo+Lj. The selection of Lo andL j is made 
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in such a way that they are linear operators in an in
finite dimensional ve ctor space H, corresponding, 
respectively, to "free" and "interaction" 
propagation. 

The distribution functionf is, in turn, decomposed 
abstractly into two mutually independent terms, viz., 
j = Vf + Cj by means of the formal introduction of the 
two operators V and C. j1 Vj is called the mean com
ponent, and Cj is the fluctuating part of the distribution 
functionj.18 The uniqueness of the decomposition as 
well as the mutual independence of the two components 
are ensured by prescribing the properties V + C =1, 
V2 =V, C2 =C, VC=O, CV=O, where I is the identity 
operator. By virtue of these relations, V and Care 
called projection operators. 

The interconnection between the decompositions for 
the operator L and the distribution functionj is con
tained in the commutation relations [Lo, vL = 0 and 
[L o, cL = 0 which constitute a mathematical statement of 
the fact that the fluctuating part of f is due only to the 
interaction part of the operator L. Therefore, Lo must 
commute with V, and also, with C = I-V. 

The specific realization of the projection operators V 
and C which will be used in the ensuing work is the 
following: Vf- E{r}, Cf- 5j, where E{r} and 5j are, 
respectively, the ensemble average and fluctuating part 
of the random distributionj(O!). Within the framework 
of this specific realization, the aforementioned com
mutation relations signify that Lo is a deterministic 
operator and L j is a generally noncentered random 
operator . 

A. Equations for the mean and fluctuating distribution 
functions; first-order smoothing approximation 

Operating on (3.1) with the projection operators V, 
C yields the equations 

:t E{r(t)}= VLE{r(t)} + VL5j(t), 

:t 5f(t) =CL5j(t) + CLE {ret)}, 

(3.2a) 

(3.2b) 

respectively. Equation (3. 2b) can be solved for oj(t) in 
terms of the mean field and the initial value of the 
fluctuating part of the distribution: 

The propagator Uv is defined as the solution of the initial 
value problem 

(3.4) 

Substituting (3.3) into (3. 2a) results in the equation j9 

:tE{r(t)}=LOE{r(t)} + VLj VE{r(t)} + VLjUv(t, O)Coj(O) 
(t (3.5) 

+ Jo dtj VLj (t)Uv(t, tl)CL j (fj)E{r(t l )}· 

This formal expression for the mean field is valid for 
both weak and strong fluctuations in the randomly vary-
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ing inhomogeneities of the medium. It should also be 
noted that no restriction whatsoever has been imposed 
on the random operator L j and the initial value of the 
distribution function. 

Equation (3.3) indicates that the fluctuating part of 
the field can be calculated by quadratures once the 
mean distribution function has been determined 
separately. 

B. The first-order smoothing approximation 

Balescu and Misguich20 have shown recently that 

with the propagator W defined as the solution of the 
initial value problem 

a 
aTW(t,O)=Lo(t)W(t,O), W(O,O)=1. (3.7) 

The first-order smoothing approximation is deter
mined by introducing in (3.5) the weak-coupling limit 
approximation 

Uy(t,O)C- CW(t,O). 
"=0 

(3.8) 

For the sake of simplicity, we also impose the restric
tion that Ll is a centered random operator. This condi
tion is stated mathematically as VLj V = 0. Furthermore, 
f(O) is taken to be deterministic so that Clif(O) = 0. We 
have, then, in the place of (3.5) 
a 
at E{j(t)} (3.9) 

= LoE{j(t)} + J t dtj VLj (t)W(t, tj)Lj (t j )E{j(tl)}' 
o 

The first-order smoothing approximation (cf. also 
Refs. 9, 10, 21-23) is essentially a perturbational 
method applicable for weak random variations. The 
mean field E{f(t)}, which is determined by successive 
iterations of (3.9), is found to be a partial summation of 
the exact, infinite, conventional perturbation series 
solution. This subseries, besides yielding results con
sistent with physically imposed constraints, enables one 
to circumvent certain time and space secularities which 
are characteristic of solutions conSisting of only a finite 
number of terms of the infinite perturbation series 
(e. g., Born approximation and its various 
modifications) . 

In general, the solution of (3.7) for the propagator W 
needed in (3.9) has the form 

W(l,0)=Xexp{fdl 1L o(lj)}, (3.10) 
o 

where X is a time-ordering operator. In the following, 
we shall assume that Lo is time-independent. In this 
case (3.10) Simplifies to 

W(t, 0) = exp(lLo). (3.11) 

The approximation (3.9) together with the assumption 
(3.11) will be used in the following section to derive a 
diffusion-convolution-type kinetic equation for the 
average part of the Wigner distribution function. 
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C. Long-time Markovian approximation 

Let E{f(t)} denote the asymptotic limit of the field 
E{j(t)} as t- 00. Then, given that Uy(t, O)C - ° as t- 00, 

it can be established that (3.5) assumes the simpler 
form j7• 24 

a ~ 

atE{j(t)} (3.12) 

We shall call this relation the long-time approximation 
corresponding to (3.5). It is interesting to note that the 
term in (3.5) containing the fluctuating part of the initial 
distribution is asymptotically null in this approximation. 
No restriction need, therefore, be imposed onf(O). It 
should, further, be pointed out that the initial mean dis
tribution E{j(O)} required for the complete specification 
of the initial value problem (3. 12) must be chosen so 
that the solution of (3.12) will COinCide, for large times, 
with the asymptotic value of the solution of the "exact" 
equation (3.5) with the initial value E{j(O)}. 

In the first-order smoothing approximation and under 
the assumption that the background deterministic medium 
is time-independent, (3.12) simplifies to 

a~ E{f(t)}=LoE{j(t)} 

+ l""dt j VLj (t)W(tj)Lj(t - tj)E{j(t - tj)}. 
(3. 13) 

This relation can be rewritten in the equivalent, purely 
differential form 

(3.14) 

K being the solution of the nonlinear integral equation 

The last expression can be solved for K by the method of 
successive substitutions. If only the first two terms of 
the expansion are retained, one obtains the long-time 
Markovian approximation 

a~E{j(t)}=LOE{j(t)} + ['" dtj VLj (t)W(tj)Lj(t - t 1)E{j(t)}. 

(3.16) 

This simplified integro-differential equation for the 
mean field will be used in Sec. 5 to derive a general 
Fokker- Planck equation. 

IV. KINETIC EQUATION FOR THE MEAN 
DISTRIBUTION FUNCTION 

In this section we specialize our findings in the pre
vious section to the case of the stochastic Liouville
type operator 

a a a a 
L = ax wr(x, p;a)· ap - apwAx, p;a)· ax + 2Wi(X, p;a) (4.1) 

introduced earlier [cf. (2.15)] in connection with the 
stochastic wave-kinetic technique. For simplicity, L is 
assumed in the sequel to be independent of time. This 
restriction is not a serious drawback since it can be 
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easily lifted (cf. Ref. 5). Thus, L is translationally in
variant with respect to time, and its free and interaction 
parts are given simply by 

in terms of the mean and the fluctuating parts of Wr and 
Wi' 

a a 
LO=axE{wr(x,p;a)}' ap 

(4.2a) Diffusion-convolution-type kinetic equation 

a a 
- ap E{wr(x, Pia)} 0 ax + 2E{w;(x, Pia)}, 

a a 
L j = ai5Wr(x, Pia) 0 ap 

iJ a 
- ap5Wr(x, p;a)· ilx + 25w;(x, Pia) 

(4.2b) 

We commence with the first-order smoothing approxi
mation of the Dyson-Schwinger equation for the mean 
Wigner distribution function [cf. Eq. (3.9)]. In order to 
write our explicitly the second part on the right-hand 
side of (3.9), we use the definition of L j given in (4. 2b). 
We have, then 

Ut - Lo)E{j(X' p, t;a)}= a~ 0 (it dtjE {:xiiWr(X, Pia) exp(tjLo) :xiiWr(X, p;al :P E{f(x, p, t - tj;a)}) 

- a~ • (1t 

dtjE {iJ~ 5wr (x, Pia) exp(tjLo) il~ 5wr (x, Pia)} 0 a~ E{j(x, p, t - tj; a)}) 

- il~ 0 (it dtjE {a~ iiwr(X, Pia) exp(tjLo) a~ iiwr(x, p;a)} 0 a~E{j(X' p, t - tj;a)}) 

+ a~ 0 (it dtjE{iJ~ 5wr(x, Pia) exp(tjLo) iJ~ 5wr(x, Pia)} 0 a~ E{j(x, p, t - tj;a)}) 

+ il~ . (it dtjE{il~ 5wr (x, Pia) exp(tjLo) 25w;(x, p;a)}E{j(X, p, t - tj;a)}) 

- il~ . (1 t 

dtjE {il~ 5wr(x, Pia) exp(tjLo) 2iiw/(x, p;a)}E{j(x, p, t - tj;a)}) 

+ 1t dt jE{25W;(X, Pia) exp(tjLo) il~ 5wr (x, p;a)} • il~ E{j(x, p, t -tj;a)} 

-[t dtjE {25W;(X, Pia) exp(tjLo) il~ owr(x, Pia)} • il~E{j(X, p, t - tj;a)} 

+ [t dt1E{25w;(x,p;a) exp(tlL O) 2 ow; (x, Pia)} E{j(x, p, t -tj;a)}. 

(4.3) 

This rather formidable integro-differential relation, which will be referred to as the kinetic equation for the mean 
distribution function, generalizes previous equations of this type (cf. Refs. 7-12). It applies to media with in
homogeneous deterministic background, and constitutes a uniform approximation, valid for any value of time, 
from which short and long time limiting cases can be considered. (The latter will be dealt with in detail in the 
following section). The right-hand side of (4.3) contains generalized diffusion operators (nonlocal, with memory) in 
phase space, and, also, generalized friction and absorption operators. 

For a spatially homogeneous background, (4.3) is a generalization of the kinetic equation for random geometrical 
optics obtained by Frisch (cL Ref. 10). It is a diffusion-type equation with respect to space and wave vector 
(momentum) coordinates, and a convolution equation with respect to position and time. (Under various special 
conditions, e. g., homogeneous and isotropic randomness and spatially homogeneous systems, it may be possible 
to arrive at an exact analytical solution. ) 

V. GENERAL FOKKER-PLANCK EQUATION 

A. Diffusion, friction, and absorption coefficients 

By imposing additional restrictions, various levels of 
simplification of (4.3) can be obtained. The long-time, 
Markovian approximation yields the expression 

c: +v(p) 0 il~)E{j(X'P' t;a)} 

= il~ . [D;;' il~ E{j(x, p, t;a)}] 

- a~ . [D;~' il~ E{j(x, p, t;a)}] 
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- il~' [D~;' il~E{j(X,p,t;a)}] 

+ a~ 0 [D~~' a~E{j(X, p, t;a)}] 

+ il~ 0 [F~IE{j(x,p,t;a)}] 

- a~ 0 [F~iE{j(x,p,t;a)}] 

+ F!r 0 il~ E{f(X, p, t;a)}- F!r 0 a~E{j(X, p, t;a)} 

+A Ii E{j(x, p, t;a)} + A i E{j(x, p, t;a)}, 

I.M. Besieris and F.D. Tappert 
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with the dyadic (D), vector (F), 
efficients defined by 

and scalar operator co-

D;; = [~ dT E{o~ owr(x, Pia) 

x exp (- TV' o~) o~ owr(x, p;a)} 

D;~ = [~ dT E{ o~ owr(x, Pia) 

x exp (- TV' o~) il~ owr(x, Pia)}, 

D~; = l~ dT E{il~ owr(x, Pia) 

x exp (- TV' o~) o~ owr(x, Pia)} , 

D~~ = !o~ dT E{o~ owr(x, Pia) 

x exp (- TV' o~) o~ owr(x, Pia)}, 

F;l = ["" dT E{il~ owr(x, p;a) 

xexp (- TV' o~)20W/(X,p;a)}, 
F~I= l""dTE{il~OWr(x,p;a) 

x exp (- TV ' o~) 2ow;(x, p;a)} , 

F;r = 1"" dT E{20Wi(X, Pia) 

x exp (- TV' a~)a~ owr(x, p;a)}, 

F!r = [00 dT E{20W i (X, Pia) 

x exp (- TV' a~) a~ owr(x, p;a)}, 

AiI= [~dTE{20Wi(X,p;a) 

x exp (- TV' a~)20W/(X' Pia)}, 

Ai = 2 E{w/(x, p;a)} 

and the vector quantity v( p) given as follows: 

a 
v( p) = ap E{wr(x, Pia)}. 

(5.2a) 

(5.2b) 

(5.2c) 

(5.2d) 

(5.2e) 

(5.2f) 

(5.2g) 

(5.2h) 

(5.2i) 

(5.2j) 

(5.3) 

In writing down (5.1) we have resorted to the follow
ing simplifying assumptions: 

(i) The deterministic background medium is spatially 
homogeneous. (This implies that both E{wr(x, Pia)} and 
E{Wi (x, Pia)} are independent of position. ) 

(ii) The quantity E{wI(x, Pia)} is a slowly varying func
tion of momentum so that its first- and higher-order 
derivatives with respect to p can be neglected by com
parison to the quantity itself. 

In the following, the translational effects of the opera
tor~ exp[ - TV • (a/ax)] on the mean distribution function 
E{j(x, p, t;a)} will be ignored. This simplication is known 
as the diffusion approximation. Within the confines of 
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this approximation, (5.1) becomes a Fokker-Planck 
equation. The coefficients D are called the dyadic diffu
sum coefficients, the quantities F are the vector friction 
coefficients, and, finally, the A's are the scalar ab
sorption coefficients. 

B. Anisotropic, dissipative and/or dispersive systems; 
uniform, homogeneous, and isotropic fluctuations 

We shall derive here explicit expressions for the 
diffUSion, friction, and absorption coefficients (5.2) in 
the case of a general anisotropic, dissipative and/or 
dispersive medium characterized by uniform, spatially 
homogeneous and isotropic fluctuations of the randomly 
varying functions owr(x, Pia) and OWl (x, Pia). We as
sume, furthermore, the conditions (i) and (ii) specified 
in the previous subsection. Thus, the background medi
um is independent of the space coordinates, and 
E{wI(x,p;a)} is a slowly varying function of P. 

In many phYSically important problems owr(x, p;a) 
can be written as a product of a random function 
0Xr(x;a), and a deterministic fUnction griP), viz., 

(5.4) 

Similarly, oWI(x,Pia) is written as a product of a ran
dom function of position, ox/(x;a), and a deterministic 
function, g/(p), viz., 

(5.5) 

For spatially homogeneous and isotropic fluctuations, 
we define the following two-point correlation functions: 

rrr(Y) = E{oXr(x;a)oXr(x - yja )}, 

rr/ (y) = E{oXr(x;a)oXI (x - Yia)}, 

r/r(Y) =E{6x;(x;a)6Xr(x- y;a)}, 

ril(Y) =E{6x/(x;a)6Xi(x- y;a)}. 

(5.6a) 

(5.6b) 

(5.6c) 

(5.6d) 

Furthermore, for a uniform, spatially homogeneous 
and isotropic model, we specify the relationships: 

rrr(Y) _rrl(Y) _r1r(y) _riley) _p(y) 
rrr(O) -rrl(O) -r1r(O) -rll(O) - , 

(5.7a) 

p(O) = 1. (5.7b) 

The quantity p(y) will be referred to as the correlation 
coefficient. 

While, admittedly, more complicated choices for the 
correlation functions may more closely resemble the 
true situations in the real world, the relatively simple 
forms (5.6) and (5.7) contain the essential behavior of 
the random fluctuations. 

With Y =VT, where v = Iv I, the first dyadiC diffusion 
coefficient becomes 

(5.8) 

which, in turn, simplifies to 

D;; = v (lp)g;( p) (.- ::)rrr(O)B, (5.9a) 
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I
~ 1 0 

B=- dy- - p(y) 
o y oy 

(5.9b) 

provided that 

o 
-p(y) - O. 
oy y·o 

(5.10) 

I in (5.8) is the unit dyadic, and B in (5.9) is a quantity 
which will be related to the correlation length of the 
random inhomogeneities at the end of this subsection. 

The second dyadic diffusion coefficient can be re
written as follows: 

D;~=- [~ dT E{o~ owr(x, P;QI) o~ owr(x- VT,P;QI)}. 

(5.11) 
Bearing in mind (5.4), (5.6a), and (5.7), this becomes 

D;~=-gr(P) o~gr(P) :2~~) rrr(O) [~dY :y p(y), (5.12) 

which, upon integration, changes to 

D;;= - gr( p) :pgr( p) :2\~) rrr(O) (5.13) 

if, in addition to (5.10), one specifies that p(y) - 0 as 
y - 00. 

By virtue of the definition (5. 2a), it is easily seen 
that 

(5.14) 

It also develops that the last diffusion coefficient is 
given by 

D~;=vtp) (a~gr(P») 2rrr (0)C, 

C = 1~ dy p(y). 

(5. 15a) 

(5. 15b) 

A physical interpretation of C will be presented later 
on in this subsection. 

We shall turn next to the evaluation of the friction 
coefficients. The first one [cf. Eq. (5. 2e)] is rewritten 
as 

F;i = 1~ dT E\:xOWr(X, P;QI) 20Wi(X- VT,P;QI)}. (5.16) 

Using (5.4), (5.5), and (5. 6b), and (5.7), this yields 

F;i=-2gr(p)gi(p) ~«P»rri(O). (5.17) 
11 P 

An examination of (5. 2g) shows that 

(5.18) 

The remaining two friction coefficients are found to 
be equal: 

(5.19) 

Finally, the scalar absorption coefficients, Aii and Ai, 
are given simply by 

740 

.. 2 1 
AU =4g i (p)-(-)r ii (0)C 

1J p 
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(5.20) 

and 

Ai = 2E{Wj(x, P;QI}}. (5.21) 

The parameters Band C, introduced earlier in this 
subsection as special integrals of the correlation co
efficient, can be considered as measures of the corre
lation distance of the random processes 0Xr(x;QI) and 
0Xi (x;QI), without any reference to specialized corre
lation functions. Such a general definition reduces con
siderably the mathematical complexity of having to work 
with specific correlation functions chosen from within 
an already plethoric set of physically meaningful ones, 
without at the same time detracting much from the 
physical content of the ensuing results. The motivation 
for this interpretation is given in the first part of 
Appendix A. 

In the following, we shall use the convention 

B= 1/1, C =Ie. (5. 22) 

The parameters I and Ie will be referred to in the sequel 
as the correlation lengths of the random process. An 
interpretation of these quantities in terms of the spectral 
correlation function is provided in the second part of 
Appendix A. 

We now summarize the main results of this section. 
Introducing (5.9a), (5.13), (5.14), and (5.17}-(5.22) in 
(5.1), we obtain the general Fokker-Planc1? equation 

a ( v(p) J; ,) 
- ap' 2gr (p)gj(p)rri(O) v2(p) Ell (x, p, t;QI)j 

a (0 Ie {lA } _-. 2g;(p);-gr(p)rr;(O)-( }E (X,p,t;QI) ax up v p 

v(p) a J; } + 2gr( p)gj( p)r ir(O)::zp) • ;oElI (x, p, t;QI) 
V P up 

o Ie iJ J? } 
- 2g i (p) opgr(p)rir(O) v(p) • aX Ell (x, p, t;QI) 

Ie A } + 4gh p)r Ii (0) v( p)E{j(X, p, t;QI) 

+ 2E{Wi(X, p;QI)}E{f(x, p, t;QI)}. (5.23) 

This equation should be Aaugmented by the initial mean 
distribution function E{j(x, p, O;QI)}. 

VI. SPECIAL CASES OF THE GENERAL FOKKER
PLANCK EOUATION 

We present in this section two simplifications of the 
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general Fokker-Planck equation (5.23) corresponding 
to spatially homogeneous system and isotropic media. 

A. Spatially homogeneous systems 

Besides the assumptions (i) and (ii) made in the pre
vious section we must also impose in this case the 
condition 

O~E{j(X, p, t;a)}= O. (6.1) 

It follows, then, that the only nonvanishing of the co
efficients (5.2) are D;;, F;i, F!~, Ail, Ai, and (5.23) 
reduces to the following relaxation equation in momen
tum space: 

o A 

aTE{i(p, t;a)} 

= O~ -[g~(P{~l(O) v(~) (I-~n' o~E{j(P' t;a)}] 

- o~ , (2g~( p)g/( p)r ~i(O) v~~~) E{j(p, t;a)}) 

v(p) 0 J; } + 2g~( P)gi(p)ri~(O) v2( p) • op Eu (p, t;a) 

A A 

+ 4gi( p)ru(O) v( p)E{t( p, t;a)} 

+ 2E{Wi(X, p;a)} E{j(P, t;a)}. 

(6.2) 

When written in spherical coordinates in p-space, 
(6.2) is a generalization of the Fokker-Planck equation 
obtained by Chernov8 for the probability, P«(J, ¢, s), of 
ray directions (9, ¢ are spherical coordinates) of arc 
length s in the Markovian approximation. It is also re
lated to the expression for the coherent distribution 
function, E{t(v, t;a)}, in the problem of stochastic ac
celeration of uniformly distributed particles under the 
action of time-independent electric and magnetic fields. 

B. Isotropic, dissipative and/or dispersive systems25 

As a consequence of the isotropy of the medium, 
v(p) =v(p)p, g~(p) =g~(P), g/(p) =g/(p), (%p)g~(p) 
= (%p)g~(p)p, and E{w/(x, p;a)}=E{w/(x,p;a)}, where 
p = p/ I pl. Under these conditions, the general Fokker
Planck equation (5.23) Simplifies to 

(o~ + V(p)p. o~)E{j(X' p, t;a)} 

with 
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(

A 0)2 A 

=D,.{p) P'ox E{t(x,p,t;a)} 

+Dp(p )(pX o~ Y E{f(x, p, t;a)} 

+ 2veu(p)E{f(x, p, t;a)}, 

V(p)=v(p) +~ o~ [(a~ g~(P»)vtp)Jr~~(o) 

+~ (a~~(p1 vtp) r~~(O) iJ~ • P 
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(6.3a) 

(6.3b) 

(6.3c) 

D (p) - 1 g~(P) r~~(O) (6. 3d) 
p -PI v(p) 1 ' 

veu(p) =E{w/(x,p;a)} +~ {- iJ~ (2g~(P)g/(P) vtp»)r~i(O) 

( 
1 ) iJ A 

- 2g~(P)gi(P) v(p) r~/(O) iJp • P 

+4gi(p) V~p)r//(o)}. (6.3e) 

In (6. 3a), the left-hand side describes convection with 
modified group velocity V(p), the first term on the 
right- hand side describes longitudinal spatial diffUSion, 
the second term arises because of angular diffusion in 
momentum space, and, finally, the last term deSignates 
the effective absorption in the random medium. 

In Appendix B we shall discuss the specific forms of 
Eq. (6.3a), as well as the coefficients V(p), D:x:(p), 
Dp(p), and veu(p), for three-, two-, and one-dimen
sional problems. 

APPENDIX A: PHYSICAL INTERPRETATION OF THE 
PARAMETERS £ AND A 

In order to motivate our interpretation in Sec. 5 of 
the quantities 1 and A as general measures of the cor
relation length of the random process, without recourse 
to specialized correlation functions, we refer to two 
special, but widely used correlation coefficients: 

(i) p(y)=exp(_y2/L2), l=L/..fW, A=(..fW/2)L, 

(Al) 

(ii) p(y) = [1 + (y /L)2]-2, 1 = (4/3lT)L, A = (IT/S)L. 

(A2) 

In these two examples, L denotes the correlation length 
of the random process under conSideration. 

In the second part of this appendix, we provide a 
physical interpretation of the parameters 1 and A with 
the aid of the spectral correlation function. 

In Sec. 5, the correlation lengths 1 and A were de
fined in terms of the correlation coefficient p(y ) as 
follows: 

1 ;:" 1 iJ -=- dy- -p(y) 
loY oy , 
X=j"dYP(Y). 

(A3) 

(A4) 

The spectral correlation function is introduc ed next by 
means of the integral 

S(p) = (2lTt3 J a dy p(y) exp(- ip. y) 
R 

(A5) 

Integrating (A5) over p yields 

J adpS(p)=1 
R 

(A6) 

since p(O) = 1. An inversion of the Fourier transforma
tion (A5) results in the expression 
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p(y) = (47T/y) fa ~ dp P (sinpy )S(P). (A7) 

Introducing this result in (A3) and (A4) gives rise to the 
relations 

y=- 47TI~ dPPS(p)[I~ dy1 ~ (Si IlPY)] 
o 0 y ily y , 

However, the definite integrals over y appearing in 
(A8) and (A9) can be carried out explicitly, viz. , 

(~d l~{Sinpy) __ !!: 2 
10 y y ily \: y - 4P , 

Therefore, one finally has 

(A8) 

(A9) 

(AlO) 

(All) 

(A12) 

(A13) 

Similar expressions can be written for the two-dimen
sional and the one-dimensional case. 

APPENDIX B: THREE-, TWO~, AND ONE
DIMENSIONAL FOKKER-PLANCK EQUATIONS 

When the Fokker- Planck equation (6. 3a) for an iso
trqJic, dissipative and/or dispersive medium is con
sidered in a three-dimensional Euclidean space, it is 
convenient to introduce a spherical polar coordinate 
system in momentum space: p= (p, e, q;). Then we use 
(6.3a) with 

( 
a ) 2 1 il 2 1 il I. il ) 

P X ilp = sin2e il q;2 + sine ae \sine ae . (Bl) 

The coefficients V(p), D,,(p), ,,0, are given as in (6. 3b), 
(6.3c),ooo, with (alap). p=(2/p). 

In the two-dimensional case, we introduce a polar 
coordinate system in momentum space: p= (p, q;). Then, 
in examining specific problems, we must use (6. 3a) with 

(B2) 

In the one-dimensional case one has 

( a)2 [) ~ pX - =0 - ·p=O. 
ilp 'ap 

(B3) 

Equation (6. 3a) assumes the simpler form 
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(a~ + V(p) il~ )E{i(X,P, t;a)} 

a2 ~ 
=Dx(P)-axrB{j(x,P, t;a)} (B4a) 

+ 2Veff (P)E{j(x,P, tja)}, 

and the coefficients V(p), Dx(p), and VeffU)) are modi
fied as follows: 

V( ) _ ( ) _1 {~(~ 2 _1_) P -v P 2 ap ap gr(P) v(p) rrr(O) 
(B4b) 

(B4c) 

+ {- a~ (2g r(P)gi(P) V(1p )) rri (0) 

+4gI(P) V(~) rii(O)}. 

(B4d) 

The transport equation (B4) has been used to study the 
problem of wave packet spreading on a random trans
mission line (cf. Ref. 3) and the propagation of fre
quency-modulated pulses in a randomly stratified plas
ma (cf. Ref. 4). 

*The research reported in this paper was completed while the 
authors participated in the Applied Mathematics Summer 
Institute, 1975 at Dartmouth College. The Institute was sup
ported by the Office of Naval Research under Contract No. 
N0014-75-C-0121 with the Applied Institute of Mathematics, 
Inc. 

f'Research supported in part by Contract AFOSR-76-2881. 
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Monotonicity of correlation functions 
Paul A. Pearce 
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Counterexamples to pair correlation monotonicity ineqUalities, analogous to Griffiths' second inequality for 
the Ising model, are presented for the finite spin Heisenberg model, the spin-(I/2) X- Y model, the 
anisotropic planar classical Heisenberg model, and the spherical model. 

1. INTRODUCTION 

Griffiths1 has shown that for Ising ferromagnets the 
spin correlations are nonnegative and monotonic in
creasing functions of the interactions. The natural ex
tension to the isotropic planar classical Heisenberg 
model was given by Ginibre. 2 Similar theorems have 
also been proven for the spin-1 X - Y model3 and more 
recently for the anisotropic planar classical Heisenberg 
model4 regarding spin component correlations. 

No analog of Griffiths' second theorem has been found 
for a ferromagnet with a three-dimensional order pa
rameter. Indeed, Hurst and Sherman5 have shown that 
for a spin-1 Heisenberg chain the pair correlations are 
not, in general, monotonic increasing functions of the 
interactions. Yeh6 subsequently observed that for a 
classical (spin-oo ) Heisenberg chain the pair correla
tions are independent of the interactions between other 
pairs. The possibility of regaining Griffiths' second 
theorem at sufficiently high spin values is dispelled in 
Sec. 2 where it is shown that the Hurst and Sherman 
counterexample holds for all finite spin valUes. The 
important case of the classical (spin-co) Heisenberg 
model remains unresolved with little hope for a simple 
counterexample since, in this case, the theorem is true 
at least for the chain-type structures6 and Husimi 
trees. 7 

In Sec. 3 it is shown that the pair correlations are 
also not monotonic increaSing functions of the inter
actions for the spin-1 X-Y model. This supports the 
view that quantum effects are responsible for the loss 
of monotonicity of the correlations. For higher spin 
values the simple counterexample presented breaks 
down. This matter, however, is not pursued further 
here. 

A particular monotonicity inequality obtained by 
Ginibre2 for the isotropiC planar classical Heisenberg 
model is of the form 

(1. 1) 

In Sec. 4 it is shown that this inequality is no longer 
true when spin space anisotropy is introduced. 

Finally in Sec. 5 a counterexample is presented to 
Griffiths-type inequalities for the Berlin and Kacs spher
ical model. 

2. HEISENBERG MODEL 

Consider a system of three Heisenberg spins with 
Hamiltonian 
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(2.1) 

where Sf, i == 1, 2, 3, is the spin-s operator for the ith 
site. For weak interactions (high temperatures) the 
logarithm of the partition function 

Z '=Tr exp(-H), 

is given by the cumulant expansion: 

log Z == logTr1- </-I) + (1/21 )[</-12) - (.4)2] 

- (1/31 )[0'3) - 3</-12)0') + 20')3] 

(2.2) 

+ (1/41)[ (/-14) - 4</-13)(f/) - 30'2)2 + 12(/-12)(.4)2 - 6(f/)4] 

(2.3) 

where 

( ... ) '= Tr( , .. )/Trl. (2.4) 

From the cyclic invariance of the trace 

(2.5) 

The differentiation of the expansion for logZ is simpli
fied by observing that TrSI = 0, i == 1, 2, 3, leads to the 
consequences: 

and (2.6) 

Clearly the lowest order contribution to (2.5) is 

4~ OJ~~J2 {(.44) - 3(/-12)2}, (2.7) 

which after elementary manipulations becomes 

ts-8J1Ja{2«81 • S2)2(82 .83)2) 

+ «S1 . 82)(82 • S3)(S1 . 82)(S2 . S3» 

- 3«S1 . S2)2)2}. (2.8) 

The traces appearing in (2.8) have been evaluated as 
polynomials in 7]= s(s + 1) by Subramanian and 
Devanathan. 9 Using their results, expression (2.8) 
becomes 

ts-sJ1Jlin7]3[2(27]+ 1) + ~(47]- 3) + t(47]+ 2) + 2(7]- 2)]- t7]4} 

'=-trS-s7]3J1J2. (2.9) 
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Hence, for any finite spin, 

~(Sz 'S3) = _-.l..S-s1)3J 1J Z + .•. < 0, 
aJ1 27 

(2. 10) 

for J 1 and Jz sufficiently small and positive. Note that 
the term on the right-hand side of (2.10) vanishes as 
s tends to infinity in accordance with Ginibre. Also, 
s = i implies 1) = t and -b s-s~ = 4, in agreement with 
Hurst and Sherman. 

3. SPIN·% X- Y MODEL 

Consider a system of three X-Y spins with 
Hamiltonian 

H X-y= - s-Z(J1S1 • Sz + Jzsz • S3)' (3.1) 

where Si' i = 1, 2, 3, is the projection of the spin-s opera
tor onto the X-Y plane. By the analysis of Sec. 2, the 
lowest order contribution to (ojoJ1)(8z' S3) for weak inter
actions is 

ts-sJ 1J z{2«S1 . sz)Z(sz' S3)Z) +«S1' sz)(sz' ss)(Bt . sz)(sz· 8s» 

- 3«S1 . sz)Z)Z} (3.2) 

= ts-sJ 1J zHu 1)[2(21) + l)(t1)Z + 2(41) - 3)(t1)(t1J) 

+ (41) + 2)( t1))( t1) + 2( 1J - 2)( %1)Z] - 3(i 1)Z)Z} 

(3.3) 

Hence 

(3.4) 

for s = i (i. e., 1) = t) and for J 1 and Jz sufficiently small 
and positive. The counterexample fails for higher spin 
values (i. e., 1J?- 2). 

4. ANISOTROPIC PLANAR CLASSICAL 
HEISENBERG MODEL 

Consider an anisotropic planar classical Heisenberg 
chain described by the Hamiltonian 

H Ani. = (J1 + K1)Sl,sZx + (JZ + K Z)SZ,s3X 

+J1S1-?ZY + JZSz-?sY (4.1) 

where Sl = (Six, Siy), i = 1,2,3, are unit plane vectors. 
By similar reasoning to that in Sec. 2 it is seen that 
the leading term in a high temperature expansion of 
(0 jaJ1)(Sz . S3) is 

1 oZ {ILl 4 ILl 2)2} 
4! oJ1 aJ2 V7 Ani. ) - 3Y7 Anis • (4.2) 

For this model, the configurational integrals are given 
by 

{
em - I)!! (n- 1)\! j(m +n)!!, 

(S;'S, = 0 , 
m, n even, 

otherwise. 

(4.3) 

Consequently, the expansion of the leading term (4,2) 
gives 
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~ 0~:J2 {[(J1 + Kl)2(JZ + K Z)2 + ~~][«Sl,sZx)Z(SZ,s3")~ 
- «S1,s2x)2)Z] + [~(J1 + K1)2 + Ji(Jz + Kz)Z] 

X [«St,s2JZ(SZ,sSY)Z) - «S1,sZX)Z)Z]) 

=H(Jt +K1)(J2 +Kz) +J1J Z]' (i -i) +HJ2(J1 +K1) 

+J1(JZ +Kz)]· (i - i) =~K1Kz' (4.4) 

Hence, 

«S1 . Sz)(Sz· S3» - (S1 . SZ><Sz· S3) =~K1Kz + ... < 0, 

(4.5) 

for sufficiently high temperatures if the perturbation 
parameters K1 and Kz are chosen so that KtK2 < 0, 
J1 + K1 > 0, and Jz + K2 > O. 

5. SPHERICAL MODEL 

Consider a spherical model c{)nsisting of four spins 
{XI}f=1 with "Hamiltonian" 

(5.1) 

and partition function 

(5.2) 

The quadratic form - fiSPh is associated with the sym
metric matrix iJ, where 

J= J 1Z 0 

o 0 

o 0 

o 0 J 34 0 

Scaling the spins and introducing the delta function 
gives 

(5.3) 

Z'Ph = 8 1.: ... I A dx ;1'/1 - t X1) exp(4J1Zx1xz + 4J34x 3X 4) ' 
1=1 \ <=1 

(5.4) 

Finally, the substitution of the delta function integral 
representation 

1 fl~ 
o(x) =-2' exp(xs) ds 

711 _I ® 

into (5.4) yields, after interchanging orders of 
integration, S 

11"+1., t Z'Ph =-2 . eSE(s) ds, 
rrz a -i -0 

where 

(5.5) 

(5.6) 

E(s) = l: ... J A dx. exp (- s ~ X1 + 4J12x1x Z + 4J34X3X~' 
(5.7) 

and Q' > 0 is chosen so that the line res = Q' is to the 
right of all singularities of E( s). 

The integrations in (5. 7) are readily performed by 
transforming the spin variables so as to diagonalize the 

Paul A. Pearce 745 



                                                                                                                                    

quadratic form -HSPh ' This procedure leads to the 
result 

Z(s) = 11Z[det(sI _ 2J) J-l /Z 

= w2{sZ _ 4Jfz)-1 /Z{SZ _ 4J~4tl /2. 

(5.8) 

(5.9) 

The partition function can now be evaluated by noticing 
from (5. 6) that 

(1/8)Zsph = W), 
where Ht) is the inverse Laplace transform 

11"'+/~ W)=-2 . exp{st)Z{s)ds. 
111 '" -I ~ 

SincelO 

(5.10) 

(5.11) 

(5.12) 

it follows from the Laplace convolution formula that 

(5.13) 

The ascending series for the zero order modified 
Bessel functionll is 

~ 

Io{z) = 6{Z/2k!)2. (5.14) 
k=O 

Hence, for weak interactions 

Z.ph = 8112 fol{l + Jf2t2 +···}{1 +~4{1- t)2 + ..• }dt (5.15) 

= 8w2{1 + t{J;z + Ji4) +-hJfZJ;4 + ... }. (5.16) 

Now the logarithm series 
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log{l + x) =x - txz + tx3 - .. " 
leads to 

(5.17) 

aJ12dJ34 logZsPh = 4J12J 34 30 -'2'9 + ... 
aZ {1 1 2 

14 
(5.18) 

= - 45 J12J34 + ... < 0, 

for J 12 , J 34 sufficiently small and positive. 
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Rigorous bounds on inclusive and exclusive cross sections. 
I. Lower bound on the integral of an analytic function * 

J. J. G. Scanio and P. Suranyi 
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A lower bound on the integral of an analytic function with certain properties is derived. The properties of 
the function are those expected of an inclusive or exclusive differential cross section. The integral bound 
can be used to derive rigorous bounds on these cross sections. 

I. INTRODUCTION 

There has been interest recently in the study of 
rigorous bounds on inclusive and exclusive cross sec
tions. 1-4 The bounds obtained in Ref. 3 contain no un
known constants and can be tested experimentally, and 
in addition they are saturated to within logarithmic 
factors of the energy if the inclusive cross section 
scales at high energy. 

Unfortunately, the method of proof used in Refso 1-3 
relied heavily on a partial wave expansion of the in
clusive amplitude and on the use of the Schwarz in
equality to reduce the problem to the study of elastic 
partial wave amplitudeso Such a reduction is not in 
general possible and the techniques of Refs. 1-3 can
not be used to obtain rigorous bounds on other types 
of cross sections. 

In this paper we prove the following theorem which 
will be directly applicable to the derivation of rigorous 
bounds on various types of croSs sections. 

Theorem: Let !(z) be a function of the complex varia-
ble z, with the following properties: 

(i) f(z) is analytic within the ellipse z =cosh(d+i8); 

(ii) I f(z) I <:; c for z on the ellipse; 

(iii) f(z) is real along the real axis inside the ellipse; 

(iv) f(z) is nonnegative on the real axis between - 1 
and + 1; 

(v) f(z) is normalized so thatf(1)=lo 

Then to leading order in Inc and In(l/ d) 
1 

1-1 f(x) dx ~ 2d2[ln(c1/2 ) J~2. 

The properties given to l(z) in the statement of the 
theorem are appropriate if f(z) is to represent either 
an exclusive or an inclusive cross section. We will 
mention two examples of the use of the theorem here. 

If we let 

( daet ) !(z) = dael 
dz e=1 dz 

where z =costi is the scattering angle, using the Jin
Martin bound on the magnitude of the scattering am~ 
plitude on the ellipse to obtain c = (5/ SO)2 and letting 
d2 =161l2/s where Il is the pion mass, we have5 

(1) 

a.1 (5) ~ (d;t) t}61l2[ln(s/ sO)]-2. (2) 

We can also obtain bounds on inclusive cross sections 
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which have already been derived using other methods. 1
- 4 

For example, using the notation of Ref. 3 if we let 

F(cosB)==21T f dPp 2f(Pcosti,PsinB,s), (3) 

where !(p cos8,p sine, s) is the invariant inclusive 
cross section we obtain 

(4) 

where we have used the normalization on F(z); 
J~1 F(z)dz =s1/2atoto The result of Eq. (4) illustrates 
the power of our theorem. The result of Refs. 1-3 has 
been obtained without any reference to a partial wave 
expansion. We leave further applications to a future 
publication. 

The proof of the theorem is somewhat involved and 
will proceed in a number of steps, with each step in 
general reducing the complexity of the functions we 
must study in order to obtain a minimal integral. In Sec. 
n we show that we need only consider those functions 
for which l!(z) 1= c everywhere on the ellipse. In Sec. 
m we show that the functions giving a minimal integral 
must have only real double zeros and no complex zeros. 
We are thus able to consider the square root of the 
original function without introducing any singularities 
in the ellipse. In Sec. IV we derive our minimal bound 
by first showing that we need only consider finite 
Legendre polynomial expansions of the square root 
functions and then by estimating the Legendre expan
sion in terms of the bound on the ellipse. In Sec. V we 
indicate that the bound cannot be substantially improved 
and in the Appendix we give a few properties of the 
Jacobi elliptic sine functions which we need in Sec. III. 

II. BOUND ON THE ELLIPSE 
In this section we show that the minimal integral in 

Eq. (1) will occur for functions f(z) such that I f(z) I = c 
everywhere on the ellipse. 

We first give some definitions and then prove a num
ber of lemmas. 

The ellipse Ed for any real d is the locus of points 
z=cosh(d+i8), 0,,; 8,,;21T. 

The norm of a fUnction! is given by lUll == J~d~"() dx. 

A function f is in class K [more speCifically class 
K(c)] if: (i) lIz) is analytic inside Ed+{!; (ii) lIz) is real 
on the real axis inside the ellipse; (iii) f(l) === 1; (iv) lIz) 
is nonnegative in the interval (- 1, + 1); (v) I f(z) I ,,; c 
if z E Ed; (vi) lIz) has no zeros between the ellipses 
Ed+< and Ed • ., where 0> € > O. 
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The function I(z) is minimal on K if IE K and II III 
'" II gil for every g E K. 

It is easy to see that if I(z) satisfies conditions (i)- (v) 
of a class K function then/(z) is of class K. Since/(z) 
is analytic inside EdT{j it has a finite number of zeros 
inside the ellipse Ed+(o /2)' We can then always pick a 
0' with 0 < 0' < 0/2 such that the ellipse Ed +o' has a 
neighborhood without any zeros. 

We now prove a series of lemmas. 

Lemma 1: Let/(z) EK and let 11111 be minimal on K. 
Then there are infinitely many points z i E Ed where 
I/(zi)1 =c. 

Proal: Suppose there are only a finite number of 
points N (including zero) such that \/(z;)\ =c. We show 
that/(z) cannot be minimal by constructing the function 

g(Z)=[l- i~ (Z-Z;)"(z-zt)n(Z-1)2a]/(Z), (5) 

where a and n are to be fixed later, Clearly g(z) satis
fies conditions (i)- (iii) of a class g function. If 8 < a 
< ao = (2 coshdt2nN-2 then g(x) satisfies condition (iv) and 
IIgll < I[rll. To show that Ig(z) I ~ c on the ellipse first 
notice that because I(z) is regular and I/(zJ 1= c we can 
give the bound I j(z) I '" c - a j I Z - Zi I nj when Z is on the el
lipse and I Z - Zi I < Ei . If we choose II = maxill i and a 
< (ao/c)min; ai then we have from Eqo (5) that I g(z) I 
~ c for Iz - Zi 1 <E;o Outside these intervals we have 
I I(z) I < c - 1) for some 1) > O. Choosing a so that it also 
satisfies I nf.1 (z - Z j)n(z - zt)n(z - 1)2ac I < 1) for all 
Z E Ed we see that g E K, However II g II < II III contrary to 
the minimality assumption for 11/11 and therefore we 
conclude that II (z i) I = c for an infinite number of points 

ziEEd' 

Because of this we can show Lemma 2. 

Lemma 2: If IE K and I(z) is minimal on g, then 
I/(z)1 =c for allzEEd , 

Proal: Because of Lemma 1 there is an infinite 
sequence of points zhZ2,z3, 0 •• ,zi E Ed coverging to a 
limit point Zo at which the real part of the function h(z) 
=ln/(z)=lnc disappears. Since/(z)EK, h(z) is analytic 
in the neighborhood of Ed and H(8) ",Reh[cosh(d+i8)] is 
a real analytic function of 8. H(8) has an accumulation 
point of zeros at 8= 80 and therefore H(Bo) = O. However 
the nth derivative of H(8) having an accumulation point 
of zeros there also, vanishes at 80 and since H( 8) is 
real analytic it vanishes identically. Therefore I I(z) I 
= c on the ellipse. 

We now turn to the examination of the zero structure 
of I(z) E K, 

III. ZERO STRUCTURE 
The functions I(z) E K have a finite number of zeros 

inside the ellipse Ed' The zeros may be classified as 
follows: 

Class A: double zeros anywhere on the real axis, XI, 

i=l, ... ,L; 

Class B: complex conjugate zeros, ai' aj, i = 1, ... ,M; 

Class C: single real zeros for 1 < ui < coshd, i = 1, ... ,N; 
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Class D: single real zeros for - coshd < v I < - 1, 
i=l, ... ,Po 

An explicit form for IE K can be given in terms of its 
zeros when I(z) is minimal by using the result of Lemma 
2 that I/(z) I =c on the ellipse. If/(z) =cexph(z), then 
h( z) has logarithmic singularities at the zeros off( z) 
and in additon the real part of h(z) vanishes for zcc Ed' 
We can therefore write I(z) as 

L M 

I(z) = c exp (2 j~ G(z,xl ) + E [G(z, aj ) + G(z ,a/ll 
N p 

+E G(Z'lIj)+i~G(Z'Vi»)' (6) 

where G(z, Zi) is the Green function for the ellipse which 
has a logarithmic singularity at z = Zi and has vanishing 
real part on the ellipse. G(z,Zj) can be given in terms 
of Jacobi elliptic functions 6 and we can then write I(z) 
when z is real (z = x) as 

L 

I(x)=c n [ksn[(K/rr) (8+ 8nl]sn[(K/rr)(B- 8n)][2 
n=1 

M 

X n [ksn[(K/rr)(B+ ¢n+irln)]sn[(K/rr)(8- ¢n+id)][2 
n=l (7) 
N 

X n ksn[(K/rr)(e+ibn)]sn[g/rr(8-ibn)] 
n=1 

p 

x n k sn[(K/rr)(B+ rr + ie n)] sn[(K/rr)(e+ rr - ien)]' 
n=1 

where cos8n=xn' cos(¢n+idn)=an, coshbn=lln, coshen 
= - v n , and cos e = x. We have dropped the argument 
indicating the dependence of the sn(x) on the parameter 
k.7 K = K(k) is a complete elliptical integral and the 
parameter k is to be determined from the equation 2d/rr 
= K(k')/ K(k) where k' = (1 - k 2)1/2. If d is small then 1 
-k=O[exp(-l/rl)] andK=O(l/d). We list some needed 
properties of sn(x) in the Appendix. 

If I(x) in Eq. (7) is to be of class K, then 1(1) = 1. 
This gives a single constraint on the positions of the 
zeros Xi' ai' u j , and vi' This can be written as 

L '>1 I 
c-1= n k2[sn«K/rr)6n}]4 n 1,2I sn [(K/rr)(¢n+ irln)] 4 

n=l n=1 

p 

x [U Isn[(K/rrlib nl [2 n k!sn[(K/rr)(rr+icn)W· (8) 
n=l n=l 

We now use Eqs. (7) and (8) and the properties (Al)
(A6) of sn(z) given in the Appendix to show that we can 
severely restrict the possible zeros I may have if it is 
to have minimal norm. 

The general idea in the lemmas to follow is to show 
that zeros of fix) in one class can be replaced by zeros 
of another class and that the resulting function g(x) 

satisfies g(x) '" I(x) for - 1 '" x"" + 1 and 1(1) =g(1) = 1. 
Then since IIgll ~ 1IJ11 we only need consider function g 
with a more restricted set of zeros than those of f. We 
begin with Lemma 3. 

Lemma 3: If fix) E K and 11/11 is minimal on K then 
f(z) does not have zeros of class B (complex conjugate) 

inside Ed' 
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Prool: We replace the zeros of class B by zeros of 
class A. We introduce a zero on the real axis at x 
= cos¢ and defining Y;: sn[(K/7T)¢ ] we require that 

(9) 

This ensures that Eq. (8), the normalization condition, 
remains satisfied. That Eq. (9) is possible is easily 
seen from properties (A2)-(A6). If IZI2"';1, then ¢ is 
pure real and, if I ZI 2 > 1, then ¢ = 7T + idn'. 

To show that the norm of the new function is less than 
that of the original one, we must show that 

1 sn[(K/7T)(H ¢n)] sn[(K/7T)(8 - ¢n)] 12 

.,,; Isn[(K/7r)(8+ 8
n
+idn)]sn[(K/7r)(8- 8n +idn)]j2. (10) 

Using the addition theorem (AI) we obtain 

( 
)(2 - I ZI 2 ) 2 ()(2 _ z2)()(2 _ Z*2) 

1 _k2X21 ZI 2 .,,; (1 _k2)(2Z2)(I_k2~Z*2) 

where X=sn(K!1r8) and y2= IZI 2 has been used. Re
arrangement gives 

(11) 

2~( 1 ZI2 - ReZ2)(1 - k 2X')(1 - k2
1 Z 14):;> 0 (12) 

which is true because of (A2). The equality obtains in 
the region 0.,,; X.,,; 1 only at X = 0 as it should. 

We now eliminate zeros of class C by proving Lemma 
4. 

Lemma 4: lifEK and Ilfll is minimal on K, thenf 
does not have zeros of class C inside Ed' 

Proof: We proceed as in Lemma 3, where now we 
replace the single zero of class C by a double zero of 
class A. Defining Y = sn[ (K/ 7T )ib~], where b~ is real 
and consequently Y is imaginary, we require 

k 1 sn[(K/7T )ibnW = e 1 sn[(K/7Tlib~W= k 2
1 y!4. (13) 

Properties (A2) and (A4) show that a b~ can be found 
such that Eq. (13) is satisfied. 

Now we must show that 

Again using the addition theorem we find that we must 
have 

~+kIYI4 ( ~+IYI2 )2 
l+k3~IYI4?-k l+k2x21Y1 2 (15) 

which upon rearrangement gives 

(16) 

This inequality holds in the region 0.,,; X.,,; 1 as can be 
seen from (A2) and again the equality only obtains at 
X=O. 

We cannot completely eliminate the zeros of class D, 
but we can show the following lemma. 

Lemma 5: HfEK and Iltll is minimal on K, thenj(z) 
can have at most two single zeros of class D, one at 
z = - 1 and one at - coshd < z < - 1. 

Proof: First we show that we can increase the separa
tion of any two zeros of class D. Let Y

j 
= sn[(K/7T) (7T 

+iej )], uj=cosh(ej -i7T), j=I,2,3,4 (Yj is real) where 
Y 1 , Y 2 correspond to the initial zeros at U 1 , U 2 and Y3 , 
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Y4 correspond to the final zeros at U 3 , u4.' The contribu
tion to f(z) from u1 and U2 can then be written as 

k2! sn[ (K/ 7T)( II + 7T + ie1) W! sn[(K!rr)( II + 7T + ie2)W 
2 (y1

2 -~)(Y22 -~) 
=k (1 -k2Y12~)(1 _k2Y/X2) 

(17) 

and we must show that 

(y1
2 -~)(Y22 -~) (Y32 -~)(Y/ -~) 

(1 _k2Y/~)(1 _k2y/~) ?- (1 _k2Y/~)(I_k2Y/X2) 
(18) 

with the condition that y 1
2 y/ = Y/Y/ to ensure that Eq. 

(8) remains valid. Rearrangement of Eq. (18) shows 
that the inequality is satisfied if 

(19) 

It is easy to see using condition (A5) that the constraints 
of Eq. (19) allow u3 and u4 to have larger separation than 
u1 and u2 • 

Now picking any two zeros of class D we can separate 
them until either e3 = d(u3 reaches the ellipse) or e4 =: 

= 0(u4 = Z = - 1). In the first case the contribution to f(z) 
from U3 just becomes unity [condition (A2)] and we are 
left with a single zero at u4 • In the second case I(z) has 
a single zero at u3 and a zero at u4 = - 1. Continuing this 
procedure we can move all the zeros except possibly 
one to the ellipse or to the point - 1. The multiple zero 
at z =: - 1 can be written as the product of a multiple 
double zero (class A) and possibly a single zero so we 
are left with possibly a Single zero at z = - 1 and a 
single zero at - coshd < z < - 1. 

We now define the functions of class K' as those 
functions g such that gE K(c/k 2) (i. e., Igl.,,; c/k2 on the 
ellipse) and such that g has only zeros of class A in Ed' 
We prove the following lemma. 

Lemma 6: minfEK(c)lIfll?- mingEK, IIgli. 

Proof: We substitute the possible single zeros al
lowed by Lemma 5 by double zeros at z = - 1. We have 

(20a) 

(20b) 

(20c) 

where Eq. (20a) is for two single zeros at z = - 1 and 
z < - 1, Eq. (20b) is for a single zero at z < - 1 and Eq. 
(20c) is for a single zero at z = - 1. The inequalities are 
satisfied for 0.,,; X.,,; 1 and for k-1 :;> y2?- 1 (corresponding 
to a zero in the region - coshd < z < - 1. ) However on the 
the ellipse the double zero factors on the right-hand 
side of Eqs. (20) have maxima of y2, k-1y 2 , and k-1 

respectively. Because of the restrictions on y2 these 
maxima are all less than k-2 and therefore Ig(z)1 .,,; c/k2 

on the ellipse and consequently gE K'. The lemma is 
then proved and of course remains valid even if I has no 
single zeros since if fE K(c) then fE K(c/k 2 ). 

We now need only consider functions gE K'. Since the 
only zeros of g are double zeros along the real axis, 
the function h(z)= [g(z)]1/ 2 is also an analytic function 
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inside Ed' In fact let us define a function h to be of class 
C if h(z) is analytic inside the ellipse Ed' h(l)=l, 
I h(z) I ~ e1

/
2/k =- e', if z E Ed and h(z) is real for z real 

inside Ed' Also we define the norm of h as 

II h II = f dx[h(x)]2. (21) 
-1 

From Lemma 6 we have immediately that min/EK IIJII 
> minhEe IIhll. 

In the next section we shall exploit the analyticity of 
h to give a lower bound for IIhll. 

IV. LEGENDRE EXPANSION AND MINIMAL BOUND 

A function hE C which the discussion of the last sec
tion has led us to consider has a series expansion in 
terms of Legendre polynomials, PI(z) which is uniform
ly convergent inside and on the ellipse Ed' In the next 
lemma we show that we need only consider those func
tions h which belong to the subclass of function CL which 
have only the first L + 1 Legendre coefficients, ai' 
nonzero. 

Lemma 7: limL~j(L)=lwhere I(L)=minhEc IIhll 
and 1= minhEC Ilhll. L 

Proof: It is clear that limL ~ 00 I(L) ;;, I since C L C C. 

Let h(zlE C be a function for which IIhll = I. Denote 
the sum of its first L + 1 Legendre terms by hL (z). If 
maxzEEd I hL (z)/hL (l)1 ~ e', 

hL(z)/hL(l)ECL and IlhL11 ",I(L)[hL (1)]2. 

If max~EE I hL (z)/hL (1) I '" e' then we can find an a> ° 
d 

such that 

IhL(z)+ a I'd hL(z)+ a C max -e an - E 
zEE hL(1)+a - hL(1)+a L 

d 

so that IlhL(z)+all :;;,1(L)[hL(l)+ap. Because of the 
uniform convergence of hL' however, hL (1) - 1 and, 
max.EEdlhL(z)l-e' are arbitrarily small and con
sequently a is arbitrarily small for L large enough. 
Using the fact that Ilhll:;;, IlhL11 we therefore see that Ilhll 
=1:;;, limL_oQI(L) and therefore I=limL_ooI(Ll. 

We shall now find a lower bound for I(L). Any hL E CL 

can be expanded in the following two equivalent forms, 
L L 

hL (z) == :0 al (2l + 1)P1(z) == 6 Ancosne (22) 
1::0 n=O 

where z == cos e and e is in general complex. The co
efficients a

l 
and An are related by the equationB 

L 

a l = 6 hnlAn (23) 

where 
n r«n -l - 1 )/2)r«n + l)/2) 

- 8" r«n -l + 2)/2)r«n + l + 3)/2) 

1 if n==l==O, 

o otherwise. 

if n:;;,l,n-l even, n;loO, 

(24) 

To show that large values of l in Eq. (22) give a small 
contribution to I(L), we will introduce a cutoff function 
and estimate the difference between the cutoff Legendre 
expansion and Eq. (22). We choose 
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1 if l ~ K, 

1 - (K - 02 d2/2 if K ~ l ~ K + (1/ d), 

(K -l + ~r d2/2 if K+ (l/d) q ~ K + (2/d), 

° if l;;,K+(2/d), (25) 

where K is a parameter to be determined later. It is 
easy to see that e I satisfies the following inequalities, 

O~el_2-el~2d, 

Ie 1 + e 1-4 - 2e 1-21 ~ 4d2
• (26) 

The difference between the cutoff Legendre expansion 
and Eq. (22) at e= 0 is defined by 

L 

A=6 al (2l + l)(l-e l ) 

1=0 

and is given by 
L L 

A=6' ~ hnlAn(2l + 1)(1 - el ) 
n=1 I=K 

_~ ~,r«n-l-1)/2)[ 
- L1 Bn L.J 'r«n -l + 2)/2) $ n,l - $n_2,1_2] 

n=K I=K 

(27) 

_ ± B t, r«n -l- 1)/2) [ 
- n r«n-l+2)/2) sn,n-Sn_2,n_2 (28) 

n=K I=K 

- (n - O(sn,n - $n-2,n-2 - sn,l + Sn_2,1_2)/(n -lll, 

where Bn = Z;L",'=n Am' The prime on the sums means that 
the summation is only over even values of n -lor n - m. 
Also we define 

n r«n+l)/2) 
sn,I=-Sr«n+l+3)/2) (2l+1)(1-c l )· 

Using the elementary relation 

t r(k - $ ) = _ ~ rem + 1 - s) 
k=O k! $ m! 

and the inequality 

where 

gn= max \$n,I-Sn_2,1_2-sn,I_2+$n-2,1-41/2 
I ;O~I ~n 

we obtain the estimate 

IAI ~ t IB I }4[~J r([n/2)+i) 
n=K n \ 2 gn [n/2]! 

2\ I r ([(n-K)/2]+i)} 
+ $n,n- S n-2 .n-2 [(n-K)/2]l ' 

where [v] denotes the integer part of v. 

(29) 

(30) 

(31) 

(32) 

(33) 

We now estimate each term of Eq. (33) separately. 
Using Eqs. (25) and (29) we easily find that 

r(n - 1) 
2 \ sn,n - Sn_2,n_2 \ ~ r(n _ t) (1 + 2nd). (34) 

A more lengthy but straightforward calculation gives 

r(n/2 - 3) ( 3 1 2 2) 
gn~r«n-3)/2) 2+ dn+zdn . 

(35) 
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Finally we give a bound on Bn by writing 

L 2 L 

B = 6' A = (l/lT) f < 6 n m 
(36) 

m=n 0 m=O 

L " 

Am cos[m(B+ id)] 6 exp[ -k(d - iB)]d B• 

Using Eq. (22) and the bound on hL(z) on the ellipse we 
have 

I B ! ~ ~ 12<1 exp[ - n(d + i B)] - exp[ - L (d + i B)] I dB 
n IT 0 l-exp(-2(d+iB)] . 

(37) 
For L large enough the second term in the numerator 
can be ignored and we can write 

! Bn! ~ IT- 12112c' exp[ - (n - lid] 

x r (cosh2 d - cosO)-1/2 dB= C1/ 2 exp(- nd)h(d), (38) 
o 

where 

h(d) = 2lT-1[ln(l/ d) + 0(1)] (39) 

as d- O. Recall that C'=Cl/2k-1 and k= l-exp(-l/d) 
for small d. 

We obtain a bound on ~ by substituting Eqs. (34), (35), 
(38), and (39) into Eq. (33). This yields 

I ~! ~ 4c l/2h(d) exp(- Kd)[(Kd) + 3 (Kd)l12 

(40) 

where we have made the approximations that K» land 
d« 1. 

We now choose K such that 

I ~! ~ {In[c112h(d)]}-I. 

This can easily be done by taking 

K d= In{>"(ln>..p)2[1 + 3(ln>..)-1/2]} 

(41) 

(42) 

where >..= 4c 1 12h(d) and where p satisfies the inequality 

(43) 

Using the definition of ~ in Eq. (27) and the bound of 
Eq. (41) and the fact that hL (I)=I, we obtain 

J, 

~ (2l + l)a l c l = 1 + 1J{ln[c1/2h(d)]}-r, 
1=0 

where -1 ~ 1J~ 1. Equation (44) is a constraint on the 
expansion coefficients al • 

(44) 

Weare now able to place a lower bound on I(L). Be
cause of the orthogonality of the Legendre polynomials 
we can write 

L 

I(L)= 6 2(2l + l)aI
2 • (45) 

1=0 

The original problem was to minimize Eq. (45) subject 
to the condition that I hL(z) I = Cl/2 on the ellipse. We 
certainly obtain a lower bound, however, if we ignore 
the constraint on the ellipse and use only Eq. (44). 
Using Lagrange multipliers we find immediately that the 
minimum of I(L) subject to the constraint Eq. (44) oc
CUrs at a l = aC1 where from Eq. (44) 
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01= (1 + 1J{ln[c l I 2h(d)]}-1)[ z:; (2l + 1)c 12]_1 . (46) 

We then obtain 

I(L) = 2[1 + 1J{ln[c1 I 2h(d)]}-l]2[ 6<2l + 1 )c12]-1. (47) 

The sum can be estimated using Eq. (25) and finally we 
arrive at the bound 

(48) 

This bound is valid for nonasymptotic values of c as 
well. If c - 00 and 1/ d - 00 such that In(c )/In(l/ d) re
mains finite as in the case of scattering processes where 
c and 1/ d are proportional to a power of s, the leading 
term in Eq. (48) is, using Eqs. (39) and (42), 

I(L)-;.. 2d2(lnc l/2)"2. (49) 

Keeping the first non leading term in Eq. (42), we 
obtain 

I(L) -;"2d2{ln[c1 I 2ln(1/ d)(lnc1 12)2]} -2 . 

This provides a proof of the theorem stated in the 
Introduction. 

V. CONCLUSION 

(50) 

The theorem we have proved will be used in applica
tions to give rigorous bounds on inclusive cross 
sections. 

We wish to indicate in conclusion that the bound of 
Eq. (50) cannot be substantially improved. If we ignore 
the constraint condition on the ellipse and merely mini
mize I(L) subject to the normalization condition hL (1) 
= 1 we find trivially that 

I(L) = 2(L + 1)-2 (51) 

with the Legendre coefficients given by a
l 
= (L + 1 )_2. The 

The magnitude of hL (z) on the ellipse is then 

IhL(z)! =! (L + 1)-2 

x t (2l + l)P/z)! = I PL+l(Z) - PL(Z) I. 
1=0 (L + 1Hz -1) 

(52) 
Using the asymptotic form for the Legendre polynomials9 

P J, (z) - (2lT L )-1 / 2(Z2 _ 1 )_1 14[z + (Z2 _ 1)1 I 2]L+1I 2 

we see that if we require that 

exp(dL HdL )-3 I 2 ~ c l I 2 

(53) 

(54) 

we then have IhL(z)1 ~cl/2 on the ellipse. Solving Eq. 
(53) for L we obtain 

L = d-l ln[c1 12(lnc l 12)3 / 2] 

which gives for Eq. (51) 

(55) 

I(L) '" 2 d2{ln[cl/2(lncl/2)3/2]}-2. (56) 

Therefore we have found an explicit function with an 
I(L), Eq. (56), which differs from our general result 
only in non leading asymptotic terms. 

APPENDIX 
We list here some properties of the Jacobi elliptic 

sine functions. 7 

(AI) Addition theorem 
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(snu)2 - (snv)2 
l-k2(snusnv)2 

sn(u+v)sn(u -v) 

(A2) klsn[(K/1T)(e+idn )]I2-'S 1. The equality sign only 
holds on the ellipse where dn = d. For dn = 0, 
k[sn«(K/1T)e)]2-'Sk< 1. 

(A3) sn(O) = 0, sn(K) = 1, I sn[(K/1T)(e + id)] I =k-1
/
2. 

(A4) I sn«(K/1T)idnW= - [sn«(K/1Tlid n))2 is a monotonical
ly increasing function of dn for 0 -'S dn -'S d. 

(A5) Isn[(K/1T)(1T+idn))I2={sn[(K/1T)(1T+idn)]? is a 
monotonically increasing function of dn for 0 -'S dn -'S d. 

(A6) sn«(K/1T)e) is a monotonically increasing function of 
e for 0 -'S e -'S 1T • 
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(McGraw-Hill, New York, 1953), Vol. 2, p. 1202, and the 
Jacobi form can be derived from this. One can obtain an 
equivalent representation of fl.x) by noting that the conformal 
map from the ellipse to the circle is given by w = kl/2 sn(2K! 
1Tarcsill2) . 

7We use the notation of E. T. Whittaker and G. N. Watson, 
Modern Analysis (Cambridge U. P., Cambridge, 1965), 
4th ed. 

81. S. Gradshteyn and 1. M. Ryzhik, Table of Integrals Series 
and Products (Academic, New York, 1965), p. 824, 7.245,2. 

9See , for example, G. Szego, Orthogonal Polynomials 
(American Mathematical Society, New York, 1959), p. 188. 
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Extension of the statistical mechanics of equilibrium to 
noncom mutative constraints 

Elihu Lubkin 

Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201 
(Received 11 December 1975) 

A formula similar to the Gibbs canonical and grand canonical ensembles is proven for the ensemble of 
maximal entropy among those ensembles of common mean values of possibly noncommuting operators. 
This is done over a Hilbert space of finite dimension /:;.. A partition matrix II becomes important; the 
partition function Z = TrII displaces II in the thermodynamics only in the commutative case. Generalization 
to a infinite is discussed informally. 

Maximizing the entropy subject to an ensemble-mean 
energy constraint produces the Gibbs canonical ensem
ble. If also a mean particle number is imposed, one 
gets the Gibbs grand canonical ensemble. The energy 
and particle-number operators H and N are usually 
taken to commute; also one can go further to several 
commuting particle-number operators. These familiar 
examples are solved by a familiar Boltzmann-factor 
formula, (4) below. Von Neumann1 ,2 shows that the 
desired ensemble P must commute with H in the 
"canonical" problem by using measurement theory: A 
noncommuting ensemble would be converted to an 
energy-diagonal ensemble of greater entropy by mea
surement of a degeneracy-lifting energy-commuting 
quantity "R"; this proof also easily establishes the simi
lar theorem for "grand canonical" cases: 

Von Neumann's theorem: The ensemble P which 
maximizes entropy subject to several simultaneous 
constraints stated in terms of commuting operators 
must itself commute with them all. 

One then chooses a representation with everything 
diagonal, and does the usual Lagrange-multiplier 
calculation. 

The point of the present paper is that (4) is valid also 
for noncommuting constraint operators, even though the 
calculation which establishes its proof must proceed 
without the luxury of a prior diagonalization. 

What naturally interesting problem presents us with 
an example? A system which freely exchanges not only 
energy and particle number(s) with a surround, but also 
exchanges x, y, and z components J 1 , J 2 , J 3 of angular 
momentum comes to mind; of course, these do not com
mute with each other. In this case an appeal to sym
metry allows one to, however, avoid the noncommuta
tive problem (see # 10 below)' Indeed, I have not yet 
found a natural application wherein knowing (4) for the 
noncommutative case cannot be circumvented. Neverthe
less, this is the general solution: 

#1. Lemma: The ensemble P over a state Hilbert 
space of finite dimension t.., which maximizes the 
entropy 

S= - TrP InP, 

subject to n + 1 constraints of form 

TrPAj=Qj' j=O,l, . .. ,n, 

(1) 

(2) 
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where Ao=I, the unit matrix, and Qo= 1 conveniently 
express normalization, where the Aj are Hermitian 
matrices,3 and the Q

j 
are constants, is the generalized 

Gibbs ensemble 

P=I1/Z, Z=TrII, (3) 

n 

II = exp( - 6 AjAj ). (4) 
j =1 

As the "Lagrange multipliers" Aj range freely over the 
reals (j=1, .. . ,n), the Ql>" .,Qntakeon allpossi
ble values for which a solution exists. 4 

#2. Comment: Though #1 itself is the point of this 
paper, I call it a "lemma" in order to convey a sense 
of inco~pleteness, and this for two reasons. One is the 
lack of any dramatic application. The other is the re
striction to finite t... This restriction is largely respon
sible for the freedom of the A

j
, including for example 

negative temperature; see # 11 below. 

#3. Proof of #1: P is expressed in terms of its eigen
values Pa assembled as a diagonal matrix p, and a uni
tary transformation U=X+ iY, X and Y real. The real 
variables Pa , xab ' Yab (elements of X and Y) are to be 
the independent variables in the method of Lagrange 
multipliers, 

P=UpU-1
: (5) 

S = - TrP lnP= - TrU p lnp U- 1 = - Trp Inp is seen not to 
explicitly involve U. The unitarity of U will be 
expressed by treating (X + iY){IX - i ty) = I as 2t.. 2 real 
red-tape constraints, along with the n + 1 physical con
straints TrPAj = Q j . The elements of the Aj matrices 
will also be expressed in terms of reals, Aj bc = Bibc 
+ iCj bc' Hence the explicit real-variable calculation 
reads as follows: Maximize 

S = - 1;, Pi Inp I , 

subject to the constraints 

Qj =6 pa(xba - iYoo)(Bjbc + iCjb)(xca + iy ca ) 
abc 

and 

dS is equated to a real linear combination of the real 
parts of the dQ j (coefficients \R)' of the imaginary 
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parts of the dQj (coefficients AJI ), and of the real and 
imaginary parts of the doac (coefficients AaeR and \el' 
respectively). 5 Then the dPi terms, the dXjJQ terms, 
and the dyp• terms must balance separately, producing 
the following equations. 

The dP! equations: 

- 1 -lnP l =?? AacR ·0 +?? \cl 0 0 

+6 AjR6 (xb!Bjb~c! -xblCjbcYcl 
j be 

+ xb!Cj beXcl + XbjBjbcY c!)' 

The dXpq equations: 

0=6 AaeR (0Paxeq + op~a.) + AacI( - 0Pay c. + opcYa.) 
ae 

- YbqBjbeOpC + xbqCjbeop)' 

The dy pq equations: 

0=6 \eR(0PaYe. + opcYa.) + Aae[(0Paxe. - 0pexa.) 
ae 

+ Yb.CjbeOpe + xbqBjbeope)' 

Now define complex quantities 

Aj = Aj R + iAjl' Aae = AaeR + fAacI: 

it is also convenient to define a matrix A by 

6 A 'beA:" =Ab • 
j J 1 c 

Then (9) plus i times (10) abbreviates to 

0= (A + A1)U + (A + At)Up, 

(8) 

(9) 

(10) 

(11) 

(12) 

where A is the matrix of ,\o's. Right multiplication by 
U-1 produces 

(13) 

The sense of (13) is that (A + At)P is Hermitian. Since 
A + At and P are both Hermitian, this is equivalent to 
commutativity of P with A + At. That is all that we have 
involving the red-tape constraints' multipliers. 

Equation (8) in turn condenses to 

(14) 

in words, - 1 -lnp is the diagonal of vtt(A + A1)U. But 
commutativity of P with A + At is equivalent to com-
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mutativity of p with utt(A + At)U; hence we may choose 
a representation wherein both p and ut~(A + A t)U are 
simultaneously diagonal. Indeed, the original represen
tation already has p diagonal, and if the other matrix 
is not already diagonal in consequence, that is only be
cause diagonality of p does not entirely specify choice 
of representation: Our new choice at this point may be 
regarded as having been made at the outset, and hence 
does not undo anything proven. Equation (14) is thus 
improved to 

or 

-l-lnP= ~(A +At) =6 A. ReA.. (15) ,J J 

It is only in the last step that the assumption that the A, 
are Hermitian was introduced. The formula (4) now fol
lows upon writing ReA, as \' now considered real. 

The only conditions required for a proper ensemble 
P not yet stated are nonnegativity of the eigenvalues Pi, 
but that is automatic from (4), since an exponential of an 
Hermitian matrix is necessarily positive. Then any n 
reals Au ... ,An will, through (4,3,2). generate some 
list of Qu ... , Qn' Finally, for any such achievable 
list of Ql' ... ,Q n values, there is only one local 
stationary entropy ensemble because the infragraph of 
the entropy as a function on the real space of ensembles 
is a convex body. There is also one maximum6

; hence 
the Lagrange-multiplier search for a local stationary 
point automatically discovers the unique maximum, 
except when the set of ensembles which meet the con-
straints is empty. QED 

#4. f-Entropy: If, instead of using the function X-

- x lnx in defining the entropy, one uses S = Tr[j(P) 1, f 
convex upwards, - 1 -lnx is replaced by 1', one keeps 
j = 0 together with j = 1, ... ,n, and 1-> such that q.,<'f(x)) 
= x replaces the exponential operation x - exp[ - (1 + x)]. 
Nonnegativity is no longer automatic. 

# 5. Thermodynamics: In the Lagrange multiplier 
method, dS for 5 maximal is expressed as a linear com
bination of constraints, 

dS=t AjE/dReQj+ Aj!dImQj + red-tape terms. (16) 
i ;0 

The red-tape and j = 0 terms vanish if we impose uni
tarity and normalization. Also, the use of Aj Hermitian 
requires Q

j 
to be real for a nonvacuous case. Hence 

(16) degenerates to 
n 

dS=6 \rlQj' 
j ~1 

with the A. and Q. real. Thus, A,. = as/aQj at fixed Q~, 
1 , t " 

k * j. This may be called a "generalized thermal vec or, 
in recognition of the fact that when the Qj are additively 
conserved quantities, it is the Aj which must balance 
between two systems in order that a flow will not 
increase the entropy: There is a deduction of a "zeroth 
law of thermodynamics" from the second law with re
spect to each A.

j 
belonging to an additively conserved Q j • 

For the Q list: energy, particle number, volume, angu
lar momentum component, linear momentum component, 
the corresponding A. are 1/1', - /.l/T, PiT, - wiT, -1'/ 
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T, where T, Il, P, w, v, are absolute temperature (in 
energy units), chemical potential (with Avogadro's 
number set equal to 0, pressure, angular velocity com
ponent, linear velocity component, as usuaL 

Expression of the entropy as a function of the gen
eralized thermal parameters proceeds as usual: (1) and 
(3) yield 

s= lnZ - Z-l TrII InII, 

then (4) gives 
n 

s= InZ - 6 AJQj' 
j .1 

where 

(17) 

(18) 

The sequence (4,3, 18,17) explicitly parametrizes 
everything in terms of the generalized thermal param
eters A

J
• These formulas are conventional. Noncom

mutativHy only makes it impossible to further simplify 
(18) to 

a InZ 
Qj = -~, (false), 

i 

(19) 

although (19) is "true along a ray" in the following 
sense: If ~ == {3Clj and a/a{3 is defined with the Clj fixed, 
then 

(20) 

Thus, one needs to know the "partition matrix" II, not 
only its trace Z ("partition function"), in order to re
duce a noncommutative statistical mechaniCS to a 
thermodynamics. 

In spite of the absence of any dramatic example, 
give a few immediate consequences of the Lemma. 

#6. Von Neumann's theorem: This is a corollary by 
inspection of (4) in the case that the Aj are given to 
commute, P being explicitly a function of them. 

#7. Invariance of P under a sYmmetry group: If a 
group of unitary transformations {Ug}, gE G, commutes 
with each Aj' then eVidently U gPU;l =' P for all g. This 
illustrates Ref. 6. 

#8. Thermodynamic axis: In the three-component 
angular momentum example, J u J 2 , J 3 appear in P only 
in the combination A1J 1 + ~J2 + AgJ3 = - (l/T)w 'J. Hence 
the equilibrium ensemble depends only on the angular 
momentum operator along a single axis, indeed, along 
the axis parallel to the angular velocity w externally 
imposed by the angular velocity reservoir. 

#9. Are commutators 100 small to matter?: Is non
commutativity unimportant in thermodynamics, because 
commutators are of order if? First, even if this is so 
in an example, the result (4) is useful for checking it. 
One would probably wish to show that dropping com
mutators by using (19) instead of (18) is a good 
approximation. 

Second, commutators should be important when both 
noncommutativity and a microscopic system are 
prominent. Recall that kinetic theory is Maxwell's 
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thermodynamics of a single molecule modified by 
"collisions. " 

no. Angular momentum without the lemma: Replace 
Tr P Jk = Qk' k = 1,2,3 by their linear combinations 

TrPJf=O, TrPJ~=O, 

TrPJ~= (~+ Q~+ Q~)1/2 

obtained through a rotation of axes. Then drop Eqs. 

(21) 

(22) 

(21), and solve the now commutative "associated" prob
lem (which may involve other operators, like the energy 
H, which commute with J;). The solution P of this as
sociated problem will be found to satisfy (21) because 
the conditions of the associated problem are invariant 
to the one-dimensional subgroup of rotations about the 
3' axis. 6 (Finiteness of Ll is being employed. ) A fortiori 
P satisfies the original problem in which (21) are also 
imposed: A maximum over some domain remains maxi
mum over a restricted domain, from which it is not 
itself excluded. 

Of course, deft avoidance of commutators may also 
be practiced in conjunction with (4) and (20). 

if 11. Ll - oo? : In von Neumann's book2 we are re
assured that TrAB=Tr(Al/2Bl/2)tAl/2Bl/2 will appear 
only for nonnegative operators A and E, and that dif
ficulties attending conditional convergence will there
fore be moot. The only infinite phenomena remaining 
are convergence of definite trace sums to + 00. This 
assurance is not available for Tr PN, if N is a particle 
number allowed to be negative because of antiparticles, 
or for TrPJ3 • The notion of limit as Ll goes infinite must 
be shaped by detailed physical conSiderations, if the 
mathematical pOSSibilities are thus opened to a relative
ly undefined variety of limits. Furthermore, nothing is 
proven here for Ll infinite; a discussion based on formu
las (1)-(4) requires a prelimit context wherein Ll is 
finite. As long as Ll is finite, there is no impossible 
"thermal vector" (AI' .•. ,An). An indication of how 
some thermal vectors become impossible is to study 
the convergence of the normalization Z = Tr exp( - Z:J.l 
x A.iAj) along a ray, AJ = (kij , with ~ variabte, the aj 

fixed. The operator is like the canonical ensemble 
operator exp(-{3H), withL:jolCljAj=H(a) in place of H. 
If, as Ll - 00, the spectrum of H( Cl) becomes unbounded 
above (below), (3 may not be negative (positive); a suf
ficiently dense concentration of H(a) "level density" will 
restrict {3 even further. 

lAnthony Lomazzo stressed the importance of such a dis
cussion in rendering the usual textbook treatment cogent, 
in a private conversation. 

2John von Neumann, Mathematical Foundations of Quantum 
Mechanics, translated by R. T. Beyer (Princeton U. P., 
princeton, N. J., 1955). 

3The situation for any non-Hermitian matrices Aj is easily 
obtained by breaking such Aj into Hermitian and skew
Hermitian parts. Hence the restriction to Hermitian Aj is to 
be regarded as an inessential convenience. 

4No solution will exist for example in cases where equations 
(2) are obviously incompatible, e. g., Ai '=A z but Qi '" Qz. 

5Indulgence in the common abuse of language wherein a sym
bol designating a function's value is impressed to do more is 
noted. 

6Elihu Lubkin, J. Math. Phys. 16, 837 (1975). 
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Solitons and simple pseudopotentials 
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A simple type of pseudopotentiai is defined. It is shown how to compute this pseudopotential by classical 
means. When the construction is attempted based on the Hirota equation it is found that the condition 
necessary for the existence of the pseudopotentiai is the same as that for the existence of n-soliton solutions 
to the Hirota equation. It is also shown how to obtain Backlund transformations using this 
pseudopotentiai. It is also pointed out that without making any closure assumption this pseudopotential 
defines a Lie algebra. 

I. INTRODUCTION 

Wahlquist and Estabrook recently introduced the 
concept of a pseudopotential into the study of nonlinear 
partial differential equations. 1 It is the purpose of this 
paper to show by example that one simple type of 
pseudopotential is of particular importance in the study 
of equations having soliton solutions and further to show 
how to exhaustively and directly compute these pseudo
potentials by purely classical means, as opposed to 
using the language of differential forms employed by 
Wahlquist and Estabrook. 

To accomplish this the relevant definitions are given: 
those of a pseudopotential, a pseudopotential of the first 
kind, and a non-Abelian pseudopotential of the first kind. 
With these linguistic matters attended to, a derivation of 
of a necessary condition for the Hirota equation2 to have 
a non-Abelian pseudopotential of the first kind is given. 
This condition is the same as that given by Hirota for 
his equation to have an n-soliton solution. 2 Next the 
Hirota equation is specialized to the nonlinear Schrodin
ger equation, and an expression is derived that gives 
a solution of the nonlinear Schrodinger equation in terms 
of another, distinct solution and the pseudopotential of 
the first kind associated with the nonlinear Schrodinger 
equation. From this Lamb's3 Backlund transformation 
for the nonlinear Schrodinger equation can be recovered. 
Finally, evidence is presented in support of the con
jecture that the existence of a non-Abelian pseudopoten
tial of the first kind associated with a given evolution 
equation is a necessary condition for the existence of 
soliton solutions to the given equation. The importance 
of affirming this conjecture is discussed. 

II. SOME DEFINITIONS 

Consideration will be restricted to equations of the 
form 

CPt =K(cp, cp, CPx' CPx' ••• ), (1 ) 

where K is some function of cp, q; and their spatial 
derivatives up to order m + 1. Let S be the set of cp,;P 
and all of their spatial derivatives up to order m. The 
set of all pseudopotentials assoc iated with (1) is the set 
of all functions q! (x , t), i = 1, ... ,n, n arbitrary, such 
that 

756 

q~=A(S,q" ... ,q":x, t), 

qit=B(S,qt, ... ,q";x,t), 

(2a) 

(2b) 
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are integrable for all j = 1, ... ,n, subject to the con
straint (1). [It is important to notice that A and B are in 
general nonlinear functions of the qi; qj itself in general 
appearing on the right-hand side of (2), as contrasted 
with potentials [1] which are determined via equations 
with no qi on the right-hand side. ) The correspondence 
between this definition and that of Wahlquist and 
Estabrook is discussed in Ref. 4. 

A pseudopotential of the first kind is the restriction 
of the above to the case when n = 1, and A and B are not 
explicitly functions of x and t. Hence a pseudopotential 
of the first kind is a function q(x, t) such that 

(3a) 

qt ::=B(S,q) (3b) 

are integrable on (1). 

In every case so far considered A and B have been 
found to be of the form 

1 

A::=,0 Ak(S)Xk(q) , (4a) 
k=l 

I' 

B::=~ Bj(S)X,(q). (4b) 

In addition it is always found (and this must be so) that 
the Xj(q) are determined by equations which involve 
terms of the form 

aXk aXj [ ) Tq Xi-Xka;j= Xk,Xt • (5) 

A pseudopotential of the first kind is called Abelian if 
all terms of the form (5) vanish and non-Abelian if at 
least one does not. Abelian pseudopotentials are equiva
lent to potentials. 11 A non-Abelian pseudopotential of 
the first kind will be called a simple pseudopotential. 

In the example that follows, and in all other cases 
computed thus far, when a simple pseudopotential is 
found the Xr's form a Lie algebra under the bracket 
defined by (5). For pseudopotentials of the first kind the 
Lie algebra structure follows naturally and does not 
have to be forced by "assuming closure" as in Ref. 1. 

III. THE HIROTA EQUATION 

Consider 

CPt= - 3etCPCPCPx - {3cpxxx + iYCPxx + i~cp2;P, (6) 
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where cr, f3, Y,e are real constants, (() is a scalar function 
function, and cp its complex conjugate. When Q = f3= 0, 
this equation reduces to the nonlinear Schrodinger equa
tion, while when Y = e = ° the modified Korteweg -de 
Vries equation results. 

The pseudopotential of the first kind associated with 
(6) is defined by the pair of equations 

qx =A«({), cp, z, z,p,p, q), (7a) 

q, =B«({), cp,z, z,p,p,q), (7b) 

which are assumed integrable on (6). Here Z = ({)x' P 
= ({)xx, z= CPx' p= CPxx. In this notation 

({)t=-3Q({)cpz-f3Px+iyp+ie({)2cp. (8) 

By imposing the integrability condition on (7) with (8) 
as a constraint is a standard computation, however, its 
outline may be of some use. For (7) to be integrable it 
is necessary and sufficient that q xt = q lx' or explicitly 
that 

A-q;({)t +A"iPr+Azzt +A:rZt +APPt + AqB +A;pt 

= B~z + B-q;z-+ BzP + Bii + Btl'x + B~x + BqA, (9) 

where (7) has been used to replace qt and qx by A and B 
respectively. Now (() t and CPt can be replaced by the 
right-hand side of (8) and its complex conjugate. Like
wise the derivative of (8) can be used to replace Zt. 

Similarly for zPPpPt. Since Pt introduces terms involv
ing Pux and there are no terms on the right-hand side 
of (9) that involve Pux' its coefficient Ap must vanish. 
Similar arguments show that A=A«({), cp,q) and what 
remains of (9) is 

A\1{- 3a({)cpz - f3px + iYp + ie({)2cp} 

=zB\1 + zB~ + pB.+ pB;+ PxBp + p",Bp , 

where, following (5), [A,B]=A B -AB . 
q q 

By noting that the dependence on Px and P
x 

is explicit, 
it follows that 

-{3A({)=Bp, 

-{3Acp=Bp 

and 

A\1{ - 3a({)cpz + iYp + ie({)2<p} 

+ A"ii{- 3a({)(,Oz - iYp - iecp-2 ({)}+ [A, B] 

= zB", + zB"ii + pB. + pB;. 

The (integrable) system (10) implies 

B= - f3pA\1 - f3pA"ii+ C«({), cP, z, z,q), 

where C is to be determined from (11J. 

(lOa) 

(lOb) 

(11) 

(12) 

If (12) is substituted into (11), the coefficients of p 
in the equation can be equated since all the P dependence 
is now explicit. The same is true of the coefficients of 
p. This balancing results in equations for C. and C;, 
which can be integrated. The result is substituted into 
what remains of (10). Now coefficients of Z2, Z and so 
on are separately equated and the process continues, 
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the term carried from one step to the next rapidly gain
ing weight. The process is, however, algorithmiC. 

The net result is the determination of the explicit ({), 
cp, z, z,P and p dependence of A and B plus a set of dif
ferential conditions on the q -dependent functions. The 
particular forms of A and B are of no interest for the 
moment. The specialization that results when (6) re
duces to the nonlinear Schrodinger equation will be 
presented and used in the next section. It is sufficient 
to note that A and B are of the form (4). Of immediate 
interest is the relations among the X/so 

At this point it is convenient to pass over a series of 
straightforward arguments and merely quote the con
clusions. The deleted arguments show that the differen
tial constraints of the Xr imply that a certain subset of 
them must be zero if the pseudopotential is to be non
Abelian. The details consist of following a fairly com
plicated logical tree, each step is, however, immediate. 
An example of an analogous type of argumentation is 
given below, where it is shown that if Xl = ° the result
ing structure is Abelian. 

With the above argument given the set of relations 
among the Xr is as follows 

- aXI + f3[Xu [Xl' x 2Jl = 0, 

QX2 + f3[X2 , [XUX2Jl= 0, 

[X3 , [XI ,X2 ]J = 0, 

ieXI + i'}{Xj, [X2,XI ]] - f3[XII [X2, [Xa,XI ]}] 

- if3[x2, [XII [Xa,XI ]]] - a[Xa,Xj] = 0, 

- ieX 2 - iY(X2, [X2, Xrl] - f3[X2, [X2, [Xa,X,]]] 

- if3[Xu [X2, [Xa,X2]]] - a[X3,X2] = 0, 

- ii3[xI , [Xl' [X3, Xj]]] = 0, 

- ii3[x2 , [X2' [X3,X2]]] = 0, 

- iy(X, , [X" X3JJ - f3[X3, [X" [X3, Xlm 

- 8[XI , [Xa, [Xa,x4 J1J = 0, 

- iY(X2 , [X2, Xa]] - f3[X2, [Xa, [Xa. x 2 Jl] 

- ii3[Xa, [X2' [Xa,X2]]] = 0, 

- iy(XI , [X2 ,Xa]J + iy(X2, [xa,xrll + iY[Xa, [X2 ,XI Jl 
- f3[Xu [X3 , [X3 ,X2]]] - f3[X2, [x3 , [X3 , XI]]] 

(13a) 

(13b) 

(13c) 

(13d) 

(13e) 

(13£) 

(13g) 

(13h) 

(13i) 

- f3[Xa• [x2, [Xa,x1Jl] + [XS ,X4 ] = 0, (13j) 

- iY[Xa, [XuXa]J - f3[Xa, [Xa. [Xa,XI ]]] + [XI ,X4 ] = 0, (13k) 

iy(Xa, [X2 ,xaJl - f3[Xa, [Xa, [X3 , X2]]) + [X2,X4 ] "" 0, (131) 

(13m) 

The system (13) in a formidable array of conditions. 
There are but five functions related by thirteen condi
tions. However, the prospects of obtaining a solution 
are not as bleak as it might first appear. This is due 
to two facts which are direct consequences of the re
striction to pseudopotentials of the first kind. 

The first essential observation is that if , 
qx= 2:; Aj(S)Xj(q) 

1=1 

James Corones 

(14) 
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and it is known that, say, Xl is nonzero, then in (14) it 
can be assumed, without loss of generality, that Xl = 1. 
This can be done more elaborately by dividing through 
by Xl and introducing new variables. The relevant 
transformation properties of pseudopotentials are dis
cussed in Ref. 4. If different forms of the explicit 
pseudopotential that results at the end of the computation 
are needed, q = j(q) can be introduced. 

The second essential observation is that if [XI' Xj ] 

= 0, then XI = aX), where a is a constant. Again this is 
due to the fact that the system (13) is a set of ordinary 
differential equations since pseudopotentials of the first 
kind are being computed. 

So, for example, (13c) shows that 

(15) 

Simple inspection of (13) shows that if X3 = 0, the re
maining structure is Abelian. Hence, it is possible to 
set X3= 1. With this assignment (13a), (13b), and (15) 
can easily be solved consistently, at each stage a linear 
first order ordinary differential equation is solved. The 
result is 

Xl == b exp(c"; a(3)q, 

X 2 == c exp( -t:t./ a(3)q, 

a2 =2t:t./{3. 

(16a) 

(16b) 

(16c) 

If these results are used in (13d) or (13e), it follows 
that 

(17) 

If X 1 =0, (13a) implies X 2 ",,0 and (13k) shows X 4 =a'XS 

while (13m) implies X3 = a" Xs , and an Abelian structure 
results. Hence a necessary condition for the pseudo
potential to be non-Abelian is 

This is precisely the condition derived by Hirota in 
order that (6) have n-soliton solutions. 

(18) 

The calculations can easily be carried through in 
order to obtain X4 and Xs explicitly. No additional con
straints on the form of (6) are obtained. It is interesting 
to note that the set {Xl> X 2 , X 3 , X., Xs} has the property 
that 

(19) 

for all i, j. That is, it is a Lie algebra under the brac ket 
defined by (5). All non-Abelian pseudopotentials of the 
first kind that have been computed define a Lie algebra 
in this way. Notice that this structure follows in a 
natural way from the construction. No "closure" as
sumption, such as used in Ref. 1, is needed to force 
the structure. 

IV. BACKLUND TRANSFORMATIONS 

Simple pseudopotentials are useful in their own right. 
In particular they can be used to find a "new" solution of 
of an equation in terms of another (or "old") solution. 
The computation is again straightforward. A useful 
example is provided by the nonlinear Schrodinger 
equation. 
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ConSider the specialization of (6) to 

iqJt = - q;xx + kcpq;2. (20) 

The simple pseudopotential associated with this equation 
can easily be found by the method of the previous sec
tion. The result is 

qx=iikq;q2+iCP -iNj, (21a) 

q t = - ikzq2 + z + ikCP(jiq -1iAkCPq 2 - iACP + iA2q. (21b) 

Two remarks are in order. First (21) is called the 
simple psedopotential since it is understood, as 
indicated earlier, that all pseudopotentials that can be 
reached via the coordinate transformation q = j(ij) are 
equivalent. Second, if a computation analogous to that 
done in the previous section is attempted based on (20), 
nontrivial results are obtained only if k is real. 

Consider now a function 

(22) 

If it is required that <P is a solution of (20) provided cP 
is a solution of (20) and q and q satisfy (21) and its 
complex conjugate, a straightforward calculation shows 

(23) 

as can easily be verified. 

If now (23) and its complex conjugate are used to 
express q in terms of cP, 1/!, (ji, and Ijj and the result sub
stituted into (21), the Backlund transformation3 for (20) 
results. 

The same methods yields the Backlund transformation 
for the KdV and sine-Gordon equations. 4 Again a 
pseudopotential of the first kind is all that is needed to 
obtain Backlund transformations. 

The above method was suggested by the work of 
Wahlquist and Estabrook. It is, however, more direct. 
While this work was in progress Wahlquist and 
Estabrook showed, in a preprint, 5 how to obtain (essen
tially) (23) using a very interesting argument based on 
Lie derivatives of the ideal of forms which represent 
(20). 

V. CONCLUSION 

With which equations can simple pseudopotentials be 
associated? The results of Sec. III show that the 
existence of simple pseudopotentials is extremely sensi
tive to the detailed structure of the equation which is 
the starting point of the computation. Indeed the result 
suggests that there is a connection between the existence 
of simple pseudopotentials and the existence of solitons. 
There is additional evidence which points to this 
conclusion. 

In particular, it can be shown6 that, for a simple 
pseudopotential to be associated with 

CPt + j(cp)cpx + CPxxx= 0, 

it is necessary that 

j~~~=O. 

(24) 

(25) 

Wahlquist has shown,7 that this condition is necessary 
if any pseudopotential is to exist. In addition, for a 
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simple pseudopotential to be associated with 

cP xt = g( cp) , 

it is necessary that4 

g"" = ag a constant. 

It is known from numerical studies that8 

CPt + cp3cpx + CPxxx= 0 

(26) 

(27) 

does not possess soliton solutions. It is also known that 
equations of the form (24) only possess an infinite num
ber of (polynomial) conservation laws if (25) is satis
fied. 9 The condition (27) was first derived by Kruskal 
as a condition for (26) to have an infinite number of con
servation laws 10 and was rederived in Ref. 11 as a con
dition for (27) to possess a Backlund transformation. 

Taking the evidence in sum, it is not unreasonable to 
attempt to show that, for an evolution equation to have 
soliton solutions, it is necessary that a simple pseudo
potential be associated with the equation. Nonlinear 
hyperbolic equations, such as (26), probably require a 
different criterion, however. It is emphasized that the 
question of sufficient conditions for the existence of 
sDlitDns has not been addressed. 

It is clear that the Lax criterion, 12 which has been 
and must cDntinue to be at the center of any studies 
which actually find sDlutions of equations of the fDrm (1) 
by the inverse method, 13,14 is only useful if pairs of 
operators which satisfy the criterion have somehow been 
found. There is no known method for constructing them 
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and no results which state when they can in principle 
be found. In additiDn it would appear4 that satisfying the 
criterion alone is only necessary for the existence Df 
solitons, although this extremely important point has 
not been treated in the literature. A careful study Df 
pseudopotentials, both simple and nonsimple, could be 
undertaken with the realistic hope of obtaining com
putable criteria which must be satisfied if soliton solu
tions to a particular equation exist. 
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Under rather general conditions, a time-harmonic wave field u(x, y, z) can be represented in a half·space 
z> 0 by a double integral known as the angular spectrum of plane waves. The representation divides 
naturally into the sum of two double integrals, one of which (UH) is a superposition of homogeneous plane 
waves and the other (u1) is a superposition of inhomogeneous plane waves. We obtain asymptotic 
approximations to u(x, y, z), UH' and u1 valid when the point of observation of the field recedes towards 
infinity in a fixed direction through a fixed point. The results apply when the spectral amplitude of the 
plane waves belongs to a specific class which arises frequently in applications. Our approach is based on 
the method of stationary phase, which we extend in order to permit the presence of inhomogeneous waves 
in the integrand. Although the analysis of U requires that we distinguish the directions that are 
perpendicular to the z axis from the directions pointing into the half-space z> 0, the results for the former 
case are the same as would be obtained by taking the appropriate limit in the results of the latter case. We 
obtain the general form of the asymptotic sequence appropriate for expanding u and present explicit 
expressions for the first two terms. Our derivation justifies the results of previous heuristic treatments. The 
analysis of uH and UI requires separate treatments for directions that are (i) perpendicular to the z axis, (ii) 
parallel to the z axis, and (iii) neither perpendicular nor parallel to the z axis. In contrast to the behavior 
of u, the asymptotic behavior of UH (and of Ul) differs in the different cases. In each case, we obtain the 
general form of the appropriate asymptotic sequence and present the first term explicitly. 

1. INTRODUCTION 
A. Statement of the problem 

In the theories of acoustics, electrodynamics, and 
physical optics, the complex amplitude u(x, y, z) of a 
monochromatic scalar wave field u(x, y, z, t) ==u(x, y, z) 

x exp(- iwt) is frequently expressed in the half-space 
z > 0 by the angular spectrum of plane-waves 
representation 

U(x, '1', z) ==uH(x, y, z) +ur(x, y, z) for z > 0, 

where 

(1.1) 

UJ (x, y, z) == J ~J U(p, q) exp[ik(px +qy + mz)] dp dq 

(J==H,I), 

DH is the region 0"" p2 + q2 "" 1, 

Dr is the region p2 + q2? 1, 

m == + (1- p2 _ q2)1 /2 in D
H

, 

m == + i(p2 + q2 _ 1)1/2 in D/. 

(1. 2) 

(1. 3a) 

(1. 3b) 

k is a real positive constant, and U(p, q) is a spectral 
amplitude function, independent of x, y, z, that charac
terizes the field u(x, '1', z). With sufficiently well-behaved 
spectral amplitude U(p, q), u(x, y, z) satisfies the homo
geneous Helmholtz equation 

(1. 4) 

and the Sommerfeld radiation condition in the half-space 
Z > 0. 1 ,2 In (1. 2), UH(X, y, z) is expressed as a super
position of homogeneous plane waves propagating in dif
ferent directions; 1Ir (x, '1', z) is expressed as a super
position of inhomogeneous plane waves, propagating in 
directions parallel to the plane z == 0 and decaying at 
different rates in the z direction. Because the proper
ties of the inhomogeneous plane waves differ greatly 
from those of the homogeneous plane waves, UH(X, y, z) 
and 1Ir C'I:, y, z) are usually treated separately in the mathe-
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mati cal analysis and its physical interpretation. 

Since the integral in (1. 2) can rarely be evaluated an
alytically, approximations of the integral are required. 
The approximations of greatest importance for most 
applications are those valid at large distances 

R == [(x - XO)2 + ('V - '1'0)2 + (z - ZO)2]1 /2, (1. 5) 

from a point (x 0' Yo, Z 0)' In this paper, we study the 
asymptotic behavior of u(x, y, z), UH(X, y, z), and ur(x, y, z) 

for large kR with fixed k and fixed direction cosines 
~1' ~2' ~3 given by 

~1 == (x - xo)/R, 

~2 == (y - yo)/R, 

~3 == (z - z 0)/ R. 

(1. 6) 

(1. 7) 

(1.8) 

We obtain in Sec. 2, an asymptotic approximation of 
u(x, y, z) valid when the point of observation (x, y, z) re
cedes towards infinity in a fixed direction with positive 
z component (~3 > 0) through a point (x o,}' 0, z 0)' In Sec. 
3, we obtain an asymptotic approximation of u(x,:v, z) 
valid when the point of observation recedes towards 
infinity in a fixed direction perpendicular to the z axis 
(~3 == 0) through a point (x 0, Yo, z 0) in the half- space z -- O. 
The dominant terms in the asymptotic expansions of 
!tHe>;, y, z) and ur(x, y, z) are obtained in Sec. 4. Our main 
results are summarized in Sec. 5. 

In order to obtain the asymptotic approximations, 
some restrictions must be placed on the spectral am
plitude U(p, q). We consider spectral amplitudes that 
belong to a s et TN defined for positive, even integer N 
as the set of all functions U(p, q) that are independent of 
x, '1', and z, and that satisfy the conditions: 

(i) U(p, q) can be written in the form [with nz given by 
(1. 3)] 

U(p, q) == V(p, q, m)/m, (1.9) 
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where V(p, q, m) is bounded for all p, q; 

(ii) V(p, q, s) is a real or complex, continuous function 
of three independent variables p, q, s defined (a) for all 
real p and q, (b) for real s such that 0", S'" 1, and (c) 
for purely imaginary s = ia such that a> 0; 

(iii) V(p, q, s) has continuous, bounded partial deriva
tives up to order N with respect to p, q, s for all p, q, s 
within its domain of definition. 

Wave fields with spectral amplitudes U(p, q) that be
long to TN arise frequently in the theories of radiation 
and diffraction of waves. For example, consider the 
wave field radiated by a time-harmonic source of finite 
strength and size located in the region z ", O. The com
plex amplitude u(x, y, z) of the field satisfies the inho
mogeneous Helmholtz equation 

(1. 10) 

where p(x, y, z) is bounded and vanishes outside the re
gion occupied by the source. Then u(x, y, z) is given by 
(1. 1) with3 

U(p, q) = (ikI2rrm)p(kp, kq, km), (1. 11) 

where p(kx, ky, kz) is the three-dimensional Fourier 
transform of p(x, y, z) defined by 

~ 

= J J J p(x, y, z) exp[ -i(kxx+ k"y + kzz) 1 dx dy dz. 

(1. 12) 

Since p(x, y, z) vanishes outside some bounded region, 
it follows from (1. 12) that p(kx, ky, kz) is an entire func
tion of complex kx, ky, and kz• Furthermore, since 
p(x, y, z) vanishes for z > 0, it follows from (1. 12) that 
p(kp, kq, km) and all of its partial derivatives are bound
ed for realp,q. Consequently, U(p,q) belongs to TN for 
arbitrarily large N. 

Another example of a wave field with spectral ampli
tude in TN' where N is arbitrarily large, is a field 
u(x, y, z) expressible by (1. 1) in z? 0 with bounded bound
ary value u(x, y, 0) that vanishes outside a bounded re
gion of the plane z = O. It may be readily verified that 
in this case V(p, q, m) in (1. 9) is of the form 

V(p, q, m) = mW(p, q, m), (1. 13) 

where W(p, q, s) has the same properties as V(p, q, s) 

specified in conditions (ii)-(iii) above. In fact, 

W(p, q, m) = (kI2rr)2u(kp, kq), (1. 14) 

where u(k., k) is the two-dimensional Fourier trans
form of u(x, y, 0) defined in analogy to the definition of 
the three-dimensional Fourier transform in (1. 12). 

Although in both examples just cited, V(p, q, s) is an 
entire function of complex p, q, and s, we do not restrict 
our analysis here to such functions. The benefits of 
dealing with more general U(p, q) is pointed out in Sec. 
5. Also in Sec. 5, we comment on examples of spectral 
amplitudes that arise in phYSical problems but that are 
not in TN' and we indicate how they can be handled. 

Condition (i) on the functions in TN guarantees the con
vergence of the integrals in (1. 2) for U(p, q) E TN and 
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z > O. Conditions (ii) and (iii) are needed to obtain the 
asymptotic apprOXimations to follow. 

B. Discussion of the problem 

In order to gain insight into the asymptotic behavior 
of u(x, y, z), let us discuss its integral representation 
from a heuristic point of view. (For examples of the 
application of this point of view to obtain the asymptotic 
behavior of u(x, y, z) in a variety of physical problems 
see Refs. 4 and 5.) 

When ~3 > 0, the inhomogeneous plane waves in 
ur(x,y, z) decay exponentially with increasing kz. Hence, 
we ignore ur(x, y, z) compared to uH(x, y, z) and take the 
asymptotic behavior of u(x, y, z) to be the same as that 
of uH(x, y, z). Then, since the argument of the exponen
tial in the integrand is purely imaginary in DH , we ob
tain the asymptotic expansion of uH(x, y, z) by applying 
the method of stationary phase. 

The method of stationary phase for double integrals 
is a technique for obtaining the asymptotic behavior for 
large kR of integrals of the form 

I(kR) = J Iv g(p, q) exp[ikRj(p, q) 1 dp dq, (1. 15) 

where g(p, q), and j(p, q) are independent of kR and are 
sufficiently smooth in D, and where kRj(P, q) is real in 
D. The heuristic basis for the method is very simple. 
For large enough kR, the rapid oscillation of the expo
nential resulting from small variations in p, q leads to 
a cancellation effect so that most of the domain D con
tributes only a negligible amount to I(kR). The impor
tant contributions to I(kR) arise from the neighborhoods 
of certain critical points. In particular, a point p., qs 
(called an interior stationary point) within the interior 
of D where the phase j(p, q) is stationary (i. e., where 
both ajlap and ajlaq vanish) is such a critical point be
cause the exponential does not oscillate there even for 
large kR. Other types of critical points can occur on the 
boundary and at locations of Singularities of the 
integrand. 

It is difficult, however, to apply these heuristic ideas 
of stationary phase to develop a rigorous theory for the 
asymptotic behavior of integrals in the form of (1. 15). 
Consequently, other approaches are used. For exam
ple, Van der Corput6 and Erdelye apply integration by 
parts to treat the corresponding single integrals. Ri
gorous treatments of the double integral I(kR) under va
rious conditions have been given by Focke, 8 Braun, 9 

Jones and Kline, 10 and Chako.l1 Although the approaches 
used in the above references do not resemble the heuris
tic argument of stationary phase, the analyses therein 
supply a rigorous justification of the results of that ar
gument provided certain restrictions are placed on 
j(p, q) and g(p, q). Consequently the term" method of 
stationary phase" is often applied to describe the rigo
rous treatments. In this paper, we adopt that termi
nology and denote by the MSP for double integrals the 
combined methods of Focke, 8 Braun, 9 Jones and Kline, 10 

and Chako. 11 

The MSP requires that, throughout the interior and 
boundary of D, j(p, q) and g(p, q) have at least a finite 
number of continuous partial derivatives except possibly 
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at a finite number of isolated points where g(p, q} may 
have integrable singularities of a certain type. Unfor
tunately, integrals of interest in many applications do 
not satisfy these conditionso In particular, the inte
grals treated in this paper do not satisfy the conditions 
on the circle p2 + q2 = 1. Neither j(p, q) nor g(p, q} is 
differentiable thereo Moreover, if V(p, q, m} is not zero 
for p2 + q2 = 1, the integrand is infinite on a continuum 
of points (the unit circle) rather than at isolated points. 
Hence, the circle p2 + q2 = 1 must be dealt with in some 
way if we are to apply the MSP to obtain asymptotic ex
pansions of u(x, y, z), UH(X, y, z), and ur{x, y, z). 

Another important requirement of the MSP is that 
kRj(p, q) be real inDo Consequently, the MSP cannot be 
applied to u(x, y, z) or u1{x, y, z) when ~3 > ° since m is 
then imaginary in D/o Of course, if ur(x, y, z) can be 
neglected compared to UH(X, y, z) in u(x, y, z) as suggest
ed in the heuristic discussion earlier, then at least the 
first term in the asymptotic behavior of u(x, y, z) can be 
obtained from the asymptotic behavior of UH(X,y,Z)o It 
is easy to see, however, that the heuristic argument 
breaks down in certain cases and that u[ (x, y, z) can be 
just as important as UH(X, y, z) for large kR. To that end, 
consider the spherical wave US(x, y, z) radiating from the 
origin, 10 eo, 

US(x, y, z) = exp[ik(x2 + 1'2 + Z2)1 12]!(X2 +v 2 + Z2)1 12. 

(1. 16) 
For this wave field, the spectral amplitude is (Ref. 12, 
Sec. 2011) 

US(p, q) =ik/211m. (1. 17) 

When the point of observation lies on the z axis, the 
integrals can be evaluated easily to obtain 

U~(X, y, z) = exp(ikz)/z - l/z, 

U;(x,y, z) = l/z o 

(1. 18) 

(1. 19) 

Hence, in this case, uH(x, y, z) and u1(x, y, z) are of the 
same order in 1/ z so that it is incorrect to neglect 
u/(x,1',z} compared to uH(x,y,z). As we will see later 
in the paper, this rather surprising behavior is a con
sequence of the singularity on the circle p2 + q2 = 1 due 
to the factor l/m in (1. 17). For ~3=1, u/(x,y,z) is of 
the same order in l/R as is u(x, y, z) for all U(p, q) E TN 

with nonvanishing V(p, q, OL 

Since u/(x, 1', z) cannot be neglected compared to 
uH(X, y, z) in general, we are forced to deal with inte
grals of the form of I(kR) in (1.15) with complexj(p, q) 

in order to obtain the asymptotic behavior of u(x,y, z). 
For such an integral, the MSP is not applicable. A 
method that is available for obtaining asymptotic expan
sions of single integrals analogous to I(kR) in (1. 15) 
with complex j(p, q) is the method of steepest descents 
(MSD). An important requirement of the method is that 
the integrand be an analytic function of the variable of 
integration for complex values of that variable. This 
method has been applied, for example, in Chaps. 4-7 
of Ref. 12, Chaps. 4-5 of Rej. 13, and in Chaps. 6-7 
of Ref. 14, to treat some special cases in which the 
representation of u(x, y, z) reduces to a single integral. 

In many caseS of interest, U(p, q} is an analytic func
tion of complex p, q, but even in these cases, we cannot 
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apply the MSD directly to our integralso The MSD has 
not yet been developed for multiple integrals 0 A heuris
tic approach to the method for multiple integrals has 
been given by Banos15 to obtain the first-order term, 
but he points out that his approach cannot be extended to 
obtain higher order terms or to make estimates of the 
remainder term. The only MSD approach available at 
present to treat a double integral of the form in (1. 15), 
is to treat it as an iterated integral and to apply the 
MSD to each single integral successively. This approach 
is very cumbersome, and no general results are 
available 0 

Morse and Feshbach16 apply a change of variables of 
integration to place the integral u(x, y, z) in the form of 
I(kR) in (1. 15) with j(p, q} a function of p only. They then 
apply the MSD to obtain the first term in the asymptotic 
expansion of the p integral. Since the result is indepen
dent of q, the q integral can be done immediatelyo Un
fortunately, the domain D of integration in the integral 
obtained by the change of integration variables is a com
plicated two-dimensional surface in the four-dimensional 
space of two complex variables. Morse and Feshbach do 
not determine this domain D nor do they discuss how it 
can be transformed into the domain of integration they 
use when they apply the MSD. Further analysis is re
quired to resolve this difficulty. 

C. Present approach to the problem 

In Sec. 1, Part B., several possible methods for ob
taining the desired asymptotic approximations are dis
cussed, and the difficulties associated with each are 
pointed out. A logical approach to the problem is to se
lect one of the methods and to attempt to resolve the 
difficulties associated with it. It is not a priori obvious 
which of these methods can be rectified most readily. 
It is clear, however, that the methods based on the 
MSD have the following additional disadvantages over 
those based on the MSP: 

(a) they cannot be used for all U(p, q) E 1'N since they 
require that U(p, q) be an analytic function of com
plex p, q; 

(b) they cannot be used to study uH(x, y, z) and 
1l[ (x, y, z) separately; 

(c) they require modification of the contour of inte
gration so that p and q become complex and the 
physical interpretation of the interference of homo
geneous plane waves associated with the MSP is 
lost. 

For these reasons, the approach taken in this paper is 
to apply the MSP, extending it where necessary to avoid 
the difficulties mentioned in Sec. 1, Part B. 

In Sec. 2, where we treat the case ~3 > 0, we employ 
the neutralizer functions introduced by Van der Corput

6 

to isolate a neighborhood of the circle p2 + (l = 1 and ap
ply an argument based on integration by parts to show 
that that neighborhood does not contribute to those terms 
in the asymptotic expansion of u(x, y, z) that are of order 
lower than (kR)~N 0 The exponential decay of the inhomo
geneous waves is utilized to show that the integral over 
Dr, with the neighborhood of the unit circle excluded by 
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the neutralizer, does not contribute to the asymptotic 
expansion of u(x, y, z) in inverse powers of kR to any or
der. It follows then from Ref. 11 that the total contri
bution to the asymptotic expansion of u(x,y, z) up to or
der (kR)-N is due to a neighborhood (again isolated by a 
neutralizer) of the interior stationary point p = ~1> q = ~z. 
This result provides a rigorous justification of the re
sults yielded by the heuristic approach described in Sec. 
1, Part B. The form of the asymptotic expansion com
plete with the order of the remainder is provided by 
Braun. 9 The first- and second-order terms are calcu
lated explicitly using the expressions of Jones and 
Kline. 10 

The case ~3 = 0 treated in Sec. 3 is simplified by the 
fact that the integral representation of u(x, y, z) is of the 
form in (1. 15) with real j(p, q), but it is complicated by 
the fact that the point of stationary phase lies on the cir
cle pZ + q2 = 1. We again employ a neutralizer to isolate 
the unit circle and show that the portion of the integral 
that does not include a neighborhood of pZ + q2 = 1 does 
not contribute to those terms in the asymptotic expan
sion of u(x, y, z) which are of order lower than (kR)-N. 

In order to treat the integral over the neighborhood of 
pZ + q2 = 1, a change of variable of integration is made 
to eliminate the singularities on pZ + qZ = 1. The integral 
must be split into two parts for this purpose, since the 
new integration variables required in D/ differ from 
those required in DH • Several new critical points are 
introduced by the change of variables, but we are able 
to treat them by judicious use of neutralizers and the 
MSP. We apply Ref. 9 to obtain the form of the asymp
totic expansions and the error term and apply Ref. 10 to 
obtain explicit expressions for the coefficients. It is fi
nally concluded that the asymptotic expansion of u(x, y, z) 
for ~3 = 0, can be obtained by setting ~3 = 0 in the results 
of Sec. 2. 

The integrals uH(x, y, z) and u/(x, y, z) are treated in 
Sec. 4. Here, the cases (a) 0 < ~3 < 1, (b) ~3 = 0, (c) ~3 
= 1 must be treated separately. Whereas the asympto
tic behavior of u(x,y, z) is found to be the same in the 
three cases cited above, the asymptotic behavior of 
uJ (x, y, z) (J =H, I) is found to differ in the different 
cases. u/(x, y, z) is found to be of higher order in (kR)-l 
only in case (a). 

A summary of the results written especially for the 
reader uninterested in the details of derivation, and a 
brief discussion on the application of our results in phy
sical problems are presented in Sec. 5. 

2. APPROXIMATION VALID OVER A HEMISPHERE 

In this section, we obtain an asymptotic approxima
tion of u(x, y, z) valid as the point of observation re
cedes towards infinity in a fixed direction with positive 
z-component through a point (xo,yo,zo)' To do that, we 
first extend the MSP in Sec. 2, Part A., to show that 
when U(p, q) E: TN, only an arbitrarily small neighbor
hood of the interior stationary pointPs= ~l' qs= ~Z con
tributes to the asymptotic behavior up to terms of the 
order of (kR)-N. We then apply, in Sec. 2, Part B., 
standard results of the MSP to obtain the asymptotic con
tribution due to the stationary point. 
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A. Extension of the MSP 

Following the approach of Focke and Chako, we iso
late the interior stationary point using a neutralizer 
function ,,(p, q). To construct v(p, q), we note that since 
the point of observation recedes towards infinity in a 
fixed direction with positive z-component, we have con
stant ~l' ~Z' ~3 with ~3 > O. As a result, the point Ps = ~1' 
q s = ~z is fixed within the interior of DH • Let ~ and n2 

be neighborhoods (arbitrarily small) of Ps, qs that lie 
completely within the interior of DH , and let ~ be a 
subset of n2• Then we take ,,(p, q) to be a real, contin
uous function of p, q with continuous partial derivatives 
of all orders for all real p, q. Moreover, we require 

0,,; v(p,q),,; 1, 

v(p, q) = 1 

v(p,q)=O 

for p, q in n1 , 

for p, q not in nz• 

(2.1) 

(2.2) 

(2.3) 

Such functions exist for arbitrary n1 and nz•
17 Additional 

details of the explicit form of v(p, q) are unimportant 
here. 

We are now in a position to state the primary result 
of this section. 

Theorem: Let U(p, q) E: TN for some positive even in
teger N. Then for z > 0, u(x, y, z) given in (1. 1) with k 
a positive constant satisfies 

u(x, y, z) =uo(x, y, z) +p. (x, y, z), 

where 

uo(x, y, z) = J Iv H "(p, q) exp[ik(px + qy + mz)] dp dq, 

(2.5) 
and 

P'(x,y,z)=O[(kR)-N] as kR-oo 

uniformly with respect to ~1 and ~z for all real ~1' ~z 
such that B < (1- ~f - W1/2,,; 1 for any positive constant 
B < 1. By the statement that P. (x, y, z) satisfies (2.6) uni
formly with respect to ~1' ~Z' we mean that R. (x, y, z) is 
bounded above by (kR)-N multiplied by a constant that is 
independent of ~1> ~z for all real ~1' 1;2 such that B 
< (1 - ~r - W1/2,,; 1 for any positive constant B < L It 
follows directly from the theorem that the asymptotic 
behavior of u(x, y, z) of order lower than (kR)-N is deter
mined completely by an arbitrarily small neighborhood 
of the point Ps, qs' In particular, if U(p, q) E TN where 
N can be arbitrarily large, then the complete asympto
tic expansion of u(x, y, z) is equal to the aysmptotic ex
panSion of uo(x, y, x). 

Our proof of the theorem is a straightforward modifi
cation of the proof of Theorem 1 in Ref. 11 or Theorem 
III in Ref. 8. We construct three new neutralizer func
tions "1 (p , q), "2(P, q), and v 3(p, q) all of which are real 
continuous functions of p, q with continuous partial de
rivatives of all orders for all p, q and which satisfy 

0";V j (P,q),,;1 forj=1,2,3, 

v1 (P, q) + vz(P, q) + "3(P, q) = 1. 

(2.7) 

(2.8) 

To specify the neutralizers further, we choose positive 
constants C1 , C z, C 3 , C4 such that 

(2.9) 
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.,,=0 

FIG. 1. Illustration of the notation used in Eqs. (2.7)-(2.17). 
The radii of the solid circles are marked off on the p axis. The 
distance between a dashed circle and the nearest solid circle 
is E. 

with C1 large enough so that the neighborhood 02 of the 
point p" q s lies completely within the region (P2 + q2)1 /2 

< C1 • Such constants exist since ~f + ~~ = 1 - ~i and ~3 
> 0 > O. Now we require that 

v1(P, q) = 1 for (P2 + q2)1 /2 ~ C1, (2.10) 

v1(p,q)=0 for (P2 + (2)1 /2?o C2, (2.11) 

v 2(p, q) = 1 for C
2 
~ (P2 + q2)1/2 ~ C

3
, (2.12) 

v2(P, q) = 0 for (P2 + q2)1/2 ~ C
1 and (P2 +q2)1 /2~ C

4
, 

v3(p,q)=1 for (P2+q2)1/2?oC4, 

v3(p, q) = 0 for (P2 + (2)1 /2 ~ C3 • 

(2. 13) 

(2.14) 

(2.15) 

Next, we define three regions D1, D 2, Ds in the p, q plane 
by: 

D1 is the region (P2 + q2)1/2 ~ C2 + E, 

D2 is the region C1 - E ~ (P2 + (2)1 /2 ~ C4 + E, 

D3 is the region C3 _ E ~ (P2 + q2)1 /2, 

where E is a positive constant such that E < 1- C2, E 

< Cs - 1, and E < C1 - (~f + ~~)1 /2, The various regions of 
interest in the p, q plane are shown in Fig. 1. The fea
tures important for the proof to follow are: (a) vj(P, q) 
vanishes for p, q not in D j , and for p, q in D j in some 
neighborhood of its boundary (with j = 1, 2, 3); (b) the 
point p" q s lies within the interior of D1 and is exterior 
to D2 and D 3 ; (c) 1/1 is real in D1; and (d) m is imaginary 
in D3 • We are now ready to separate the integral 
u(x, y, z) into three parts, 

It(X, v, z) =U1 (x, y, z) +u2(x, y, z) + us(x, y, z), 

where 
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(2.16) 

Uj(x, y, z) = J Iv j vj(P, q) . U(p, q) 

Xexp[ik(px +qy + mz)]dpdq, 

and deal with each part separately. 

(2. 17) 

The integral representation of U1 (x, y, z) is in a form 
appropriate for the :MSP. Since the region of integration 
D1 does not include the region p2 + q2?- 1, none of the 
difficulties mentioned in Sec. 1, Part B. are present. 
The only critical point of Significance is the interior 
stationary point p s> q s' The critical points of the phase 
function on the boundary of D1 do not contribute because 
the amplitude function and its first N derivatives all 
vanish there. Since the region 02 lies entirely within 
D1, it then follows immediately from the proof of The
orem 1 of Ref. 11, that 

U1 (x, y, z) =uo(x, y, z) +/( (x, y, z), 

where 

(2.18) 

with fixed k. It is easy to see from the proof of Theorem 
1 in Ref. 11 that/( (x,y, z) =O[(kR)-N] uniformly with re
spect to ~1' ~2 for all real ~1' ~2 such that 0 < (1- ~f _ ~~)1 /2 

~ 1 for any positve constant 0 < 1. Hence, only the proof 
that u 2(x,y, z) +us(x, y, z) = O[(kR)-N] uniformly remains. 

We can dispose of u3(x, y, z) easily since m is purely 
imaginary and im ~ - [( Cs - EY _ 1]1/2 < 0 in D3 • For suf
ficiently large R, there is a positive constant a such that 
z > a. For such R, we have 

lus(x,y,z)1 ~ r r IU(p,q)1 exp(ikmz)dpdq . Jvs 

= J 1, I U(p, q) I exp(ikma) exp[ikm(z - a)] dp dq 
v3 

~ exp( - k(z - a)[ (Cs - e:)2 _ 1]1 /2} 

X r 1, I U(p, q) I exp(ikma) dp dq. 
. V3 

(2.19) 

Since U(p, q) E TN and since a> 0, it follows from condi
tion (i) in the definition of TN that the final integral in 
(2.19) converges to a finite constant M3 independent of 
~l> ~2' ~3' Also since z = z 0 + ~3R and ~3 > 0, we have 

lu3(x, y, z) I 

~ M3 exp(- [k(zo- a) +kRo][(Cs - e:)2 - 1]1 /2}. 

But the multiplicative constant and the decay constant 
in the exponential are independent of ~l> ~2' Hence we 
have u3(x, y, z) = O[(kR)-N] uniformly with respect to 
~1' ~2 as kR - 00 for arbitrary positive N. 

Finally, we deal with u2(x,y,z). First, we make the 
change of integration variables 

p = sinO! cos/3, 

q = sinO! sin/3. 

The Jacobian of the transformation is 

J(!: ~) = sinO! cosO!, 

and we have 

m= cosO!. 
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1m. 

----------~--------~-----R •. . , 
contour C 

", 

FIG. 2. The contour of integration in Eq. (2.28). 

Similarly, we introduce new angles e, qJ such that 0"" e 
< rr /2, 0"" qJ "" 2rr defined by 

~l = sine cosqJ, 

~2 = sine sinqJ. 

(2.25) 

(2.26) 

These angles are the spherical polar coordinates of the 
point of intersection on the unit sphere of a line through 
the origin in x, y, z space, parallel to the direction taken 
by the point of observation as it recedes from the point 
(xo, Yo, zo). In analogy with (2.24), we have 

~=cose. (2.27) 

In terms of these variables, the integral for u 2(x, y, z) 
in (2.17) becomes 

u 2(x, y, z) 

=: f02' fc A(a, (3) exp{ikR[sine sina cos(/3 - qJ) 

+ cose cosa]}da d/3, 

where 

A(a, f3} 

=: vip, q)V(P, q, m) exp[ik(pxo + qyo + mz o)] sina, 

(2.28) 

(2.29) 

with p, q given by (2.21)-(2.22) and V(p, q, m) defined 
in (1. 9). The contour of integration C for the a integral 
is shown in Fig. 2. The end points of the contour are 

al =:arcsin(C1 - E), 

a4 = arcsin(C4 + E), 

which correspond to the limits of D2 • 

(2.30) 

(2.31) 

The form of the integrand in (2.28) is greatly im
proved over that in (2.17). The phase function is analy
tic and the amplitude function is continuous and has par
tial derivatives up to order N with respect to the vari
ables of integration over the whole integration range. In 
return for this improvement, we have gained the com
plication of a complex contour of integration. Moreover, 
the argument of the exponential is still complex over 
part of the integration region. 

To study the properties of the argument of the expo
nential in more detail, we define 
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t= sine sina cos(/3 - qJ) + cose cosa. (2.32) 

As a varies over the contour C with {3 fixed, t varies 
over a Simple curve C(M of finite length in the complex 
plane. Since the partial derivative 

(~) =: sine cosa cos (f3 - a) - cose sina 
aa a 

(2.33) 

is an analytic function of complex a for all a and /3, the 
partial derivative (aa/at)a is an analytic function of a 
given by 

(2.34) 

for all a, f3 such that (at/a ala "* O. (Here and throughout 
the paper, we indicate the quantities to be held constant 
in partial derivatives by placing their symbols as sub
scripts outside parentheses enclOSing the partial deri
vative). Since cose =: ~3 > 6, we have (at/aa)a"* 0 when 
cosa=O. Hence, the zeros of (at/aa)a occur for values 
of a such that 

tana = tane cos(j3 - qJ). (2.35) 

But on the part of C on which a is real, we have rr/2 
~ a ~ e so that tana > tane cos(/3 - qJ). And on the part of 
C on which a is complex, tana is imaginary whereas 
tane cos(/3 - qJ) is real. Hence, (at/aa)a has no zeros for 
a on C with 0""/3"" 2rr. As a result, (aa/at)a is an analy
tic function of complex a given by (2.34) for a on C and 
0"" /3 "" 271. It follows from this analYSiS, that we can 
change the variable of integration in the a integral in 
(2.28) to the variable t defined in (2.32). The result is 

u2(x, y, z) = f
0

2
, fc (a) A[a(t), /3] (aai) 8 exp(ikRt) dt d(3. 

(2.36) 

Because of the prescribed properties of v2(p, q) and 
V(p, q, m), the quantity A(a, (3) has N continuous partial 
derivatives with respect to a with constant (3 taken along 
the complex curve C for all a on C and all 0"" /3 "" 2rr. 
(Note that the derivatives must be taken along the curve 
C since v2(p, q) and V(p, q, m) are defined only for real 
p, q. Varying a along C corresponds to varying p, q 
along the real axis.) Since (aa/at)a is an analytic func
tion of a on C, the product A(a, (3)(aa/at)a also has N 
continuous partial derivatives with respect to a with 
constant i3 taken along C. Finally, we note that differ
entiation with respect to t along the curve C(M with 
constant {3, is equivalent to differentiating with respect 
to a along C with constant /3 and multiplying by (aa/at)a' 
Hence, it follows from the analyticity of (a a/at)a with 
respect to a that the quantity A(a, (3)(a Ct/at)a has N con
tinuous partial derivatives with respect to t taken along 
C(j3) with constant {3 for all t on C(f3} and all 0"" f3 "" 2rr. 
We now integrate the t integral in (2.36), 

l(kR,J3}=i A[a(t),/31(aa~) exp(ikRt)dt, 
c (fl) a 

(2.37) 

by parts N times by integrating exp(ikRt) each time and 
differentiating the rest to obtain7 

(2.38) 

where 
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L (t.) =~1 in-l{~ lA{ f-l) (aa) J} I exp(ikRtj ) N J _ atn a, ~ at (kR)n+l 
n-O a a t.tj 

(2.39) 

x exp(ikRt) dt, (2.40) 

tj = sine sinaj cos(/3 - cp) + cose cosaj, (2.41) 

with ab a4 given by (2. 30), (2.31). Due to the properties 
of v2(P, q), A{a, f3) and all N of its partial derivatives 
with respect to a vanish at the endpoints t1, t4 of C(t3). 
Hence, the derivatives of A{a, /3) with respect to t taken 
along C{/3) also vanish at t1, t4, so we have 

(2.42) 

Since the integrand in (2. 40) is continuous and since the 
contour C{(3) is of finite length for all e, cp, and /3, the 
integral is bounded by some positive constant M2 inde
pendent of e, cp, ,13. Hence 

(2.43) 

and consequently 

I u2(x, y, z) I ~ 21TM2(kR)-N. (2.44) 

Thus, we have shown that u2{x, y, z) = O[(kR)-N] uniform
ly with respect to ~1' ~2 as kR - 00 with fixed k. 

Collecting our results, we find that the three terms 
in (2. 16) that add to give u{x, y, z) have the following 
properties; 

Ul (x, y, z) =uo{x, y, z) + O[{kR)-N], 

u2{x, y, z) = O[(kR)-N], 

u3{x, y, z) =O[(kR)-N], 

(2.45) 

(2,46) 

(2,47) 

uniformly with respect to ~b ~2 as kR _00 with fixed k. 
Hence, the theorem is proved. 

B. Asymptotic approximation of u(x, y, z) 

It follows from Sec. 2, Part A that any terms of order 
lower than (kR)-N in the asymptotic behavior of u{x, y, z) 
must be contributed by uo{x, y, z). The integral repre
sentation of uo{x, y, z) in (2.5) can be put in the form of 
I(kR) in (1. 15) with phase function 

j(p, q) = ~1P + ~2q + ~3rn (2.48) 

and amplitude function 

g(p, q) = v(p, q) U(p, q) exp[ik(pxo + qyo + rnz 0)]' (2.49) 

Since v(p, q) = 0 for p, q not in n2, we can take the do
main D of integration to be a region within the interior 
of DH containing n2 within its interior. Thenj(p, q) in 
(2.48) is real and infinitely differentiable in D, and 
g(p, q) has continuous, bounded partial derivatives up 
to order N in D. Hence, the integral satisfies all of the 
conditions required for the application of Ref. 9 to ob
tain the asymptotic behavior of uoCx, y, z). Since there 
is only one critical point in D (the interior stationary 
point p = ~1' q = ~2) and since the integrand and its de
rivatives all vanish on the boundary of D, it follows im
mediately from ReL 9 that 
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exp(ikR)N 12 B (e rn) 
uo{x, y, z) = kR E (kR)n"t' + O[{kR)-l-N 16], (2.50) 

where the coefficients Bn(e, cp) are independent of R. (It 
may be helpful to recall at this point that N is specified 
in the definition of TN to be an even positive integer.) 

The estimate of the order of the remainder term in 
(2. 50) has been improved by Stamnes and Sherman. 18 

They show that the remainder term is o[(kR)-N 12]. It 
follows then from the results of Sec. 2, Part A. com
bined with Eq. (2.50) and the results of Ref. 18 that the 
asymptotic behavior of the total angular spectrum in
tegral u{x, y, z) is given by 

N 12-1 
u(x, y, z) = [exp(ikR)/kR)].0 Bn{e, cp)/{kR)" 

"=0 

+ o[{kR)-N 12] (2.51) 

as kR-oo with fixed k, ~1' ~2 for U(p,q) E: TN' 

Although Braun9 gives formulas that completely de
termine the coefficients Bn{e, cp) in terms of the ampli
tude and phase functions of the integral, application of 
these formulas to obtain explicit relations between 
Bn{e, cp) and U(p, q) is very involved for all n > O. In the 
hope that they may prove Simpler to apply, we can turn 
to the quite different expressions for Bn{e, cp) provided by 
Jones and Kline. 10 Although these expressions were de
rived under the assumption that g(p, q) is analytic in a 
neighborhood of p = ~1' q = ~2' they must yield the same 
results as those in ReL 9 since (a) the case treated in 
Ref. lOis included in the analysis of Ref. 9 with N = 00, 

(b) the functional dependence of Bn(e, cp) on U(p, q) as 
given in Ref. 9 is independent of N, and (c) the asymp
totic power series of a function is unique. Unfortunately, 
the formulas of Jones and Kline also are cumbersome 
to apply for II> O. 

The formulas for the first term however, are Simple. 
Applying Sec. 5.1 of Ref. 10 we obtain the well-known 
result 

Bo( e, cp) = - 21Ti exp(ik (~lXO + ~2YO + ~3Z 0)] 

(2.52) 

with V(p, q, m) given by (1. 9) and with ~1' ~2' ~3 given by 
(1. 6)-{1. 8) and related to e, cp by (2. 25)-{2. 27). Appli
cation of Ref. 10 to find the second-order term is much 
more difficult. After a very lengthy but straightforward 
calculation, we find the relatively simple result 

B1(e, cp) = (i/2)L 2B o(e, cp), 

where L2 is the differential operator defined by 

il f. iJ ) a2 

L2=_ (l/sine)ae\Sine ae - (1/sin2e) acp2' 

Hence, if U(p, q) E: TN with N? 6, we have 

u(x, y, z) = - 21Ti[exp(ikR)jkR][l + (i/2kR)L 2
] 

xexp[ik(~lXO + ~2..Vo + ~3Z0)]V(~1' ~2' ~3) 

(2.53) 

+O[(kR)-3] (2.55) 

as kR _00 with fixed k, ~1' ~2' 

The relation between Bo and B1 given in (2.53), along 
with a recursion formula for higher order coefficients, 
can be obtained much more simply by making use of the 
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fact that u(x, y, z) satisfies the Helmholtz equation (1. 4) 
for z > O. Sherman19 has shown that if a solution u(x,y,z) 
of (1. 4) has an asymptotic expansion of the form in 
(2.51) for arbitrarily large N and if the asymptotic ex
pansions of the partial derivatives of u(x, y, z) with re
spect to R, e, cp up to order 2 can be obtained by differ
entiating (2.51) term by term, then the coefficients 
Bn(e, cp) satisfy the recursion formula 

(2.56) 

It can be shown that the partial derivatives of u(x, y, z) 
given in (1. 1) satisfy the above requirements. Hence, 
the coefficients Bn(e, cp) satisfy (2.56) if U(p, q) EO T "'. 
As argued before, this means that (2.56) must hold for 
U(p, q) EO TN with N finite as well, since the functional 
dependence of the coefficients on U(p, q) is independent 
of N. Hence, (2.56) provides a straightforward method 
for obtaining higher order terms in the asymptotic ap
proximation of u(x, y, z) from a knowledge of the first 
term. 

3. APPROXIMATION VALID ON THE PLANE z = zo 

In this section, we obtain an asymptotic approximation 
of u(x, y, z) valid when the point of observation recedes 
towards infinity in a fixed direction perpendicular to the 
z axis through a point (xo, Yo, zo) in the half-space z > O. 
This case is excluded in Sec. 2 because the analysis 
therein cannot be extended to include ~3 = O. The problem 
in this section is simpler in principle than that of Sec. 
2 because an extension of the MSP is not required. But 
the calculation of the asymptotic approximation is much 
more involved in this case because several critical 
points must be considered. We again take U(p, q) EO TN' 
and we let z =zo > O. 

When we set z = z 0 in (1. 2), the resulting integral is 
of the form in (1. 15) with 

j(p, q) = ~tP + t,2q, 

g(p, q) = U(p, q) exp[ik(pxo + qyo + mz o)], 

D=DJ (J=H,I). 

(3.1) 

(3.2) 

(3.3) 

Hence, we have a phase function j(p, q) that is real and 
analytic in both DH and Dr. Unfortunately, the amplitude 
function g(p, q) need not have any partial derivatives on 
the circle p2 + q2 = 1 in general. Therefore, we isolate 
that circle using a neutralizer. Let v;(p, q) be a real, 
continuous function with continuous partial derivatives 
of all orders for allp,q. Moreover, let v'(p,q) satisfy 

O""v'(p,q) <1, 

v'(P,q)=l for 1_E""p2+ q2",,1+E, 

(3.4) 

(3.5) 

where E is a positive constant less than %. Then, we can 
write the integral in (1. 2) in the form (with J=H, I) 

uJ (x,:v, z 0) = un (x,)" z 0) + UJ2(X, y, z 0), 

where 

UJl(x,y,zo)=J .h
J1

v '(p,q)U(p,q) 

x exp[ik(px + qy + mz 0) 1 dp dq, 
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(3.7) 

(3.8) 

UJ2(X, y, zo) = J JDJP - v'(p, q)1u(P, q) 

X exp[ik(px + qy + mzo) 1 dp dq, 

DHl is the region 1- 3E "" p2 + q2 "" 1, 

DH2 is the region p2 + q2 "" 1 - E/2, 

DI1 is the region 1"" p2 + q2 "" 1 + 3E, 

D12 is the region p2 + q2? 1 + E/2. 

(3.9) 

The various regions of interest in the p, q plane are 
shown in Fig. 3. 

The integrand in the expression for uH 2 satisfies all 
conditions required for application of Theorem 1 of Ref. 
11. Since there are no critical points of the integrand 
within DH2 , and since the amplitude function and all N 
of its partial derivatives vanish on the boundary of DH2 , 

we have 

UH2 = O[ (kR)-N] (3.10) 

as kR _00 with fixed k. 

The integrand in the expression for uI2 also satisfies 
the same conditions but the region D12 is infinite in ex
tent whereas Theorem 1 of Ref. 11 was proved only for 
a finite region of integration. The theorem can be ex
tended without difficulty, however, to include our case. 
We simply consider the same integral, but with region 
of integration 1 + E/2 "" p2 + q2 ~ K, and then follow the 
original proof. The main new feature is the presence 
of new terms that arise because the amplitude function 
and its partial derivatives do not vanish on the boundary 
p2 + q2 =K. These terms do vanish, however, when we 
take the limit K - 00, because the amplitude and aU of its 
derivatives contain the factor exp[ - (K - 1)1 12z01 with Zo 
> O. (Note that the case z 0 = 0 can be treated only by 
placing additional restrictions on the behavior of U(p, q) 
and its derivatives as p2 + q2 - 00.) The other new fea
ture is that the remainder integral after N integration 
by parts is over an infinite region. But aU that is re
quired in the proof is that the integral is convergent. 
Convergence is guaranteed, however, by the presence 
of a factor exp[ - (P2 + q2 _ 1)1 12Z 0] in the integrand. 
Hence, the result of the theorem applies without change, 
and we have 

udx, y, zo) = O[(kR)-N] 

as kR - 00 with fixed k. 

(3.11) 

To deal with UHl (x, y, z), we make the change of vari
ables of integration given in (2.21)-(2.22) and use the 
notation of (2.25)-(2.26) to obtain 

U H1 (x, y, z 0) 

= r~+80 r./2 A '(a, (3) exp[ikR sina cos(/3 - cp) J da d{3, 
o "'1 

(3.12) 

where a{ = arcsin(l - 3E)l 12 = arccos(3E)1 /2 and A '(a, (3) 

I v'"O ----j [-II -l r'_V'"O --~ 
I I I I I I I I I 

FIG. 3. lllustration of the notation used in Eqs. (3.4)-(3.9). 
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FIG. 4. The region of integration and the location of the 
critical points in Eq. (3.12). 

is the same as A(O', /3) defined by (2.29) except that 
1/2(P, q) is replaced by I/'(p, q). Since the constant /3 0 is 
arbitrary, we choose it for later convenience to be /3 0 
= ep - 7T/4. The integral is now in the form in (1. 15) 
(with integration variables 0', /3 instead of p, q) with 
phase function 

f( a, /3) = sinO' cos(/3 - ep) 

and amplitude function 

g(O', {3)=A'(a, {3). 

(3.13) 

(3.14) 

Since f(a, /3) and g(a, {3) satisfy all of the requirements 
of the MSP over the region of integration, we are now 
in a position to approximate UH1(X,y, z). 

The region of integration and the location of the criti
cal points of the integral in (3,12) are shown in Fig. 4. 
All of the critical points lie on the boundary of the in
tegration region. The critical points on the boundary 
0' = a; do not contribute to the asymptotic behavior of 
UH1 (x, y, z) because the amplitude function and all N of 
its partial derivatives vanish there. The remaining 
critical points are two corners of the boundary (a = 7T /2, 
/3=/3 0 and a=7T/2, /3 0= 27T +/30) and two stationary points 
(a 0= 7T/2, /3=ep and a=7T/2, f3=ep+7T). Because of our 
choice of 130' neither of the stationary points coincide 
with a boundary corner. 

Consider first the corner critical pOints. These are 
an artificial creation of the change of variables of inte
gration. Since they can be shifted freely along the line 
0'= 7T/2 in the (1,13 plane by different choices of /30' it is 
reasonable to expect that taken together, the two corner 
points do not contribute to the asymptotic behavior of 
u(x, y, z), This expectation can be verified by the follow
ing argument, We construct a neutralizer 1/1/(/3), a real 
continuous function with continuous derivatives of all 

768 J. Math. Phys., Vol. 17, No.5, May 1976 

orders, that is periodic with period 27T, is equal to 1 for 
ep - 7T/8 '" /3 '" ep + 97T/8 and is zero in a neighborhood of j3 

=13 0, Then we write UH1 (X,y,zo) as the sum of two inte
grals, each the same as the one in (3.12) except that the 
first integral contains an extra factor 1/"(j3) whereas the 
second integral contains an extra factor 1- 1/"(13). The 
only critical points of importance in the first integral are 
the stationary points already described because the inte
grand vanishes at the corner points, Moreover, since 
1/"(13) = 1 in a neighborhood of the stationary points, the 
asymptotic behavior of this integral is precisely the 
same as the contribution of those stationary points to 
the asymptotic behavior of UH1 (x, y, z 0)' The only critical 
points of importance in the second integral are the cor
ner points since 1- 1/"(/3) vanishes at the stationary 
points, The integrand can be made to vanish at the cor
ner points, however, by changing the region of integra
tion to be ep - 97T/8 '" 13 '" ep + 77T/8. This is possible since 
the integrand is a periodic function of 13 with period 27T. 
Hence, the integrand vanishes in the vicinity of all criti
cal pOints, and it follows from Theorem 1 of Ref. 11 
that the second integral is O[(kR)-N]. We conclude that 
the asymptotic behavior of UH1 (X, y, zo) of order lower 
than (kR)-N is given solely by the contributions of the 
two stationary points. 

Now consider the stationary points. Let point a be the 
point 0'= 7T /2, /3 = ep and point b be the point 0'= 7T /2, 
i3=ep+7T. Further, letuk~)(X,y,zo) andufN(x,y,zo) be 
the contributions to the asymptotic behavior of uHl (x, y, z 0) 

due to points a and b respectively. Then, we have 

UH1(X, y, zo) =Uk~)(X, y, zo) +uiN(x, y, zo) + O[(kR)-N] .. 

(3.15) 

To obtain the asymptotic approximation of u};'P and u~~) 
in (3.15), we need results that apply to the case when 
the amplitude function has only a finite number of deri
vatives. The boundary stationary point of the elliptic 
type has been treated by Braun and the result for the 
order of the remainder term is similar to that given in 
(2.50). This estimate has been improved by Stamnes 
and Sherman. 18 The remainder term pertaining to a 
boundary stationary point of the hyperbolic type is not 
yet available in the literature, but is shown by Stamnes 
and Sherman18 to be O(k-H/4). Also, the form for the 
asymptotic sequence for the hyperbolic stationary point 
is the same as that for the elliptic point. Thus we have 

uiit>(x, y, z 0) =uf/l I(x, :>" z 0) + u}/ll(x, y, z 0)' 

where 

u}/l I(x, y, zo) 

N /2 

= [exp(±ikR) /kR] I:; B}/; l(ep)/(kR)n + o[ (kR)-N /4], 
"=0 

U}/121 (X, y, zo) 

NI2 -1 B<i21( )/'kR)" 
=[exp(±ikR)/(kR)3/2] 6 Hn ep , 

n=O 

+ o[ (kR)-N 14], 

(3.16) 

(3.17) 

(3,18) 

with B}/; I(ep) and B}/;I(ep) independent of R. In (3,17) and 
(3.18), the upper sign in the exponential applies when 
j = a and the lower sign applies when j = b, 
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To obtain the asymptotic expansion of UI1(x,y, zo), we 
change the variables of integration in (3.8) to new vari
ables Il, A defined by 

p = coshll cos A, 

q = cosh/.L sinA. 

The Jacobian of the transformation is 

J (P, q) = sinh/.L cosh/.L, 
/.L,A 

and we have 

rn = +i sinh{.L. 

With these new variables, we have 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

un (x, y, zo) = r80+2rr t' l A "(Il, A) exp[ikR coshll cos('\ - cp) J 
J80 0 

Xd/.LdA, (3.23) 
where 

/.Ll = arcsinh(3El l2 = arccosh(l + 3EY 12, 

A'(/.L, A) 

= - iV' (p, q) V(p, q, rn) exp[ik(pxo + qyo + rnz o)] cosh/.L, 
(3.24) 

with p, q given by (3.19)-(3.20). The integral is now in 
the form of (1. 15) with phase and amplitude functions 

i(}J., A) = cosh}J. COS(A - cp), (3.25) 

m.fJ.,A)=A"(fJ.,A). (3.26) 

As with the integral for U H1(x, y, zo), all of the critical 
points lie on the boundary. For the same reasons as in 
the previous case, the critical points on the boundary 
JJ. = JJ.l and the corners at /.L = 0, A = ° and /.L = 0, A = 27T 
do not contribute. The asymptotic behavior of 
Un (x, y, 2 0) is determined completely by stationary point 
a at JJ. = 0, A = cp and stationary point b at JJ. = 0, A= cp + 7T. 
As before, we write 

uIl (x, y, z 0) = ull)(x, y, zo) + ug lex, y, 2 0) + O[(kR)-N) 

(3.27) 
where uj{i(x, y, zo) is the contribution due to point j. We 
then again apply Ref, 9 and the results of Stamnes and 
Sherman1B and find that the asymptotic approximations 
of uj1)(x,y, zo) and ugl(x,y, zo) are of the same form as 
those of uill<x,y, zo) and u~i<x,y, zo) given in (3.16)
(3.18) but with coefficients Bj~l)(cp) and Bl~?J(c:p) in place 
of B}/~)(c:p) and B}/;)(c:p) respectively. 

Comparison of the explicit values of the various co
efficients remains. The expressions for the coefficients 
given in Ref, 10 can be used for that purpose for the 
same reasons as given in Sec. 2, Part B. to justify the 
application of the results of Ref. 10 there. We have 
found, however, that the formula (47) of Ref. 10 which 
applies in the present case is incorrect. In Appendix A, 
we derive the correct formula by applying the procedure 
outlined in Ref. 10, and in Appendix B, we use the result 
to obtain expressions for the coefficients. The final re
sults are 
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Bj~l)(c:p) =B~~)(c:p), 

B}~2)(c:p) = _ B~a;)(c:p), 

B:~l )(c:p) = _ B~b~ )(c:p), 
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(3.28) 

(3.29) 

(3.30) 

Bi~2)(c:p) = - B}J;)(c:p). (3.31) 

It follows from (3.30)-(3.31), that the contribution of 
point b to un (x, y, z 0) is equal in magnitude and opposite 
in sign to the contribution of point b to UHl(X,y, 20)' 

Hence, the point b does not contribute to the asymptotic 
behavior [of order lower than (kR)-N 14] of the total inte
gral UH1(X,y, 2 0) +un(x,y, zo). Similarly, (3.29) shows 
that the contribution of point a to the series involving in
verse half-powers of (kR) in the expansion of un(x, y, zo) 
is equal in magnitude and opposite in sign to the same 
contribution of point a to UH1(X, y, 2 0). Hence the expan
sion of the total integral UHl (x, y, z 0) + uIl (x, y, z) does 
not include half-powers of kR of order lower than 
(kRtN 14. Finally, it follows from (3.28) that UHl (x, y, zo) 
and un(x,y, zo) contribute equally to the remaining terms 
involving only integral inverse powers of kR that make 
up the expansion of the total integral. Hence we have 

(3.32) 

Therefore, in view of (1. 1), (3.7), (3010), (3.11), (3.17) 
and (3.32) the asymptotic behavior of u(x, y, zo) is given 
by 

N 12 
u(x, y, z 0) = [exp(ikR)/kR)L 2B~·; )(c:p)/(kR)" 

n=O 

+o[(kR)-N 14) (3033) 
as kR - 00 with constant k and z = z o. 

Equation (3.33) provides the deSired asymptotic ap
prOXimation of u(x,y, zo). Only the comparison of the 
result with the result of Sec. 2, Part B remains. In Ap
pendix C, we compare the coefficients Bk~)(C:P) appearing 
in (3.33) with the coefficients Bn(a, <pi appearing in 
(2.51); the result is 

B~~)(cp)=tlim Bn(B,cp)o (3.34) 
8 ~rr 12 

Hence, to order lower than (kR)-NI\ the series in (3.33) 
is equivalent to the series in (2051) with a set equal to 
71/2. Consequently, we can combine the results of this 
section and Seco 2 to write 

N 12 
u(x, y, z) = [exp(ikR)/kRJL Bn(B, c:p)/(kR)n 

n=O 

+o[(kR)-N 14] (3.35) 

as kR - 00 with constant k for z 0' > 0, 0,,; c:p ,,; 27T, and 
0,,; a,,; 7T/2. The asymptotic expansion (3035) is therefore 
uniform with respect to the angles a and c:p in the domain ° ~ a,,; 7T/2 and 0 ~ cp,,; 27T 0 The coefficients Bn(a, c:p) for 
n = 0 and n = 1 are given in (2.55) 0 

Finally, we note that in the important special case 
when V(p, q, m) is given by (1. 13), the first term in the 
series in (3.35) vanishes for a = 7T/2. The dominant 
term in the expansion is then the term with n = 1 in 
(3.35). Applying the expression in (2. 55) for that term, 
we find that for N? 12, 

u(x, y, z 0) =:: - 27T exp[ik (~lXO + ~2-Vo)) 

x [exp(ikR)/(kR)2) [ikZoW(~l' b ~3) 

+ aW(~b ~2' s) I ] + O[(kR)-3] 
as s='3 

(3.36) 

as kR _00 with constant k for 20> 0, 0,,; c:p,,; 271, B=7I/2. 
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4. APPROXIMATIONS OF UH (x, y, z) AND u, (x, y, z) uH(x, y, z) 

In this section, we obtain the dominant term in the =_ 27Ti[exp(ikR)/kR]V(~1' ~2' ~3) 
asymptotic behavior of uH(x, y, z) and ur(x, y, z). The be-
havior is found to be quite different in the three different xexp[ik(~lXO + ~2Yo + ~3Z0»)+UH1(X,y, z) + O[(kR)-2j, 

cases 0<~3<1, ~3=0, and ~3=1. (4.5) 

A. Approximations valid over the hemisphere 0 < t3 < 1 

To approximate uH(x, y, z), we apply the notation and 
definitions used in (3.4)-(3.9) with Zo replaced by z. 
The only critical point of the integral UH2 (X, y, z), where 
the integrand is nonzero, is the interior stationary point 
p s = ~1> q s = ~2' Hence, the asymptotic behavior of 
UH2(X, y, z) is identical to that of u(x, y, z) as given in 
(2.51) and (2.55). It follows then from (1. 1) that the 
asymptotic behavior of ur(x, y, z) is identical to that of 
-UHi(X,y,Z). 

The integral uHl (x, y, z) is dealt with in the same way 
as was uHl (x, y, zo) in Sec. 3. The change of variables of 
integration given in (2.21)-(2.22) is made, yielding an 
integral identical to the one in (3,12) except that the 
phase function f(a, (3) [in (3.13») is replaced by 

f(a, [3) = sine sina cos(f3 - cp) + cose cosa, (4.1) 

This change in phase function does not affect the location 
of the critical points; they are still as shown in Fig. 4. 
Again, the only critical points that contribute to the 
asymptotic behavior are the points a and b. In this case, 
however, the critical pOints a and b are no longer ordi
nary stationary points where both of/oa and iJf/iJf3 van
ish, Instead, they are nonstationary pOints on the bound
ary where the lines of constant f( a, f3) are tangent to the 
boundary (L eo, points on the boundary a = 1T /2 where 
iJf/Clf3 = OJ. 

Such critical points are treated in detail in Sec. 4.1 
of ReI. 10 for the case when the amplitude function 
A'(a, [3) is an analytic function of a, {3. The case when 
A / (a, (3) has only a finite number of partial derivatives 
is discussed in Ref. 9. Braun9 gives the form of the 
asymptotic sequence, but does not determine the number 
of terms that can be obtained if A'(a, (3) has partial de
rivatives up to order N or give an estimate of the order 
of the remainder term. It can be shown, however1S that 
the first term in the series plus a remainder term that 
is O[(kR)-2] can be obtained if N~ 8. 

As in the previous sections, the expression for the 
coefficient of the first term can be obtained by applying 
the results in Ref. 10, The result for UHi(X,y,Z) is 

UHi (x, y, z) = (21T /sine)i /2 [exp(i7T / 4) /(kR)3 /2 cose] 

x[V(~{, ~~, 0) exp[ik(xo~; +Yo~~)]exp(ikR sine) 

+ iV(- 4~' - ~~, 0) exp[ - ikCxo~{ + :Vo<~)] 

x exp( - ikR sine) ] + o[ (kR)-2], 

where 

~; = ~dsine = coscp, 

~~= ~2/sine=sincp, 

Hence, the desired asymptotic approximations for 
UH(X,y,Z) andur(x,:v,z) are forN~8 
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(4.2) 

(4.3) 

(4.4) 

Ur(X, y, z) = - UHi (x, y, z) + O[(kR)-2], (4.6) 

as kR - 00 with fixed ~1o ~2' k and with UH i (x, y, z) given 
by (4.2). 

The results show that UrCy, y, z) is of higher order in 
(kR)-l than is uH(x, Y, z). Hence, we have provided a ri
gorous justification for neglecting ur(x, y, z) compared 
to uH(x, y, z) for large kR when 0 < <3 < 1. The results 
show also that ur(x, y, z) is of even higher order in 
(kRti compared to UH(X, y, z) when V(p, q, 0) is zero as 
is the case when V(p, q, m) is of the form given in (1. 13). 

B. Approximations valid on the plane z = Zo (b = 0) 

The asymptotic approximations required for this case 
were obtained in Sec. 3 as part of the analysis of 
u(x, y, zo). In this section, we present the dominant terms 
explicitly. The asymptotic approximation of uH(x, .1', z 0) 
is given in (3.7), (3.10), and (3.15)-(3.18) with the co
efficients in the series given in Appendix B, (BI0)-(B11). 
Combining these expressions and evaluating the first 
term, we find for N? 8 

llH(X,_y,20) 

= - (i1T /kR){exp(ikR) V( ~b ~2' 0) exp[ik(xO~l + YO~2)] 

- exp(- ikR) V(- ~i' - ~2' 0) exp[ - ik(xO~l + YO~2) 1} 

+ O[(kR)-3 /2]. (4.7) 

Similarly, combining (3.7), (3.11), (3.27), (3.28), and 
(3.30), we find for N? 8 

ur(x, 1', zo) 

= - (i1T/!?R){exp(ikR)V(~l' ~2' 0) exp[il?(xO~l +1'0~2)] 

+exp(- il?R)V(- ~l' - ~2' 0) exp[- i!?(XO~l +\'OI02)]} 

+ O[(!?R)-3 /2] (4.8) 

as kR-oo with fixed ~1' ~2' k. We see that in this case, 
uH(x,y,zo) and ur(x,y,zo) are of the same order in (kR)-l, 
so that ur (x, y, z 0) cannot be neglected compared to 
uH(x, v, zo). 

In the special case when V(p, q, IN) is of the form given 
in (1. 13), the coefficients given in (4.7)-(4.8) vanish. 
Hence, to obtain the dominant term in that case, we 
must calculate the first-order term given in (3.18) > The 
result is for N? 10 

llH(X, y, zo) =- ur(x,y, zo) 

= [.f2ri /(kR)3 /2] exp(i1T / 4){ exp(ikR) 

x exp[ik(xO~l + YO~2)]WU1' ~2' 0) 

+ i exp(- ikR) exp[ - il.'(xo ~l + Yu ~2)] 

X w(- ~1' - ~2' OJ} + O[(kR)-21 (4.9) 

as !?R _00 with fixed!?, t 1 , ~2' Again uH(x, y, zo) and 
ur(x, y, zo) are of the same order in (/?R)-t. Also, :ve ~ee 
that they are of lower order than u(X, 1', Z u) which IS gIVen 
in (3.36). 
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C. Approximations valid on the line x = xo , y == Yo 

(~3 = 1) 

In this case, UH(X, y, z) can be written 

UH(XO' Yo, z) = 102
< 10'/2 A(a, (3) exp[ik(z - zo) cosa]dad{3, 

where (4.10) 

A(a, (3) = V(p, q, m) exp[ik(pxo + qyo + mz o)] sina, 
(4.11) 

with p, q, m related to a, (3 by (2.21), (2.22), and (2.24). 
Since the phase function in (4.10) does not involve (3, 

the integral can be treated most simply by considering 
it to be a single integral of the form 

UH(XO, Yo, z) = 10< /2 A(QI) exp(il?R cosa) da, 

where 

(4.12) 

(4.13) 

and apply the method of stationary phase for single in
tegrals as given by ErdelyL 7 The contributions to the 
asymptotic behavior come from the end pOints of inte
gration a = 0 and a = 7T/2. The result for the dominant 
term is (for N? 4) 

lIH(X O, }'o, z) 

= - 27Ti[exp(il?R)/kR] V(O, 0,1) exp(il?zo) 

+ (i /l?R)A(7T/2) + O[ (kR)-3/2]. (4.14) 

Since the first term in (4.14) is the dominant term in 
the asymptotic approximation of u(xo, Yo, z), we have 
from (1. 1) 

(4.15) 

Hence, IlH (x 0' }' 0' z) and uI (x 0, J' 0, z) are of the same order 
in (l?R)-1 and in general uI(xO, Yo, z) cannot be neglected 
compared to lIH (x 0' Y II> z). In the special case, when 
V(p, q,lI1) is of the form given in (1. 13), however, A(7T/2) 
=0 and uI(xO,Yo,z) can be neglected compared to 
IIH(X O, l'O, z) for large 1?R. 

5. SUMMARY AND DISCUSSION 

In this section, we give a summary of our main re
sults to facilitate their application, and we discuss 
briefly their utility in some cases of interest when 
U(p, q) does not belong to TN' 

A. Summary of results 

Except where noted otherwise, all notation used here 
is defined in Sec. 1. The asymptotic approximations 
given are valid as l?R - 00 for fixed ~l> ~2' l? with N? 12. 
For less restrictive conditions on N in individual cases, 
see the text. 

The asymptotic behavior of u(x,}" z) is the same for 
all ~3 such that O.:s: ~3 .:s: 1 [cf. (3.35)], 

Il(X,.v, z) 
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= - 27Ti[exp(ikR)/1?R][1 + (i/21?R)L2] 

x exp[ik(~lXO + ~2.VO + ~3Z0) ]V(~i' ~2' ~3) + O[(l?R)-3], 

(5.1) 
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where L2 is a differential operator defined by (2.54). 

The asymptotic behavior of uH(x, y, z) depends on the 
value of ~3: 

(a) 0< ~3 < 1 [cf. (4.5)] 

UH(X, y, z) =u(x, y, z) +UHi (x, y, z) + O[(kR)-2], (5.2) 

where UHi (x,}" z) is a term of order (kR)-3/2 defined in 
(4.2), 

(b) ~3=0 [cf. (4.7)], 

UH(X, y, zo) =tu(x,}" zo) + i7T[exp(- ikR)/kR] 

x V(- ~1' - ~2' 0) exp[ - ik (XO~l + YO~2)] 

+ O[(kR)-3/2], (5.3) 

(c) ~3=1 [cf. (4.14)], 

uH(xO, Yo, z ) =u(xo, Yo, z) + (i/kR) 102
< A(a, (3) d{3 

+O[(kR)-3/2], (5.4) 

where A(a, (3) is given in (4.11). 

The asymptotic behavior of uI(x, y, z) is obtained from 
(5.1)-(5.4) by applying UI(X, y, z) =u(x, y, z) - uH(x, y, z). 

The results show that ur(x, y, z) is negligible compared 
to uH(x, y, z) for large 1?R in case (a), but not in cases 
(b) and (c). 

In the special case when V(p,q, m) is of the form given 
in (1. 13), the first terms in (5.1) and (5.3) vanish. In 
that case, the dominant terms are given by (3.36) and 
(4.9). 

B. Utility of results when U(p,q) does not belong to TN 

In some applications of angular-spectrum represen
tations, integrals of the form of u(x,}" z) are obtained 
with U(p, q) not belonging to TN because of the presence 
of isolated Singularities in the integrand. For example, 
see the analyses of the reflection and refraction of non
planar waves at a plane interface in Gasper20 and 
Stamnes. 21 The problem of obtaining asymptotic expan
sions of such integrals can be approached by using a 
neutralizer to isolate the singularity. The resulting in
tegral that does not contain the singularity can be ap
prOXimated by using the results of this paper since in 
that case U(p, q) E TN' This is one reason for allowing 
the functions V(p, q, s) in the definition of TN' to be non
analytic because the presence of the neutralizer makes 
the function nonanalytic. (A neutralizer can not be an 
analytiC function. ) 

In the remaining integral containing the singularity, 
U(p, q) does not belong to TN and must be dealt with in 
some other way. In some cases, however, such as in 
the reflection and refraction problems just cited, it is 
possible to change the variables of integration to trans
form the integral into one that can be approximated by 
the methods of this paper. 
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APPENDIX A 

As mentioned in Seco 3, we have found formula (47) 
in Ref. 10, to be incorrect, We derive the correct 
formula in this appendix. The notation of Ref. 10 is used 
here without change except that we consistently make 
use of gamma functions rather than factorials, so that 
we use r(z + 1) where Jones and Kline10 uses z!, Addi
tional subscripts and superscripts are employed to in
dicate the integral and stationary point under consider
ation when we apply the result in Appendix B, 

We first treat the case when F 2 ,o and F O,2 are positive. 
Then the expression for ho(t - Fo,o) is given by (32) of 
ReL 10, except that the limits of integration are from 
-rr/2 to rr/2, 

The integral and rth derivative appearing in (AI) can be 
expressed in terms of the gamma functions as follows 

f ' /2 sin" ->-T) cosAT) dT) 

-,/2 

= '-[1-1_ (_ 1)" _A {[t(j-L - A + 1)]r[HA + 1)] (A2) 
2 r(hl+l) > 

r(t J.L + 1) (t F )" /2_r 
~r r(h_-r+1)- 0,0 
CI ( )" /2_ 
at t - Fo,u - if J.L is odd or /1 is even and /1/2? 1', 

o 
if /1 is even and l' > /1/2. (A3) 

Since the integral in (A2) vanishes if /1 - A is odd, we 
have two possibilities to consider, either il and A both 
even or J-1 and A both odd. Let h~l)(t - Fo,o) and h~2) 
(t - F 0,0) be the contributions to hoU - Fa ,0) due to even il, 
A and to odd il, A respectively. Similarly, let J(l) and 
J(2) be the contributions to the integral J due to h~l) 
(t-Fu,o) and hG2)(t-Fo,0) respectively. 

We consider hJll(t - Fo,o) and J(l) first, Taking J.L and 
A to be even, substituting (A2) and (A3) into (AI), and 
changing summation variables so that il, A become 2/1, 
2;\, we have 

h(l)(t-F )=[1/2(F F )1/2]tt (t-Fo,o),,-r ° 0,0 2,00,2 Y:Ol':yr(I1-1'+l) 

p=o.=o 

Now, let /1- 1'= 111. The coefficient of [l/r(111 + 1) 1 
x (t - Fu,u)m is 

(A4) 

1 OC, r+;n 1 l' m+r-~ 
2(F F )1/2~L [r(A+2")r(nz+1'-A+ 2 )/IS,oFo,2 ] 

2,0 0,2 1''''-0 ;\::;0 
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2>" 2(m+r-'\) 

X z= L~ G2A _P ,2m+2r-2A-qFr ,P ,q' 
P=U q =0 
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Since F{(X, Y) = [Fl~y2 + F21XZy + ... ]r, it is clear that 
Fr ,P " vanishes unless p + q ~ 31'. Hence, we have 31' 
.-,::(p+q)max=2m+2r, which implies that Fr,p,.*O only 
when 1'.-,::2111. The expression for h~)(t-Fo,o) becomes, 
therefore, 

(1)( )_ 1 ~ (t_Fo,o)m 
ho t-Fo,o -2(F F )112~ r(m+l) 

2,0 0,2 m-O 

x~ ';f,m r(A +t)r(m +1'- A +t) (1) 

LJ LJ Po F m+r_X 5, 
r=O 1.'0 2.0 0,2 

(A5) 

21. 2(m+r->-) 
5(1)='" '" G F LJ U 2A-P .2m+2r-ZA..q r ,P ,q' (A6) 

p=o • =0 

Applying Erdelyi's theorem (see Sec. 1 of Ref. 10), we 
have immediately 

J~) - exp(ikFo,o) t exp(i(11/2)(m + 1)] 
2IF2,oFo,21112m.o km+1 

2m r+m ( ') (+ 1 ) '>' '" r A+2" r m r- A+ 2 5(1) 
X LJ LJ F:; m+r_X ' 

r=OA·O 20F 02 , , 
(A 7) 

Next we consider h~2)(t-Fo,0) andJ(Z). Taking 11, A 
to be odd, substituting (A2) and (A3) into (AI), and 
changing summation variables 11, A to 2/1 + 1, 2A + 1, 
we have 

21.+12(,,-1.) 

X 6 L GZA+I_P,2I'_2A..qFr,p,.. (A8) 
p:O .:0 

If we now let 11 - l' = m and note that in this case Fr ,P " 

vanishes unless 31''-':: (P + q)rnax = 2m + 21' + 1, i. e., unless 
0.-,:: 1''-':: 2m + 1, we may obtain 

1 ~ (t_Fo,0)m+l/2 
lz6Z)(t-Fo,o) 2(F F )1722:. (+3) 

2,0 0,2 m=O r 111 2 

(A9) 

where 
21.+1 2(m+r-A) 

5(2) = 0 ~ G2X+1_P,2m<zr_2A..qFr ,p,.' (A10) 
p=O .=0 

Application of Erdelyi's theorem then yields 

J(2)_exp(ikFo,o) ~ exp[i(rr/2)(m +i)J 
2 1F F III2LJ l-.m+3/2 

2
1
0 0;2 m=O f( 

2m<1 r+m r(111 + l' - A + t )r(A + 1) (2) 

x L 6 FA'li2 F m•r _X 5. 
1'=0 '\=0 2,0 0,2 

(All) 

The total contribution to J due to a stationary point on 
the boundary is the sum J(l) + J(2), with J(l) and J(2) as 
given by (A 7) and (A 11). 

The expressions (A7) and (All) are both derived un
der the condition that F2,o > 0 and F O•2 > O. If Fz,u <- 0 
and F O•2 < 0, then the sign of (A 7) and (A 11) should be 
reversed. If the stationary point is a saddlepoint such 
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thatfx,./yy-fxy2<0 and hence, F 2 ,0 and F O,2 have opposite 
signs, then IF2,oFo,211/2 in (A7) and (All) should be re
placed by i1F20F0211/2. (In Sec. 6.2 of Ref. 10 it is said 
that IF20F0211/2 should be replaced by IF20F0211/2/i in 
this case, but this is easily seen to give the wrong re
sult for the first-order term.) 

APPENDIX B 
In this appendix, we determine the relationship be

tween the coefficients in the expansion of UHl (x, y, z 0) and 
the coefficients in the expansion of un (x, y, z 0)' As ex
plained in the text, we can apply the results of Ref. 10 
for that purpose even though the analysis of Ref. 10 is 
valid only for more restricted amplitude fUnctions than 
those considered in the text. We simply treat the case 
when (in accordance with the restrictions imposed in 
Ref. 10) V(P, q, s) is an analytic function of p, q, and s, 
knowing that the functional dependence of the coefficients 
is the same for all U(p, q) in TN' For the convenience of 
the reader, we use the notation of Ref. 10, i. e., the 
integration variables are denoted x, y and the amplitude 
and phase functions of the integrals are denoted g(x, y) 
and fix, y) respectively. Additional subscripts and super
scripts are used to indicate the integral and stationary 
point under consideration. The point of observation is 
denoted (xab, Yab' z) in order to avoid confusion with the 
integration variables. We begin by considering UHl as 
given by (3.12), 

UH1 = 1880+20 J'/2 gH(X,y) exp[ikRfH(x,y»)dxdy, 
o xi 

where 

fH(X, y) = sinx cos(y - cp), coscp = ~l' sincp = ~2' 
gH(X, y) = V(P, q, rn) exp[ik(pxo + qyo + rnz o)] sinx, 

p = sin'\: cosy, q = sinx siny, nz = cosx, 

R = [(xab - XO)2 + (Yab - YO)2)1/2. 

(B1) 

(B2) 

(B3) 

(B4) 

In writing (B3), we have omitted the neutralizer, it being 
understood that the boundary x = x{ gives no contribu
tions. At the boundary x = 7T/2, where the critical points 
are, the neutralizer equals one. 

The phase function fH(X, 5') has two stationary pOints, 
point a at x ~ 7T/2, Y = cp and point b at x =1T/2, y = <p + 1T. 
In what follows, we write f~a~," and git~," to represent 
the coefficients of the terms (x - 1T/2)m(y - cp)" in the 
Taylor series expansions for fH and gH respectively 
centered at point a, Similarly, we write fj}'~," and gj}'~," 
for the coefficients in the corresponding expansions 
centered at point b. Application of the results of Jones 
and Kline10 requires certain transformations in the in
tegration variables. For the point j (where j is a or b), 
the variables of integration x,y are changed toX}/), 
y~j) and the functions fH, gH are transformed to F}/), 
G}/). The coefficients of the terms [x}/))m[y#))" in the 
Taylor series expansion for F}/) and G}/) centered at the 
origin are denoted F}/~ " and G}/~ n respectively. Similar
ly, the symbol F}/y),m," is used to denote the coefficients 
of the terms [x~j))m [y}/)]n in the Taylor series expansion 
of the quantity [(-1)Y /Y! ][FWr where FW=F}/)-F}/~ ° 

F U ) [X U )]2 FU) [y(j)]2 ' 
- H2,0 H - HO,2 H • 

The coordinate transformations required in the pre
sent case are of a very simple nature. First of all, 
since the second-order cross-derivatives of the phase 
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function vanish at the stationary points, no rotation of 
coordinate axes is needed. Secondly, since the boundary 
consists of straight lines parallel to the x or y axis, the 
second transformation of Ref. 10 (to make ~01 vanish) is 
unnecessary. The appropriate transformation for point 
a is therefore 

(B5) 

and the transformation for point b is obtained by re
placing cp by cp +7T in (B5). From (B5), it follows imme
diately that 

Making use of the Taylor series expansions of sinx and 
cosx centered at point a and b, we find 

Ai) _Aj) -0 
} H2P+l

1
Q - JHp,2Ii +1 - , 

f},a) - fib) _ (- l)P+Q 
H2P,2Q-- H2P,2Q-(2p)!(2q)! 

It follows, then, from (B6) and (B7) that 

and, in particular, that 

(- l)P+Q 

(2p)! (2q)! 

F~a~,o = 1, F~ai,o = F~a~,2 = - t 

(B7) 

(BB) 

(B9) 

We are now in a position to apply the results of Appen
dix A to obtain the desired coefficients. Substituting 
(B9) into (A 7) and (All) and taking into account the com
ment concerning sign in the last paragraph of Appendix 
A, we obtain the following expressions for the coeffi
cients in the expansions in (3.17)-(3.18): 

B}/;,l(cp) = exp[i(7T/2)(rn + 1») 

xiS'Yfr(A +t)r(rn + Y- A+t) K(il)SU1) 
Y=O~=O (t)m+Y H H , 

(B10) 

B}/;/(cp) = exp[i(7T/2)(m + 3/2)) 

X r;1 Yf rCA + l)r(m + Y- A +t) K(2)SU2) 
r=O x=o (~)m+r+i/2 H H , 

(Bll) 

where S}/1), S}/2) are defined by (A6), (A10), with G and 
F replaced by G}/) and F~j), and where K~al) =(-l)m+Y+l, 
Kka2 ) = (_1)m+Y+1/2, and Kkb1 ) =K~b2) = 1. 

We now proceed to consider un as given by (3.23), 

Un = Ia:o+
2
• foxl gI (x, y) exp[ikRJI: (x, y)) dx dy, (B12) 

where 

JI: (x, y) = COSM cos(y - cp), (B13) 

gI(X, y) = - iV(P, q, rn) exp[ik(pxo + qyo + mz 0)] COSM, 

(B14) 

p = COSM cosy, q = COSM siny, 

m=isinM. 
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The neutralizer has again been dropped for the same 
reasons as before. The two stationary points a and b 
are located at x = 0, y = rp and x = 0, y = rp + 1T. In what 
follows, we use the same notation as above W P '1 H re
placed by I. 

The coordinate transformations for a are given by 

(B16) 

and the transformation for point b is obtained by re
placing rp by rp + 1T in (B16). We immediately have 

(B17) 

Making use of the Taylor series expansions of coshx, 
siny, cosy, we find the expansion coefficients 

F(j) F(j) -0 j(j) -( l)PF(j) JI2P+l,q=J[P,2o+l-' 12P,2o- - JH2P,2o' (B1S) 

It follows from (B17) and (B1S), that 

F}~~+l ,q = F}~~2o+l = 0, F}~,2o = .ti~~ ,20 = (- l)PfJb, 20 

(B19) 

and in particular that 

(B20) 

Substituting (B20) into (A 7) and (A 11) and taking into 
account the fact that the points a and bare saddlepoints, 
we find that the expressions for the coefficients B}i,!. )(rp) 
(with j = a, band l = 1,2) are identical to those for 
B~j~)(rp) in (B10)-(B11), except that K}/l) is replaced 
by K}j!) where K}"l)=i(_lY'K~al), K/a2 )=_ (_1)AK~a2), 

Kr) = - i(_l)AK})'l), and Kr) = - (_l)AK})'2). 

To obtain the asymptotic behavior of u(x, y, zo), we 
must add the asymptotic expansions of u~f), U~~2), uiN), 
U})'12J, uJ1l), uJ12), uitl ) and ug2). Since the terms in 
the asymptotic expansions of u }/ll) (with j = a, band l 
= 1,2) are identical to those of Ujil) apart from the co
efficients B}/!) and B}i,!. ), the asymptotic approximation 
of u(x, y, zo) becomes the sum of four series, each of 
which has coefficients of the form B}/~) + B}i,!.). Hence, 
we are interested in the following quantities: 

2~r~r(A+t)r(m +r- A+t) K(al) 
X L.J L.J (1 )m+r H 

roO >-=0 ::; 

(B21) 

B~b~) + B}';;) 

.. 2mr+mr(A+t)r(11I+r_A+t) 
=exp[z(1T/2)(m + l)]E).~ (~)m+r 

B~J!) + B};:) 

2m +l r+m r(A+1)r(m+r_A+t) (J2) 
=exp[i(1T/2)(m +1)] ~ ~ (1)m+r+li2 KH 

roO >'=0 2 

(B23) 
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The quantities in the final square brackets [ ] in (B21)
(B23) can be simplified by comparing the products 
G}/J._p ,2m+2r-2A-<lF~j/,p ,q, and GJ/2~+1_P ,2m+2r_2A-<lFJ/r),p ,q to the 
corresponding products with H replaced by 1. 

We begin by considering the terms F://,p,q with j = a, b 
and J=H,I. We have 

(B24) 

Hence, [r! /(- 1)'] FY/,p,q is a sum of terms, each of 
which is a product of r factors, FY~,n' with various val
ues of m, n. In anyone term, the sum of the indices 
labeled m must be p, and the sum of the indices labeled 
n must be q. Hence, it follows from (B6) that each term 
in [r! /(- l)r]F}/r),p,q is the product of (- l)p+q with r fac
tors, fJ/~,n' Similarly it follows from (B17) and (B19) 
that if we replace H by I in the expression for [r! /(- 1)'] 
XF}//,p,q, each term is unchanged except that the factor 
(_ l)P+O becomes (_ l)P /2. Hence we have 

F<i) - ( 1) (P /2)+0 F<i) 
Hr,p,q - - Ir,p,Q· (B25) 

Also, we note that if p or q is odd, then each term in 
the expression for [r! /(- l)']F}//,p,q contains at least one 
factor F}/~,n with odd 111 or n. Since according to (B7), 
any such factor is zero, it follows that 

FY/,P,2o+l = FY/,2P+l ,q = O. (B26) 

Hence, we need consider only even p, q. (B25) becomes 

FJ//'2P,2o=(-1)PFg: 2P ,2o' (B27) 

Next we compare the coefficients G}/~,n and GJ~),n' 
From (B6) and (B17), we have 

G(j) g(j) 

1/,),n = (- l)m+n 1J~,n . 
Glm,n {{1m," 

(B2S) 

The quantity {{Y~,n (with J=H,J) is proportional (with 
proportionality constant independent of J and j) to 
am+ngJ /axmay" evaluated at point j. Consequently, the 
ratios appearing in (B2S) can be obtained by finding the 
ratios of the corresponding partial derivatives. To that 
end, we rewrite (B3) and (B14) as 

{{H(X, y) = B(SHX, CHX, Sy, C y), 

&(x, y) = (l/i)B(SIX' Clx> Sy, Cy), 

where 

SHX = sinx, CHx = COSX , SIx = coshX, 

and (with J = H, 1) 

(B29) 

(B30) 

(B31) 

(B32) 

B(SJx, CJ x> Sy, C) = V(p, q, /17) exp[ik(Pxo + m'u + 11/ 2 u) J 

xSJx> (B33) 

with 
p=SJxCy, q=SJXCy, 11I=CJx ' (B34) 

In terms of the new variables, the points a and b are the 
points SJx=l, CJx=O, Sy=sinrp, Cy=cosrp andSJx =l, 
CJx=O, Sy=sin(rp+1T), Cy=COS(rp+1T), respectively. 
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Now let Q be the set of all pairs of functions A H, AI 
of the form 

AH =A(SHX, CHx, Sy, C), 

AI =A(SIX' Crx, Sy, Cy), 

(B35) 

(B36) 

where A(SJx, CJx , SyC) has continuous partial derivatives 
of all orders (with respect to SJx, CJx, Sy, Cy treated as 
independent variables) at pOints a and b. Then, we have 

(B37) 

aAr _ 1 ft aAr aAr ) ax -i ,Crx aSh - Srxax . (B38) 

Hence, the pair aAH/aX, iaAr/ax belongs to Q. Repeti
tion of the above procedure m times shows that the pair 
amAH/axm, imamAr/Clxm also belongs to Q. Next, byap
plying the same procedure with the x differentiation 
replaced by y differentiation we find that the pair 
am+nAH/aXmayn, imam+nAr/axmayn belongs to Q. Finally, 
we note that if a pair of functions belongs to Q, then the 
functions in the pair are equal to each other at point a 
and point b. Hence, we have 

am+nAH .m am+nAr 
---=z ---axmayn axmayn (B39) 

at points a and b. Since, according to (B29)-(B30), the 
pair gH(X,y), igr(x,y) belongs to Q, it follows from 
(B39) that 

am+n am+n 

axmavngH(x, y) = im+l axmayn&(X, y) 

at points a and b. Hence (B28) becomes 

eU) =(_1)m+nim+1e(}) • 
Hmtn Im,n 

(B40) 

(B41) 

We are now ready to examine the terms SY1
) and 

S/2). By employing (B26) in (A6) and (A10), we have 

A m+r .. X 

SY1)=6,0 eN().-P),2(m+r-A..q)FY;,2P,a., 
p=o .=0 

). m+r_A 

SJi2> =6 6 eYi(A_p)+l,2(m+r_)...q)FY;,2P,a.' 
P=D .=0 

Combination of (B27) and (B41) yields 

F(j) e(J) _im+l( l)m+n+PF(}) e(i) 
Hr,2P,2fl Hrn,n- - IY,2P,2Il lm,no 

When we apply (B44) in (B42) and (B43), we find 

S}/l)=i(_l)ASjil), 

Sj/2)=(_1»).SP2) 

(B42) 

(B43) 

(B44) 

(B45) 

(B46) 

Finally, we substitute (B45)-(B46) into (B21)-(B23) to 
obtain 

(B47, 

B}/;') + B};;)= O. (B49) 

These equations are equivalent to (3.28)-(3.31), the 
results to be obtained in this appendix. 

APPENDIX C 

In this appendix we derive (3.34) of the text, i. e., we 
show that 
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lim Bn(£), cp) = 2B~-:)(cp). (C1) 
s·. /2 

The notation of the previous appendix, which is close to 
that of Jones and Kline10 is employed. 

Using (3.17), (A6), and (A 7) (with k replaced by kR) 
and taking account of the comment concerning sign in 
the last paragraph of Appendix A, we find that the co
efficients B~a;)(cp) are given by 

exp[ikR(FH(40) 0 - 1)] exp[i7T(n + 1)/2] BH(4:) (rn) = ~ 
"Y 2\F a) Fta) \112 H2,O HO,2 

~r+n r(A+i)r(n+r- A+i) 
xL.; 6 [Fta) f[Fta) ]n+r_X 

roO A=O H2,O HO,2 

2). 2(n+T-).) 
X6 6 e~a2Lp,2n+2r_2l...qF~a/,p,., (C2) 

p=o • 

where the phase and amplitude functions have the form 

fH(X,y) = sinxcos(y- cp) (C3) 

and 

gH(X, y) = V(sinx cosy, sinx siny, COSX) 

x exp[ik(xo sinx cosy + Yo sinx siny + Zo COSX)] 

xSinx, (C4) 

respectively (the constants F~al,j, Fkaj),m,n and eka,~ ,J are 
derived from the phase and amplitude functions by the 
procedure indicated in Ref. 10) and where R is defined 
by 

R == [(XOb - XO)2 + (YOb _ Yo)2]1 /2, (C5) 

the point (X Ob, Yob' z) being the point of observation. 

The coefficient Bn(l), cp), on the other hand, may be 
found using (2.51) of the text and (3.4) of Ref. 10 (with 
the factorials replaced by r functions, k replaced by 
kR' and the overall sign reversed since F 2 ,o < 0 and 
F O,2 > 0 in the present instance); they are given by 

B (£) )_ exp[ikR'(Fo.o-1)]exp[i(7T/2)(n+1)] 
n ,cp-- \F F \l/2 

2vO 0,2 

~,~~r(A+t)r(n+r- A+t) 
XLJLJ ~ +r~ 

roO ).=0 ~,OFO,2 

2). 2 (n+r-A) 
xL: 6 e2l._p,2n+2r_2l...qFr ,p,., 

p=o .=0 
(C6) 

where in this case, the phase and amplitude functions 
may be expressed in the form 

f(x, y) = sin£) sinx cos(y - cp) + cos£) siny (C7) 

and 

g(x, y) == V(sinx cosy, sinx siny, cosx) 

x exp[ik(xo sinx cosy + Yo sinx siny + Zo cosx)sin.;x·], 

(C8) 

respectively, and 

R' == [(XOb - xo)2 + (YOb - YO)2 + (z - ZO)2]1I2. (C9) 

In writing (C4) and (C8), we have omitted the neu-
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tralizers for the same reason as given in Appendix B. 
We have also taken into account, in writing (C2) and 
(C6), that the stationary point under consideration is, 
in both cases, a relative maximum. 

A comparison of (C4) and (CS) shows that 

g(x, y) ==gH(X, y), 

while a comparison of (C3) and (C7) yields 

lim f(x, y) = fH(X, y). 
B -. (2 

(C10) 

(Cll) 

From (C4) and (CS) and the definition of gm," and g~a~," 
we may obtain 

(C12) 

similarly using (C3), (C7), and the definition of fm," and 
f~a~," we find that 

limfm,n(e, cp) 
B -. (2 

1 a m+'1(X, y) I 
m!n! axmay" x>ii,>.~ 

(C13) 

It should be noted that gm," is a function of e since the 
derivatives are evaluated at the stationary point (x == e, 
y == cp) whereas fm,n is a function of e both because of 
the explicit dependence of f(x, y) on e and because the 
derivatives are evaluated at the stationary point, 

It may also be seen immediately that since z - z ° as 
e - 7T /2, we have 

lim R'==R. 
B -. 12 

(C14) 

It follows readily from (C7) that the second-order cross
derivative of f(x, y) vanishes at the stationary point, 
i. e., a2{/oxay I x>ii ,>'~ == O. The phase function f(x, y) is 
therefore already in the form given by (30) of Ref. 10 
and so we have 

f m,n( e, cp) = F m,n( e, cp), gm,n(8, cp) == Gm,n(e, cp), (C15) 

On the other hand we find directly from (B6) that 

Ji/~.n<cp) == (- 1) m+nF~a~,n(CP)' g~a~,n(CP) = (_l)m+"GJ/~,"(cp). 
(C16) 

If we now use (C12), (C13), (C15) and (C16), we obtain 

(C17) 

and 

(C1S) 

We know from (BS) that F~a~,"(cp) vanishes unless m and 
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n are even; therefore, by (C17) the same statement 
holds for limo_'/2Fm,"(e, cp), and we have 

(C19) 

Because of the definition of Fr ,m," and F~~),m,n' it follows 
from the last equation that 

lim Fr 2P •• (e, cp) =F~a,.> 2P •• (cp), 
8 ~1'1' /2, • .UI • ,UoI 

(C20) 

the terms with odd subscripts in either of the last two 
places being zero. We may now see from the form of 
(C2) and (C6) that Gm,n and G~a~,n contribute to these ex
pressions only when m and n are even. In this case, we 
have from (C1S) 

(C21) 

Finally, using (C14), (C19), (C20), and (C21) in (C2) 
and (C6), we obtain 

lim B"(8, cp) == 2B~a;)(cp), (C22) 
8-./2 

which was to be proved. 

*Research supported by the U. S. Air Force Office of 
Scientific Research and the Army Research Office (Durham). 
A summary of the main result obtained herein is presented 
inG.C. Sherman, J.J. Stamnes, A.J. Devaney, and E. 
Lalor, Opt. Commun. 8, 271 (1973). 

tPresent affiliation: Norwegian Defense Research Establish
ment, Division for Electronics, P.O. Box 25,2007 Kjeller, 
Norway. 

lpresent affiliation: National Science Council, St. Martin's 
House, Waterloo Road, Dublin 4, Ireland. 

IC. J. Bouwkamp, Rep. Prog. Phys. 17, 39 (1954). 
2E. Lalor, J. Opt. Soc. Am. 58, 1235 (1968). 
3A, J. Devaney and G. C. Sherman, SIAM Rev. 15, 765 (1973). 
4K. Miyamoto and E. Woif, J. Opt. Soc. Am. 52, 615 (1962). 
5H. M. Nussenzveig, An. Acad. Bras. Cienc. 31, 515 (1959). 
6J. G. van der Corput, Compos. Math. 1, 15 (1934). 
lA. Erdelyi, J. Soc. Ind. Appl. Math. 3, 17 (1955). 
BJ. Focke, Ber. Verh. Saechs. Akad. Wiss. Leipzig, 101, 
1 (1954). 

9G, Braun, Acta Phys. Austriaca 10, 8 (1956). 
IOn.S. Jones and M. Kline, J. Math. Phys. 37, 1 (1958). 
!IN. Chako, J. !nst. Math. Its Appi. I, 372 (1965). 
12A. Banos, Dipole Radiation in the Presence of a Conducting 

Half-Space (Pergamon, N. Y., 1966). 
13p. C. Clemmow, Plane Wave Spectrum Representation of 

Electromagnetic Fields (Pergamon, N. Y., 1966). 
14G. Tyras, Radiation and Propagation of Electromagnetic 

Waves (Academic, N. Y., 1969). 
15A. Banos, Selected Topics on Asymptotic Methods, lecture 

notes available from Dept. of Physics, University of Califor
nia at Los Angeles, 1969. 

16p. M. Morse and H. Feshbach, Methods of Theoretical 
Physics (McGraw-Hill, N. Y., 1953), pp. 1539-40. 

1l Hans Bremermann, Distributions, Complex Variables and 
Fourier Transforms (Addison-Wesley, Reading, Mass. , 
1965), Sec. 3.3-3.4. 

1BJ. J. Stamnes and G. C. Sherman, to be published. 
19G.C. Sherman. Radio Sci. 8, 811 (1973). 
20J. Gasper, M. S. Thesis, University of Rochester, 1972. 
21J.J. Stamnes, Ph.D. Thesis, University of Rochester, 

1974. 

Sherman, Stamnes. and Lalor 776 



                                                                                                                                    

Geometry of hyperspace. I*t 
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Hyperspace is heuristic~lly de~ned as an (infinitely dimensional) manifold of all spacelike hypersurfaces 
embedded In a gIven ~emanman spacetime. The Riemannian structure (f}1, £) of spacetime induces a rich 
geometncal structure In hyperspace. Part of that structure, especially the moving normal frames in 
hyperspace. Lie derivatives, and symmetrical V and asymmetrical V covariant hyperderivatives, are 
studIed In deta~l. The. formalism introduced in this paper sets the stage for the geometrical study of 
hypersurface klnemattcs and dynamics of general tensor fields with derivative gravitational coupling, and of 
the DIrac-ADM geometrodynamics with such tensor sources, in the following papers. 

1. INTRODUCTION 

The dynamical evolution of a tensor field in a 
Riemannian spacetime is conveniently studied by cutting 
the spacetime manifold into a foliation of spacelike 
hypersurfaces, projecting the tensor field into tangen
tial and normal directions to the hypersurfaces, and 
following how these projections change from one hyper
surface to another. The same method can be used for 
studying the evolution of the geometry itself. The evolu
tion is then concisely described in terms of the gen
eralized canonical formalism. Such an approach to field 
dynamics was initiated by Diract and by Arnowitt, Deser, 
and Misner (ADM),2 who applied it to the gravitational 
field and to simple tensor fields with nonderivative 
gravitational coupling (the scalar and the electromag
netic fields). The general theory of tensor fields with a 
derivative gravitational coupling was never fully de
veloped along these lines. 

Both Dirac and ADM use a coordinate-dependent 
language,3 in which the hypersurfaces in the foliation 
are characterized as the coordinate hypersurfaces 
T=Xo=const in a spacetime coordinate system X"', 
and the coordinates X a are used to label the points of 
the hyper surfaces. In such a language, the change of 
spacetime coordinates X'" - X ",' (r) induces the change 
of the foliation. The geometrical meaning of the Dirac
ADM field dynamics, which is essentially derived from 
the theory of embeddings, gets thus largely obscured. 

Even when one firmly sticks to the language of folia
tions and embeddings, the situation is not fully satis
factory. The foliation is picked out either by "coordi
nate conditions" (ADM), or by hand (Dirac). The full 
arbitrariness in the choice of foliation never finds its 
proper expression. In this connection, statements like 
"canonical formalism necessarily destroys the space
time covariance of the theory" are often heard. The 
terminology contrasting "the canonical theory" with 
"the covariant theory,,4 seems to point in the same di
rection, namely, that the canonical theory is not (at 
least "manifestly") covariant. Such feelings, however, 
are founded on a particular and rather unfortunate 
choice of formal language, rather than on the nature of 
the subject. 

In this paper, we propose a formalism which tries to 
avoid these shortcomings. 5 Its essence may be sum
marized by saying that the field dynamics is not proper
ly described as taking place in spacetime, or along a 
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single foliation of hypersurfaces drawn in spacetime 
but in hyperspace. Heuristically, hyperspace is the' 
(infinitely dimensional) manifold of all spacelike hyper
surfaces drawn in a given Riemannian spacetime. In it, 
all spacelike hyper surfaces are democratically put on 
the same footing. Foliation of spacelike hypersurfaces 
is a curve in hyperspace (though not every curve in 
hyperspace is a foliation, because the intersection of 
individual hyper surfaces is allowed for curves, but not 
for foliations). Infinitesimal deformation of a hyper
surface is a tangent vector to a curve in hyperspace. 
Proj ections of a tensor field parallel and perpendicular 
to a hypersurface form a fiber over this hypersurface. 
Hypersurjace dynamiCS studies how the field point in 
this fiber changes under the displacement of the base 
point in hyperspace. 

Hyperspace has a rich geometrical structure which is 
largely inherited from spacetime. In this paper, we ex
plore that part of the structure which is connected with 
the concepts of hyperspace, the tangent space to hyper
space, the covariant differentiation in hyperspace, and 
its extension to the "bundle of e-tensors. " In subse
quent papers, we build a general dynamical theory of 
tensor fields propagating in a given Riemannian space
time or coupled to that spacetime by Einstein's law of 
graVitation, as a dynamical theory of field projections 
in hyperspace. 

We start by summarizing our notation for any future 
reference (Sec. 2), as many analogous operations (like 
the Lie or the covariant derivatives) in different spaces 
which are introduced in our study (space, spacetime, 
the space of embeddings, hyperspace, the bundle of e
tensors) need to be distinguished from each other. In 
Sec. 3, we review the basiC material from the theory 
of embeddings (vectors tangent and normal to the hyper
surface, induced metric and affine connection, projec
tions of tensors II and 1 to the hyper surface, extrinsic 
curvature). In Sec. 4, we heutristically introduce the 
concepts of the space of embeddings [ as an infinitely 
dimensional manifold [ of all embeddings e which lead 
to a spacelike hypersurface in spacetime, and of 
hyperspace as the quotient space of [ by the group of 
space diffeomorphisms. We study the character of the 
t~ngent space Te([) to the space of embeddings, and de
flne the "normal C -basis" in Te(C), which leads to the 
standard lapse-shift decomposition of the deformation 
[-vector. In Sec. 5, we introduce the bundle of e-ten
sors over C. An e-tensor is essentially a field of 
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mixed spacetime-space tensors defined along an em
bedding and considered as a single object. Spacetime 
tensor fields intersected by an embedding and projected 
into tangential and normal directions to the hypersur
face are special examples of e-tensors. Lie brackets 
between two [-vectors are studied in Sec. 6. In particu
lar, the Lie brackets of any two [-vectors, lib and liax , 

from the normal [-basis, are evaluated, and it is shown 
that they close in the same way as the super-Hamilto
nian and supermomentum of a dynamical theory (com
pare with Ref. 6). In Sec. 7, we discuss another Lie
type operation, the derivative Lil of an e- tensor field 
along a space vector field. If this derivative vanishes, 
the e-tensor may be interpreted as a hypertensor, being 
the same for all embeddings which lead to the same 
hypersurface. Similarly, we get a criterion for an [
vector to be an H-vector, i. e., a tangent vector in 
hyperspace. Covariant differentiation of spacetime 
vectors directly induces a symmetrical covariant dif
ferentiation V in the space of embeddings, which can be 
extended from [-vector fields to e-tensor fields. More
over, due to its commutation with LN, this covariant 
derivative may be interpreted as a covariant derivative 
in hyperspaceo The covariant derivative V of the tan
gential and normal hyperfields is evaluated in Sec. 9. 
It characterizes the deformation of the normal hyper
basis under the deformation of the hypersurface. The 
normal deformations of the hyperbasis may be used to 
classify the deformations locally into "tilts" and "trans
lations" (Sec. 10). This is important later, in the hyper, 

2. NOTATION 

Manifold 

In • •• space manifold 

/rJ • .• spacetime manifold 

[ ... space of embeddings (Eq. (4.1)] 

Point 

XEIn 

H ... hyperspace (Eq. (4.3)] hEH 

surface kinematics of tensor fields, as the behavior of 
an e-field under the tilt shows whether the e-field can 
be interpreted as an intersection plus a projection of a 
spacetime tensor field. Hypersurface tilts lead to the 
terms in the field super-Hamiltonian which are nonlocal 
in the field momenta, and are closely connected with 
the spin energy-momentum tensor of the field. The in
duced covariant derivative V does not commute with the 
projections and with the raising and lowering of the 
space tensor indices. In Sec. 11, a new (nonsymmetri
cal) covariant derivative V is discussed, which has 
these desirable properties. This covariant derivative 
preserves the normal hyperbasis vectors and the space 
and spacetime metric tensors, considered as hyper
tenso~ fields. Either one of the covariant derivatives, 
V or V, helps to transfer the spacetime covariant 
derivatives of spacetime tensor fields into hyperspace 
derivatives of the field projections, which is the basic 
trick used when rewriting the spacetime field dynamics 
into the field dynamics in hyperspace. 

The formalism introduced in this paper is applied to 
the geometrical formulation of hypersurface kinematics 
and dynamics of general tensor fields with a derivative 
gravitational coupling, and of geometrodynamics with 
such tensor sources. This is the subject of the follow
ing papers, "Kinematics of Tensor Fields in Hyper
space (II), " "Dynamics of Tensor Fields in Hyperspace 
(III), " and "Tensor Sources in Geometrodynamics (IV). " 

Local coordinates, components, 
basis 

x a, a = 1,2,3 

X", a=0,1,2,3 

e" (xa) 

J(II1) ... differentiable functions on m (EJ(m), f=f(x) (round brackets indicate 
the function dependence) 

J([) ... differentiable functionals on [ fEJ([), f=f[e] (square brackets indi
cate the functional dependence) 

T "'lIZ) • •• tangent space to m at x 

T xU!1) • •• tangent space to /rJ at X 

Te([)' .• tangent space to [ at e 
(Sec. 4) 

T: (m) • •• cotangent space to m at x 

T'k(/rJ) • •• cotangent space to /rJ at X 

T! ([) ... cotangent space to [ at e 
(Sec. 4) 

Tx~(m) ... space of r-contravariant, 
s-covariant tensors to In at x 

Tx~(/rJ) ••• space of R-contravariant, 

X E T x(m) (tilde above the symbol) 

X E T x(/rJ) (bar above the symbol) 

NE Te([) (boldface) 

~E Tt(m) (tilde below the symbol) 

~E T'k(/rJ) (bar below the symbol) 

ME T!([) (boldface) 

XE Tx~(m) (tilde placed over the 
symbol for contravariant or mixed 
tensors, below the symbol for 
covariant tensors) 

XE Tx~(/rJ) (bar placed over the 
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A=Aao a 

X=A"'(Ja 

N = LE mN(x) J lie{x) =N ax Ii"" 

[Eq. (4.5)] 

~= Aarjxa 

~=Aa4X" 

M= LEmM(x) Lde(x) =}\!Iabcaxde"x 

[Eq. (4.20)] 
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S-covariant tensors to In at X 

T"g(m) .• o space of s-forms to m at x 

T x §(In) • .• space of S-forms to In at X 

symbol for contravariant or mixed 
tensors, below the symbol for 
covariant tensors) 

~E Tx~(m) (tilde below the symbol) 

~ E T x § (In) (bar below the symbol) 

For 3-forms to m and 4-forms to In, 
the form indices are often suppressed 
and the "densities" notation is used. 

Te~:;([)." fiber of e-tensors over C 
(Sec. 5) 

;\=;\""'a"'S'''b'''(x) 0", ....... 

T(m), etc. '" tangent bundle at m, 
etc. 

T (m), etc. '" (vector) fields over m, 
etc. 

Moving frames 

e* = oe(x) =e=e~dxa0 2", ... tangent vectors to the embedding e 
ax - -

Ii ... the unit normal to the embedding 

{Ii, !f} ... the normal basis in T X.e(x) (In) 

{n, e} ... {n(x) , !f(x)LE: m considered as a normal e-basis in Te ~:~([) 

{O"X' Oil"} or {Ob, Oax}." normal C -basis in Te(C) [Eq. (4.12)J 

Delta function 

[Eq. (5.2)J 

O(x, x') = i\x' = Ox abc x' ••• is considered as a scalar in the first and a scalar density in the second argument. The 
derivatives o,a(x,x') of the ° function are always taken with respect to the first argument. 

Metric 

[f ... metric tensor in m g . .. the determinant of t{ 

II: .. metric tensor in In 

g" ... (degenerate) metric tensor in C 
[Eqs. (8.13), (8.14)J 

!l . .• the Levi-Civita 3-form (density) 

7Jabe=g1/2oabe, 0abe'" the permutation symbol 

10 = 'f 1. .. the indicator of spacetime signature 
(10, 1, 1, 1). (Sec. 3) 

Algebraic operations 

!f . .. the extrinsic curvature of e E: C 

<~, ii) ... the inner product of a space form ~ with a space vector ji 

II J ~ = ~ L Ii . .. the inner product of a spacetime form ~ with a spacetime vector II 
1, II ••• normal and tangential projections of spacetime tensors [Eqs. (3.11)-(3.15)J 

0 ..• direct product 

( ) ( ] ... symmetrization and anti symmetrization brackets for a pair of (Latin or Greek) indices: 
;\(00) = t(Aab + Aba), A(ab] = ],(Aab - ;\ba) 

(ax ~ bx') . .• means: "The same term with the indices a, b and the points x, x' interchanged" 

Derivatives 

(a) Partial 

N = a if, N = a if, N = ON ••• directional derivatives 

ON = O'NxG '" directional derivative normal to the hypersurface 
.Lx 

0;= 0NaxG .,. directional derivative tangential to the hypersurface 
ax 

1>,... ••• directional derivative along a hypersurface tilt (Sec. 10) 
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Ii, ... directional derivative along a hypersurface translation (Sec. 10) 

,a ,0' ••• partial derivatives with respect to x a or XOI. 

(b) Lie brackets and Lie derivatives 

[ , ] ... Lie bracket between two space or spacetime vectors 

(, J ... Lie bracket between two {-vectors [Eq. (6.1)] 

LN' .. Lie derivative of a space tensor field along a space vector field N 

LN' •• Lie derivative of an e- tensor field along a space vector field N (Sec. 7) 

(c) Covariant derivatives 

v or ; ... covariant derivative with respect to the Riemannian affine structure in (/YI, tI) 

1'01. /lY(X), •. the Riemannian affine connection in (/YI, tI) 

/ ... the covariant derivative with respect to the Riemannian affine structure in (m,f[) 

yaz,c(x) .•• the Riemannian affine connection in (m,~) 

V ••• induced symmetrical covariant derivative in hyperspace (Sec. 8) 

rO"'"ax' rx" = 1'''' ar (x, x") 6(x, x') ..• the affine connection of V [Eq. (8.5)] 

* V ••• natural asymmetrical covariant derivative in hyperspace (Sec. 2) 

* * * rOl. X
ax' rx" == 1'''' a(x)rx" 6(x, x') . .• the spacetime leg of the affine connection of V [Eqs. (11.4), (11, 11)] 

~ axbX' rx" = ~ \(x)rx" 6(x, x') • •• the space leg of the affine connection of V [Eqs. (11. 4), (11. 6)] 

* * A'" ar(x, x') = 1''' 8r(x, x') - 1''' ar(x, x') . .• the hyperbitensor characterizing the torsion of V [Eq. (11. 11)] 

V N = VN=,NXO '" covariant derivative along a normal deformation { -vector 
Lx 

Vjj=VN=NaxO ••• covariant derivative along a tangential deformation {-vector ax 
V f . .. covariant derivative along a hyper surface tilt (Sec. 10) 

V, ..• covariant derivative along a hypersurface translation (Sec. 10) 

Integrals 

LEem[(x) = ixEem 4xaA 4x1>ArJ,xcfabc(x) •• • integral of a scalar density[ (a 3-form) over m 

L aEeR3 d3x . .• an ordinary Riemann integral over R3 

Al"xN"x • .• integration is implied over a label x repeated in the lower and upper index position (an analog to the 
summation convention). Here, e. g., M" abc(X) may be a spacetime vector-space scalar density, and 
N"x=N"'(x) a spacetime vector at X=e(x). 

3. EMBEDDINGS 
I 
similarly the local coordinates X "'(X) in/YI, the em-

The basic concepts of hypersurface field dynamics 
stem from the theory of embeddings, which we shall 
review in this section. Let us have an embedding 

e : xc-: m -XEe/YI, X=e(x) (3.1) 

of a three-dimensional manifold 111 (space) to a four
dimensional manifold /YI (spacetime). The image of m 
under the embedding e is a hypersurface in spacetime. 
A definite indentification of points x Ee m which are ad
jacent to the points X Ee /YI is implied by the term em
bedding; on the other hand, we have no particular iden
tification of points in mind when we speak about a hyper
surface. The hypersurface h may thus be conceived as 
an equivalence class of embeddings which differ from 
each other only by a three-dimensional diffeomorphism 
<P 

h = {e = eo <p \ C{JEe Diff(m}}. 
o 0 

(3.2) 

If we introduce the local coordinates xa(x) in m and 
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bedding e becomes locally characterized by four 
function e" (x·) of three coordinates x", 

X" =e"'(x·). (3.3) 

The two sets of functions, e'" (x·) and e" (x·'), 

X" = e'" (x·) and X'" = e'" (xb(X·' », (3.4) 

represent the same embedding in two different systems 
of coordinates. 

The mapping e: x Ee m - e (x) Ee /YI induces the map 
e* = ae(x)/ax of the tangent space Tx(m) into the tangent 
space T X=e(x) (/YI). We can consider e* as a vector in 
T x(/YI) and as a covector in Tx(m), writing 

e* = a~;x) = "if. (3.5) 

Introducing a coordinate basis a",=a/ax'" in Tx(/YI) and 
a cobasis of differentials rJ,x· in T~ (m), we have 

(3.6) 
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If ;11 is a Riemannian spacetime carrying the metric 
g, the mapping e induces a metric g on m, which we 
interpret as the intrinsic metric oCthe hypersurface, 

* (- -) {£=e !I. = !I. ~,~ • (3.7) 

In a spacetime with the Minkowskian signature 
(-,+,+,+), we say that the embedding e leads to a 
spacelike hypersurface h, if the space metric !{ is non
degenerate and positive definite [having thus the sig
nature (+, +, +)]. In field dynamics, the hypersurfaces 
are always taken to be spacelike hypersurfaces. How
ever, we also want to know how the indefinite 
Minkowskian signature refl'ects itself in the splitted 
1 + 3 formalism of the hypersurface dynamics. We 
thus leave undecided whether the signature of g is 
(-, +, +, +) or (+, +, +, +), introducing the indiCator 
E =± 1, which enables us to treat both signatures 
(E, +, +, +) at the same time. 

The metric g is used to bring the spacetime vectors 
X into a one-to-=one correspondence with spacetime co
vectors~, or, in the coordinate language, to lower the 
spacetime indices. The metric g serves the same pur
pose in the space m. We write -

(3.8) 

In particular, we can get different forms ~, e, of~. 
Applying a similar convention to tensors of hlgher 
order, we write g and g for the contravariant metric 
tensors in;11 and m, respectively. Such notation, how
ever, becomes impractical for higher order mixed 
tensors. We shall write - and - in the upper position 
in the case of mixed tensors; to keep track of their de
tailed character, the component notation is much more 
convenient than the abstract notation. 

The image e*(Tx(m» of the tangent space Tx(m) is 
a three-dimensional vector subspace of T X=e(x) (;11). A 
normal !!:. to the hypersurface is a nonzero covector 
!!:. E: T* X=e(x) (;11) which is orthogonal to all tangent vec
tors in e* (TAm», 

~J!!:.=o. 

We can normalize!!:. so that 

gV1,!!:.) =E; 

(3.9) 

(3.10) 

in spacetime, the normal to a spacelike hypersurface 
is a timelike vector. 

The spacetime vectors nand Q together form a basis 
in T X=e(x) (;11). An arbitrary spacetime vector X may be 
decomposed with respect to this basis as 

(3. 11) 

The components ~J. and "x" are a space scalar and a 
space vector, respectively, 

(3.12) 

In terms of local coordinates, 'X'I = Aaaa, and Eqs. (3.11) 
and (3. 12) read 

(3.13) 

Similarly, we can decompose an arbitrary spacetime 
tensor. In general, the abstract notation becomes more 
and more cumbersome for higher order tensors, and it 
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is then more convenient to use the local coordinates 
for bookkeeping purposes. As an example, we write 
down the decomposition formulas for a covariant second 
order spacetime tensor: 

with 

Al.l. = A"'lln'" nil, Al.b =E A"'lln"'eg, 

Aal.=EA"'lle~if, Aab=A"'lle~eg. 

(3.14) 

(3.15) 

Equations (3.15) exemplify the general rule how to use 
the indicator E when calculating the space components 
of tensors: The formula for the component contains the 
indicator when it carries the 1 projection an odd num
ber of times. 

Applying Eqs. (3.14) and (3.15) to the metric tensor 
itself, we get the completeness relation for the co
basis hd, 

(3.16) 

Together with the metric, the Riemannian affine 
structure is induced in m by the embedding. To get 
the covariant derivative ~ I N of a vector field 'X E: T(m) 
along the vector NE: TAm), one projects "x and N into 
X=e*(i')E: T(;11) and N=e*(N)E: TX=e<e) (;11), takes the co
variant derivative X.if with respect to the spacetime 
Riemannian structu;e (;11,g), and projects the resulting 
vector back into Tx(m). In-terms of local coordinates, 

(3.17) 

From Eq. (3.17), one gets the affine connection Y~c on 
mas 

(3.18) 

One can check that the affine connection (3.18) is the 
Riemannian affine connection associated with the metric 
{£, so that 

'fiN. (3.19) 

The covarian~ deriv~tive 'll.;N of the normal'll. along a 
tangent vector N = <~, N) to the hypersurface measures 
the bending of this hypersurface in the embedding space
time (;11,!I.). Because the magnitude of'll. is everywhere 
the same, n J!!:. = E, the normal component of the space
time covector !!:';N vanishes, 

n J~~;N = 0, with N = <~, N). (3.20) 

The surviving tangential components 

M J !!:';N' with iff = <~, M), (3.21) 

lead, due to the linearity of J and ;N operations, to the 
extrinsic curvature tensor 

4(M,N) =- M J!!:.;N. (3.22) 

In terms of local coordinates, Eqs. (3.20) and (3.22) 
read 

(3.23) 

where ;b is the spacetime covariant derivative along 
the :xl' coordinate line. From here, 

(3.24) 

Because e~ and n", are orthogonal, n", e~ = 0, the ex-
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trinsic curvature can also be written as 

(3.25) 

The relation 

(3. 26) 

then ensures the symmetry of K ab . 

As a pendant to Eq. (3.24), one can get the covariant 
derivative e~;b' Equation (3.25) gives the normal com
ponent of this spacetime vector, while Eq. (3.18) gives 
its tangential component. Therefore, 

(3.27) 

The last equation is called the Gauss-Weingaarten 
equation. Equations (3. 24) and (3.27) tell us how the 
basis {n, g} changes if we go along the hypersurface. 

4. THE SPACE OF EMBEDDINGS AND HYPERSPACE 

Heuristically, at least, all embeddings e which lead 
to a spacelike hypersurface in (/11, g) form themselves 
an infinitely dimensional manifold E, 

(4.1) 

which we shall call the space oj embeddings. Any 
choice of local coordinates in m and!l1 induces a co
ordinate map in [; indeed, any four functions (3.3) re
stricted by the condition that 

gab (XC) == g"e(e r(xc» e~ (xC) eg(xC) (4. 2) 

is a regular positive definite matrix, may be considered 
as local coordinates of a point e E [. 

Similarly, we shall treat the collection of all hyper
surfaces (3.2) as an infinitely dimensional manifold 

H ==[ /Diff(m), (4.3) 

which we shall call hyperspace. Hyperspace plays the 
same basic role for the dynamics of tensor fields in 
spacetime as the time manifold does for the dynamics 
of ordinary particles. A single hyper surface h is the 
proper relativistic generalization of the concept of "an 
instant of time." Technically, it is easier to represent 
hypersurfaces by embeddings, and ensure that all 
operations behave properly under the three-dimen
sional diffeomorphisms. Let us thus start by studying 
the differential geometry in the space of embeddings. 

A one-parameter family of embeddings, 

e(l): tE R, XE m -X=e(t,x)E!l1, 

i. e., a curve in [, represents a continuous deforma
tion of a hypersurface in spacetime. The tangent 
vectors 

N= de(t) I 
dt t.t (4.4) 

o 

to all such curves passing through the same point 
e =e(t) in [ fill the tangent space Te{[). We shall call 
the vectors N from Te([) the [-vectors, to distinguish 
them from the spacetime vectors N and the space 
vectors N. A tangent vector in Te([) can be considered 
as a linear differential operator acting on the ring J ([) 
of differentiable functionals of the embedding e. Indeed, 
if j[e) E J ([) is such a functional, then 
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(4.5) 

Here, 

N(x) = ae(t, x) I (4.6) 
at t.& 

is a spacetime vector field along the embedding e, 1. e., 
the mapping 

N(x) : XE m - H(x) E T X.e(x) (!l1), (4.7) 

and the variational derivative 

° =_0_ 
e(x) - oe(x) (4.8) 

is a field of spacetim.e vector-space density valued 
linear differential operators, acting on J ([) and defined 
along the embedding e, i. e., 0e(x) is the mapping 

0e(x): j E J([) - 0e(r,j E Te k ~([) 
(see Secs. 2 and 5 for the notation). After the local 
coordinates (3.3) are introduced in E, the functionals 
j become represented by some functionals Ae" (x.) 1 
of e" (xa), and the variational derivative 0e(x) may be 
expressed as 

o 
o"x = oe" (x.) , (4.9) 

Equation (4.5) then assumes the familiar form 

:t Ae"(t,xa»)lt.; 

= r d3x oe (t, x
G

) I 0 f[e8(~)] I 
}x"E R3 at t~t oe" (Xa) e"(t xa)' 

o 0' 

(4.10) 

Equation (4.5) tells us that the variational deriva
tives (4.8) form a "coordinate basis" in Te([) and the 
spacetime vector field H(x) can be considered as the 
component expression of an E -vector N with respect to 
this basis. We shall refer to 0e(x) as the "coordinate 
[ - basis" in T e(E). More explicitly, after the local co
ordinates (3.3) are actually introduced into E, the 
coordinate E -basis may be represented by the varia
tion'J derivatives %e"(x"), and the components H(x) 
of .{ by the functions N" (x"). The relation between the 
"abstract" coordinate E -basis 0e(x) and its actual co
ordinate expression a/oe" (xa

) is given by Eq. (4.9). 

From the coordinate [-basis (4.9) one can pass to 
an arbitrary "moving frames" [-basis in T e(E). Of 
particular interest is the normal E -basis {0J.x, o"J, de
termined by the orthogonal decomposition of the opera
tor covector densities (4.8) according to the scheme 

~e(x) =~(x) 0.1 x + <~, £IIJ· 
The expressions 

O.1x=E~(X) J~(x)' Q",,=Q(x) J oe(x) 

(4.11) 

(4.12) 

are a space scalar density and a space vector density 
valued linear differential operators acting on J ([) and 
defined along the embedding e. We have underlined the 
symbols ~e(x) and twiddled the symbols £"", to stress an 
appropriate character of the quantities ~e(x) .ti.e(x)] and 
°llxf[e(x»). 
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FIG. 1. Lapse-shift decomposition. The deformation C. -vector 
N is decomposed with respect to the normal [-basis into the 
component lapse function N(x) and shift vector N(x). 

The operators (4.12) generate the deformations of 
the embedding which are perpendicular and parallel 
to the hypersurface from the point of view of the em
bedding spacetime (;11,g). The deformation [-vector 
N may be decomposed with respect to the normal [ -
basis (4.12) as 

N= JXEm (EN(x) 0.tx+Na(x) 0ax). (4.13) 

The components N(x), N(x) are related to the compo
nents N(x) of N in the coordinate [-basis by the recipe 
(3.11), (3.12), 

N= Nii + (f:,N), 

N=ENJ!J:., N=NJ'§... 

(4.14) 

(4. 15) 

Geometrically, N,t,. t is the proper time which an ob
server moving perpendicular to the hypersurface {eel)} 
needs in order to reach the neighboring hyper surface 
{e (t + M)}, and NM shows how far he must first go from 
the pOint x in the direction N along the embedding e(t) 
in order to land at the point x of the embedding e (t + M), 
if he lauches into spacetime perpendicular to the first 
hypersurface (Fig. 1). The scalar field NE](m) and the 
vector field N E Tem) are called the lapse function and 
the shift vector, respectively. 

Among all [-vectors, we can select those which are 
intersections of a spacetime vector field N(X) by the 
hyper surface 

(4.16) 

We shall call them spacetime [-vectors. Not all [
vectors, of course, are of this kind. Notable counter
examples are the normal and tangential [-vectors, gen
erated by the spacetime fields H(x) and ~(x) defined 
only along the embedding e, not in the whole spactime;11, 

n=J,~ H(x)J~e(x)=EJ, 0.tx, 
Xc..m xEm 

e= 1 e(x) J~e(x) = 1 0"". xcm..... xEm ....... 

(4. 17) 

The operations which we shall further consider, like 
the Lie bracket between the [-vectors, or the covariant 
derivative of an [-vector, simplify when the [-vectors 
are spacetime [-vectors. 

The dual space to Te([) is the space T:([) of [-
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covectors. An [-covector is a linear functional acting 
on the space of [-vectors T e([), 

M:NETeCe)-(M,N)ER. (4.18) 

Introduce the cobasis of [-differentials, de (x) , which 
is dual to the coordinate [-basis 0e(,,), 

(de'" (x), oilx') = o~ o(x, x'), (4.19) 

and decompose M with respect to this cobasis, getting 

M= JXEm M(x) L de (x) = JXEmM",(x) de"'(x) 

(4.20) 

The component expression of M is thus a field of space
time covectors-space densities defined along the em
bedding. Using Eqs. (4.19) and (4.20), we get the co
ordinate expression of the () product, 

(M, N) = iae.&3 tJ,xa /\tJ,Xb /\tJ,xc Mabc ", (.x<I) N" (xd) 

(4.21) 

One can finally introduce [-tensors of an arbitrary 
rank as multilinear functionals acting on the direct pro
duct of a number of tangent and cotangent spaces Te([) 
and T: ([). It is hardly necessary to go into details of 
this well-known procedure. The elements of ]([) can 
also be considered as [-scalars. 

5. e-TENSORS 

[-tensors are multilocal objects on m, their compo
nents being defined over mG5 m@' ··@m. For example, 
a second rank contravariant [- tensor P is characterized 
by a bivector P "'x 1lX' , 

P = P """ Ilx' O""G5 0IlX' . 

In field dynamics, however, we are mostly dealing with 
spacetime tensor fields defined along the embeddings 
and with the normal and tangential projections of these 
fields to the hypersurface. Such fields are local objects 
on m. We thus introduce what we shall call the bundle 
of e-lensors over [, denoted by T~:~([). An element 
of the fiber T e ~: ~([) at e is a field of mixed spacetime
space tensors along e, the spacetime tensor rank being 
(~) and the space tensor rank being (~). From the basis 
fields a.(x), tJ,x·(x), and (l,,(e(x», ftX"(e(x» along e, we 
form an e-basis in Te ~:~ ([) as their direct product 
taken point by point in m: 

O"' ....... S ... b ... (x) 

= 3", (e(x»@ " • a.(x)G5 • ,,@ ftX S(e (x» @ ". tJ,~(x)e ... --------------~ -------------------------R r s s 
(5.1) 

Thus, XE Te ~.~ ([) may be expressed in the form . 
a··· a··· 

X=A R r S"'b ... (x)[e]o", ....... S"'b"·(x). 
s'T"' 

(5.2) 

Among the natural algebraic operations on e-tensors, 
let us mention the direct product @ of two e-tensors, 
the lowering and raising of the spacetime and space 
indices by the metric tensors g and g, the spacetime 
and space contractions, the projections of spacetime 
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indices into 1 and II directions to the hypersurface, and 
finally the lifting of a space tensor index into a space
time tensor index according to the rule 

(5.3) 

All these operations are local, taking place point by 
point over the manifold 

6. LIE BRACKETS IN {. 

If M and N are two {-vector fields, we can define 
their Lie bracket [M, N] in the standard way, 

[M, N] = MN - NM. (6.1) 

[M, N] is again an {-vector field. Its components with 
respect to the coordinate {-basis 11",," are 

(6.2) 

In particular, when M and N are intersections of two 
spacetime vector fields, M(X) and "R(X), by the embed
ding e, Eq. (6.2) gives the relation between the Lie 
bracket [ ] in the space of embeddings and the Lie 
bracket [ ] in spacetime, 

[M, N]"'x = [M, N] 0: Ix13=e13(x)' 

The Lie bracket between any two {-vectors 1I00x 
vanishes, 

[lIo: x, 1I13x'] = o. 

(6.3) 

(6.4) 

This expresses the fact that lI",x is a coordinate {. -basis. 
On the other hand, the Lie brackets between the {. -
vectors of the normal {-basis {1I.l x, o.x} are different 
from zero. They play an important role in hypersurface 
dynamics and we thus proceed with their evaluation. 

The components of 1I.l x' and lI.x' in the coordinate 
(. -basis are 

[1I.l X']"x= Eno:(x) 6(x,x' ), [1I.x']o:x=e~(x) 6(x,x ' ). (6.5) 

Subsituting them into Eq. (6.2), we get 

[lIax, , IIbX"] ",x = e~(x') 013x' e~(x") 6(x, x") - (ax' - bx"), 

(6.6) 

[lIax" O.lx .. ]"'x=Ee~(x') 0l3x,n"(x") 6(X,X") 

- En13 (xIl) 6I3x .. e~(x/) 6(x, x'), (6.7) 

[6.l x', 0.l xu] ",x = n13 (x ' ) 013x' nO: (x) 6(x, x") - (x' - x"). (6.8) 

The variational derivative of e~ (x) = e'" •• (x) is given 
by 

613x'e~(x) = 6~6 •• (x, x'). (6.9) 

First, substitute Eq. (6.9) into Eq. (6.6). An im
portant identity 

f(x') 6 •• (x, x') g(x) =f(x) 6 •• (x, x') g(x) 

+ f •• (x) 6(x, x') g(x) (6.10) 

enables us to evaluate all coefficients of 6 •• (x, x') at the 
same point x. Equation (6.6) then gives 

- [6.,." 6bx,,] = 6 a' (x', x") 0bx' - (ax' - bx"). (6.11) 

Second, substitute Eq. (6.9) into Eq. (6.7) and again 
use the identity (6.10). The last term in Eq. (6.7) then 
becomes 

784 J. Math. Phys., Vol. 17, No.5, May 1976 

- Eno: (x') 6 •• , (x', x") 6(x, x') 

- Eno: •• (x' ) Ii (x' ,x") Ii(x, x'). 
(6.12) 

The first term on the right-hand side of Eq. (6.7) just 
cancels the last term in the expression (6.12), because 

e:(x' ) II I3x,n"'(x")=n"' •• (x") 6(x", x'). (6.13) 

These rearrangements bring Eq. (6.7) into the final 
form 

(6.14) 

Third, turn to Eq. (6.8). The variational derivative 
of nO: (x) is obtained indirectly, by varying the equations 

g",l3n"'n 13 =E, g"'l3e~ n13 = 0 (6.15) 

and using the variational formula (6.9). We get 

013x' nO:(x)=- e·O:(x) n 13(x) 6 •• (x,x') +A~(x) 6(x,x'). 

(6.16) 
The detailed structure of A~ (x) need not interest us, be
cause this term drops out under the interchange 
(x-x"). Using again the identity (6.10), we cast Eq. 
(6.8) into the form 

- [1I.lx' , O.Lx"] = - Eg·b(X /) 6. a,(x',x") 1i~x' - (x''''-x''). (6.17) 

Equations (6.11), (6.14), and (6.17) are the closing 
relations for the normal {. -basis under the Lie bracket 
operation [ ]. As explained in Ref. 7, pure geometro
dynamics may be reconstructed as the unique "repre
sentation" of these closing relations. 

Equations (6.11), (6.14), and (6.17) enable us to find 
the components of the Lie bracket between two {. -vec
tors M and N in the normal {. - basis. Decomposing each 
of these (. -vectors with respect to this baSiS, 

(6.18) 

and using the closing relations (6.11), (6.14), (6.17), 
we get 

[M, N].l x = MN.l(x) _ N M.l(x) 

(6.19) 

[M, N]·x =MN"(x) _ NMa(x) +E(MJ.N.l·aN.l _ M.l··N.l) 

-L'I1,N]". (6.20) 

7. LiV DERIVATIVE AND HYPERTENSORS 

Besides the Lie bracket of two (. -vector fields, 
another Lie derivative type operation plays an important 
role in hypersurface dynamics, telling us when an e
tensor field can be interpreted as being defined over 
hyperspace rather than over the space of embeddings. 
We shall call this operation the Lie derivative LN of an 
e-tensor field ;\ along a space vector field N. We ar
rive at it by studying the behavior of ;\ under a one
parameter family 'Pt of space diffeomorphisms. The 
diffeomorphism 'PE Diff(m) naturally induces a diffeo
morphism e - e 0 1> in {., which can be interpreted as a 
tangential displacement of the hyper surface e (Figo 2). 

From the field;\E Tt'·;([), take an e-tensor 
;\[e]E Te~'~({) at the en;bedding e. Recall that ;\[el . 
represents a field of mixed space-spacetime tensors 
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FIG. 2. Tangential displace
ment. The space diffeomor
phism f/JE Diff(m) induces a 
diffeomorphism eo f/JE Diff([); 
it can be interpreted as a 
tangential displacement of the 
embedding which leaves the 
hypersurface fixed in 
spacetime. 

along e; for each x E m, the space leg of :\(x)[e] is 
standing in Tx~(m) and the spacetime leg of :\(x)[e] is 
standing in Te(x) fUJ1). Map now :\(e], i. e., the field 
:\(x)(e], by CPt into 

where the inverse mapping CPt*-1 applies to the contra
variant and the direct mapping cP t * to the covariant 
space components of :\, while the spacetime com
ponents are left untouched by cpo The space leg of 
cpt(:\(e]) is standing in Tx~ (m), whereas the space-
time leg of cpt(:\(e]) is standing in Te OIP (,:) :UJ1). In other 
words, cpt(:\[e)) is an e-tensor in Teo"tt~:~([). To get 
an operation which maps T :.~({) into itself, subtract 
from cptMe]) that element :\(e 0 CPt]E T,o"'t::~([) from 
T~'~([) which lies at e o CPt. We thus define the deriva
tiv~ L; of ~ with respect to N(x) =dCPt/dt I t=O by the 
formula 

L;; ~ = lim -t
1 

{cp/-1 0 • •• 0cp/0' •• ~(cpt(x»[e] - ~(x)[e ° CPt]}. 
t-O ~~ 

In the coordina~e e- basis~ (7. 1) 

L;; ~"''''a''' a"'b'" (x) 

=NC(x) oc~",· .. a"·a'''b'''(x) 

- (NCe~)'"' 0Yx':\"''''a'''a'''b'''(x) 

- ;\"'· .. c .. • a .. • b'" (x) ocNa(x) - ••• 

+ ;\"''''a''' /Jo"C''' (x) abNC(x). (7.2) 

The Lie derivatives L; and Lil are connected by the 
formula 

Note that the Lie derivative L; does not produce a 
spacetime tensor field along the embedding when ap
plied to a spacetime tensor field, whereas the Lie 
derivative Lil does. 

The Lie derivative Lf/ is a derivation on the algebra 
of e-tensors: 

Lil(~+/.J.)=LN~+LN/.J., 

LN (~01J.) =LN~01J. +~0 L; IJ.. 
(7.3) 
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If an e-tensor field is an intersection of a spacetime 
tensor field X(X) by the hypersurface, 

its Lie derivative Lil vanishes, 

Lf/~=O. 

(7.4) 

(7.5) 

In particular, the Lie derivative of the metric field tI. 
vanishes, 

Lf/ tI.(e(x» = O. (7.6) 

Further, the Lie derivative LN annihilates the e
tensor fields if and £" which define the normal e-basis. 
Namely, because 0Yx'e~(x) = o~o.a(x,xr), 

LNe~ (x) =Nce~.c - (NCe~)X' 0Yx' e~ + e~Nc,a = O. 

The conclusion that Lgn", (x) = 0 is reached by applying 
Lil to the definition equations of n"" 

g",an",na=€, e~n",=O. 

Because Lil g",a = L;; e~ = 0, the LN derivative of 
gab = g", a e~ eg also vanishes. In summary, the Lf/ deriva
tive of tI., .fl' g and n, considered as e-fields, vanishes, 

(7.7) 

The operation of the Lie derivative Lil thus commutes 
with all the natural operations on e-tensor fields, like 
raising and lowering of indices, contractions, projec
tions of spacetime indices into 1 and II directions to the 
hypersurface, and the lifting of a space tensor index 
into a spacetime tensor index. 

Two embeddings, e and e, which differ only by a 
space diffeomorphism, e =oe ° cP, define the same hyper-

° surface. If an e- tensor field is such that the expression 
in { } in Eq. (7.1) vanishes for any cP, we can interpret 
it as a tensor field defined on hyperspace rather than 
on the space of embeddings. We shall call the e-tensors 
of such type hypertensors. The differential condition 
for ~ to be a hypertensor obviously is that 

(7.8) 

An intersection of a spacetime tensor field is a 
hypertensor field. The fields nand g are also hyper
tensor fields. The projections of a spacetime tensor 
field intersected by a hypersurface are therefore hyper
tensor fields. The sum of two hypertensor fields of the 
same rank or the direct product of two hypertensor 
fields is again a hypertensor field. Lowering or raising 
an arbitrary index of a hypertensor field, and project
ing or lifting its indices from spacetime to space or 
vice versa, leads again to a hypertensor field. 

Along with hypertensors, we can study the H-tensors. 
A functional Ae] is an H -scalar if its value depends 
only on the hypersurface h, not on its particular repre
sentation bye, 

(7.9) 

The differential version of this condition is 

(7.10) 

An {-vector M is characterized by the component 
e-vector M(x). We say that an {-vector field M[e] is 
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(1_1).\7~(t,X) I 
o 01 1:1 

e(t) 

o 

e(t) 
o 

FIG. 3. Induced covariant derivative in c.. The covariant c.
derivative VN;\ of an e-vector field A along the deformation [ _ 
vector N is defined by means of the spacetime covariant deriv
ative VjfJt of the component field X(t,x) along the spacetime 
curve X= e(t,x), x fixed. 

an H-vector field if the component e-vector field 
M(x)[e) is a hypervector field. From the definitions 
of the [ ] and the Ln operations, we get the identity 

Therefore, M is an H-vector field iff 

[(\x' , M] = o. 

(7.11) 

(7.12) 

The last equation is the differential version of the 
condition 

M[e ° <p ]j[e) = M[e) tLe), vf. (7.13) 

Indeed, writing Eq. (7.13) in the form 

(7.14) 

and passing to the limit t - 0, we get exactly 

N°X' Oar (Mf) - M(N ar 0ax,f) =N°X' [Oax' , M]f= O. 

The space vector Na(x) is the same for all embeddings, 
being defined solely by the diffeomorphisms <Pt on m. 

Note that if M and N are H-vector fields, then [M, N) 
is also anH-vector field, due to the Jacobi identity for 
the Lie bracket [ J. 

One can extend the definition of H-vectors to H-co
vectors and then to arbitrary H-tensors, but we shall 
have little opportunity to work with H - tensors in the 
following. 

8. INDUCED COVARIANT DIFFERENTIATION IN 
HYPERSPACE 

Covariant differentiation of spacetime vectors directly 
induces a covariant differentiation V in hyperspace. We 
define first the covariant derivative VNM of an {-vector 
field M along an {-vector N. The "local" character of 
the operation V N allows us then to extend if from [
vector fields to e- tensor fields. Finally, we show that 
if N is an H-vector and M a hyperfield, VNM is again a 
hyperfield. 

Let M be an {-vector field defined along a curve 
e = e(t) and N the tangent [-vector to this curve at the 
point e(t). In a coordinate [-basis, the {-vectors M 

786 J. Math. Phys., Vol. 17, No.5, May 1976 

and N are characterized by the spacetime vector fields 
M and N, defined along the embedding: ' 

M[e(t)] - lW[e(t,x»), 

N[e(£)] - N[e(~, x)] = ae~t; x) I t:t . 
o 

Keeping XE m fixed, we can form the spacetime covari
ant derivative VM/at It of lW along the curveX=e(t,x) 
at the point X = e (t, x). °The spacetime vector field 
[V M /at)& generateOd in this way along the embedding 
X = e (£, x) is then taken, by definition, to be the compo
nent of the covariant derivative V N with respect to the 
coordinate {-basis (Fig. 3): 

I V ifij I 
VNM e(&) - at t' (8.1) 

o 

In a concrete coordinate { - basis 0",,,, this prescrip
tion gives 

[VNM] ",x-=VNM"'x= aM"'(t,x)j 
at t=t 

° 
(8.2) 

where r'" ~y (X) is the Riemannian connection generated 
by the spacetime metric g",~ (X). When M is defined not 
only along the curve e "" e (t), but in a region of [ around 
the point e (t), we have 

° 
M'" (t, x) = M'" [e Lu,x) , 

and the formula (8.2) gives 

[VNM] "'x =N yx' (OYx,lvI a[e (x)] 

+ r a 8Ae (x» M 8[e(x)] 0xx')' 

(8.3) 

(8.4) 

The coefficient of N Yx' on the right- hand side of this 
equation may be interpreted as V Yx' :H ax. 

Equation (8.4) shows that the components of the 
affine C. -connection in the coordinate C. -basis are given 
by 

(8.5) 

If M is an intersection of a spacetime vector field by 
the hypersurface, 

M[e(x)] = M(e(x», 

the variational derivative flYx'M"'x is equal to 
}l!I",y(e(x» o(x,x'), and from Eq. (8.4) we get the 
formula 

[V NM] 6e (x) = Vii M I X=e(x)' (8.6) 

The covariant (-derivative then becomes an intersection 
of the spacetime covariant derivative by the embedding 
X=e(x). 

The covariant differentiation in ( has all the standard 
properties of a covariant differentiation, namely 

V W.N P = V II P + V N P, 

VJI(M+ P) =VN M+VN P, 

VfJl M=fVlfM, 

VNfM= (Nf) M+fVNM, 

Karel Kuchar 

(8.7) 

(8.8) 

(8.9) 

(8.10) 
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V.M- VuN=[N, MJ. 

Here, M, N, P are arbitrary [-vector fields, and 
fEJ([) is an arbitrary functional on [. 

(8.11) 

There is no single regular metric g in T([) which 
would be covariantly conserved by V. However, we can 
define an infinity of degenerate metrics gx in T([), 
one per each point XE m of the embedding, which are 
covariantly conserved by V, 

VNgx = 0 liN. 

These metrics are given by the prescription 

gAM, N) = fI(M, N) I x=.( x)' 

(8.12) 

(8.13) 

their (infinite) degeneracy being obvious from the fact 
that 

gx(" N) = 0 

for any [-vector N such that N(x) = O. With respect to 
a coordinate [-cobasis de"'''', gx has the components 

gxcx'" ax" =g",a(e(x» o(x,x') o(x,x"). (8.14) 

Conversely, the rules (8.7)-(8.12) determine the co
variant differentiation in [uniquely, and we can recover 
from them the prescriptions (8.2)- (8.6) by standard 
methods. 

The definition (8.1) of the covariant derivative in [ 
may be extended to an arbitrary e-tensor field 
AE Tf:~ (e) along e(t). We put 

(8. 15) 

The covariant derivative V tat applies only to the space
time leg (f) of A, treating the space leg (~) of A as a 
scalar in /11. Because A(t, x) is a space tensor in Tx ~ (m) 
for every t, so is [vr/atjr The operation VN thus maps 
a field of e-tensors along e(t) into an e-tensor at e(t) of 
the same rank. If A is defined in a region of [ around 
e(O, the coordinate expression of VNA is 

[VNAf",· .. a ... a ••• IJ ••• (x) '" V. A"'''' a'" flo"b ... (x) 

=N Yr' <\ ... A",,,·a'" fl"'b", (x) 

+ r'" br (e (x» Ab"' a'" fl ... b .. ' (x) Nr(x) + •.• 

- r 6
flr (e (x» A"''''a''' 6"'b'" (x) N Y(x) - .... (8.16) 

The covariant derivative V is a derivation on the 
algebra of e-tensors, because 

(8.17) 

Note the local character of the direct product 0; to get 
A0 It, the e-tensors are multiplied pointwise for XE m. 
On the other hand, the direct product of two [-tensors 
is nonlocal. The covariant derivative V acts as a deriva
tion with respect to the local direct product (8. 17) be
cause the affine connection (8.5) is local in the pair 
x,x', containing the 0 function o(x,x'). 

The covariant derivative V commutes with the rais
ing and lowering of the spacetime indices and the space
time contractions. It does not commute, however, with 
the other natural algebraic operations on e-tensors: The 
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raising and lowering of the space indices, space con
tractions the projections into the normal and tangential 
direction~ to the hypersurface, and the lifting of space 
tensors into spacetime tensors. In Sec. 11, we shal\ 
define a new (nonsymmetrical) covariant derivative V 
which will commute with all these operations. 

To prove that the covariant derivative VN may be 
interpreted as a covariant derivative in hyperspace, 
we turn to its commutation relation with the Lie deriva
tive operation L;;. Applied to an arbitrary e - tensor 
field, 

(8.18) 

Equation (8.18) may be checked directly from the 
definitions (8.16) of VIf and (7.2) of LAb due regard 
being given to the "intersection" nature (8.5) of the 
affine connection. From Eq. (8.18) we immediately 
see that if N is an H-vector and A a hypertensor field, 
the covariant derivative V.A is again a hypertensor 
field. We can thus regard V. as a covariant derivative 
in hyperspace. 

9. DEFORMATIONS OF THE NORMAL HYPERBASrS 

Notable examples of hypervector fields which are not 
intersections of spacetime vector fields are the normal 
and tangential hypervector fields n-n(x) and e-f"(x). 
We shall study now how these fields change when we 
pass from one hyper surface to another along a curve in 
hyperspace. The natural measure of this change is the 
covariant hyperderivative V. of n and e along the defor
mation hypervector 

NI _N_ae(x,t)i (9.1) 
e( &> - at tot • 

o 

The hypervectors VNn and VNe at the hypersurface 
{eel)} are characterized by the components [VIf nj6e<x) 

and [vNej6e(X). Here, [VNnj6e(X) is the field of space
time vectors, andJVIf ej6e(X) is the field of spacetime 
vectors-space covectors along the hypersurface 
{eel)}. The geometrical meaning of these two fields is 
illustrated in Fig. 4. 

The fields [V.nj6e
(X) and [VIf ej6e(X) depend only on 

the deformation field N, not on the details of the further 

N 

~n 

FIG. 4. Deformation of the normal hyperbasis. The normal 
hyperbasis {n, e} is parallel transported from the deformed 
hyper surface to the original hypersurface and compared with 
the original hyperbasis. 
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course of the curve {e(t)}. However, they depend not 
only on the value of N at the point x, but also on the be
havior of N in the neighborhood of x. This shows that 
VN nand VN e are covariant hyperderivatives of genuine 
hypervector fields and not simple intersections of 
spacetime covariant derivatives of some spacetime 
vector fields. 

We shall determine first the field [VICe]~(x)=VICe~(x). 
Because the spacetime covariant derivatives V along 
the i-lines and along the hypersurface are 
interchangeable, 

V "'()_ Ve~(x,t) _~ oe'" _ VN'" 
ICe a x - at - oxa at - aXa , (9.2) 

we get VIC e~ by substituting the lapse-shift decomposi
tion (4.14), (4.15) into Eq. (9.2); 

VN'" '" Vn'" b '" b Ve~ 
axa =N,a n +N oxa +N ,aeb +N o~' 

However, we already know how the basis {n"'(x), e~(x)} 
changes along the hypersurface from Eq. (3.24) and 
(3.27). We thus get 

VNe~(x) = (N,a +EKabN b) n'" + (- K:N+N b
1a) e~. (9.3) 

6 
The hyperderivative [VNn] e(xl is then determined from 
the orthogonality relations 

(9.4) 

Applying to them the covariant derivative V /at, we get 

(9.5) 

Therefore, immediately, 

[vNn]"'x=- (EN,a +KabN b) e aOl
• (9.6) 

Equations (9.3) and (9.6) express the deformation of the 
hyperbasis {n, e}- {n(x) , .€"(x)} under the deformation N 
of the hypersurface. 

While the index 0' can be raised and lowered in Eqs. 
(9.3) and (9.6) behind the symbol Vl(, this is not so with 
the space index a in Eq. (9.3). The space metric tensor 
gab changes under the deformation N, 

VII' gab (X) =VN(g"'Be~e~) 

=g"'B VII' (e~e~) = 2e"'(b VN e:). 

Substituting here for VNe~ from Eq. (9.3), we get an 
important formula 

VNgab = - 2KabN + 2N(albl' 

Similarly, 

(9.7) 

Vl(gab= _ gaegbdVNged=- 2K abN _ 2N(albl. (9.8) 

Finally, we get the VII' derivative of the Levi-Civita 
form TJabe=gl!2 (jabe considered as a hypervector, 

VN g 1!2 =tgl12 g abV IC gab = (- KN +N a
1a)gl!2, 

VN 1J = (- KN +Na
1a)1J. 

(9.9) 

From Eqs. (9.3) and (9.8), we can find the change 
of e~ =g"'Bgabe~ under the deformation N, 

(9.10) 
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Note once more an important difference between 
Eqs. (9.3), (9.6), (9.10) and those equations one would 
expect to obtain if VN was a spacetime covariant deriva
tive V if of a tensor field which follows. The right-hand 
sides of the mentioned equations depend on the deriva
tives of N(x), as exemplified by the presence of terms 
N,a or N a

1b• This is because the vector fields n(x) and 
.€"(x) depend not only on the position in spacetime, but 
also on the hypersurface itself. 

It is useful to split the basic equations (9.3), (9.6), 
(9.7) of this section into deformations which are normal 
and tangential to the hypersurface. Denoting by the 
symbols V N and Vii the covariant hyperderivatives along 
theH-vectors N= (Nn)"'Xo",x=EN x 0.Lx and N=(Nae~)XO",x 
=Naxoax , respectively, we get 

(9.11) 

for the normal deformation of the hyperbasis {n, e}, 
and 

Vii nCX = - Kabea" N b, 

VNe~ =EKabn"'Nb +Nblae~ 
(9.12) 

for its tangential deformation. 

The difference between Eqs. (9.12) and the corre
sponding Eqs. (3.24), (3.27) is easy to understand. The 
expressions n",;b and e~;b in Eqs. (3.24), (3.27) are co
variant derivatives, along the tangent vectors ea, of the 
spacetime vector fields nrx. (x) and e~ (x) defined along a 
prescribed embedding. The embedding e : x - X remains 
fixed. On the other hand, the operation V N requires that 
the embedding itself be changed by N= ae(t, xl/at = <iI, N), 
though the overall position of the hyper surface in space
time remains fixed. Because the fields on which V l{ 
operates are hyperfields, the operation V N differs from 
the Vl{=N"Vb operation by a Lie derivative term. For 
a space scalar, like n, we simply get V il n. For a space 
covector, like.€", we have a more complicated relation 

(9.13) 

Returning to Eq. (9.7), we can write down the normal 
and tangential deformations of the metric field .f[, 

VNfl= - 24,N, 

Viifl = Liifl· 

(9.14) 

(9.15) 

The first equation provides an alternative definition of 
the extrinsic curvature K, in addition to those given by 
formulas (3.23) and (3.25). The second equation equals 
the tangential deformation of g to the Lie derivative 
of g along the vector N. We can anticipate that the same 
relation between V if and L if holds for an arbitrary pro
jection of an arbitrary spacetime tensor. 

From Eqs. (9.11) and (9.12), we can read the co
variant hyperderivatives of the hyperbasis {n, e} along 
the normal e-basis vectors o~ x and 0b,,' We get 

V Lx , n"'(x) = - ea,,(x) o,a(x, x'), 
(9.16) 

and 
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TRANSLATION 

+ 

N(x)"O, ,gN(x)=O 

TILT 

N(x)=O, (2N(x)"O) 

FIG. 5. Tilts and translations. A hypersurface translation is 
compared with a hypersurface tilt at the point X= e{xl. 

Vbx'nOt. (x) = - Kab eaOt.6(x, x'), 

Vbx'e~(x)=EKabnOt.6(x,x/) 

+e~(x) 6. a(x, x') +e~rcba 6(x,x'). (9.17) 

10. TILTS AND TRANSLATIONS OF HYPERSURFACES 

The normal change V N of the hyperbasis {nO<, e~} con
sists of two parts, V.,. and V,: 

V .,.nOt. = - EeaOt.N,a, V f-e~ =nOt.N, a, 

V,nOt. =0, V, e~ =-K: e~N. 

(10.1) 

(10.2) 

The change V, is local in the lapse function, depending 
only on the value of N at the point x E m in question, 

Iwhile the change V f- is nonlocal in the lapse function, 
depending on the gradient (IN of N. The deformation 
H=Nfi will be called a hypersurjace tilt at XE m, if 
N(x) == 0; it will be called a hypersurjace translation at 
XE m, if (JN1x= 0 (Fig. 5). The tilts leave the space
time point X == e(x) fixed; the translations displace it to 
a new position. 

The translation induces an affine transformation of 
the three tangent vectors /iaE T X=e(x) (lr)), leaving the 
normal vector nE TX=e(x) (/11) fixed. Geometrically, the 
translation displaces the tangent plane of the hyper
surface parallel to itself from the point X == e (x) to the 
point X + nN At; then, a new coordinate basiS ea is 
chosen at the new tangent plane, due to the new identi
fication of points on the translated hyper surface induced 
by the new embedding X+nNAt (Fig. 6). 

The hypersurface tilt represents a Lorentz transfor
mation (pure rotation) of the tangent space T X=e(x) (/11) 
at a fixed spacetime point X == e (x), because the lengths 
of the basis vectors and the angles between them are 
preserved by the tilt (Fig. 7). It is obvious from the 
construction of the deformed vectors that n remains 
a unit vector and ~ J 11 = O. The magnitudes and angles of 
the tangent vectors ea and also preserved by the tilt, 
because 

V .. /J..\ea, eb) = V .. gab = 0 

according to Eq. (8.7). 

The behavior of the 1 and II projections of a tensor 
field under a hypersurface tilt is completely predictable 
from the tensor character of that field alone. For this 
reason, the hypersurface tilts play the basic role in 
tensor kinematics. On the other hand, before telling 
what a tensor field does under a hypersurface trans la-
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FIG. 6. Affine transformation 
of eaOt. under a hypersurface 
translation. A hypersurface 
translation displaces the tan
gent plane parallel to itself 
from the point X= e{x) to the 
point X + nNt::..t. The coordinate 
basis ea is parallel trans
ported from the translated 
embedding to the original em
bedding and compared with the 
original basis. 

tion, we must know the Lagrangian which determines 
the field dynamics. These relations are spelled out in 
the subsequent papers. 

11. NATURAL COVARIANT DIFFERENTIATION IN 
HYPERSPACE 

The hyperspace covariant derivative V which we have 
introduced in Sec. 8 was essentially the spacetime co
variant derivative V applied as directly as possible to 
hypertensors. The close connection between the deriva
tives V and V is reflected in the relation (8.5) between 
the affine connection rOt.xex' rx" and rOt. en and in the 
equality (8.6) of the two covariant derivatives V and V 
when applied to a spacetime vector field. When operat
ing on hypertensors, however, the covariant derivative 
V has the disadvantage that it does not commute with 
the raising and lowering of the space indices, with the 
projections of spacetime tensors into normal and tan
gential directions to the hypersurface, and with the 
lifting of a space tensor into a spacetime tensor. In this 
section, we shall introduce another covariant derivative 
~ in the fiber of hyperte.'1sors which has all these de
sired properties. The new covariant derivative V will 
thus leave the normal e-basis field {nOt., e~} parallel 
propagated, 

(11. 1) 

and leave the metric field gab covariantly constant, 

8 .... na =-eeoa N.a 

8,.. e~ = nO N'a 
8 .... 90b= 0 

(11.2) 

FIG. 7. Hypersurface tilt as a Lorentz transformation. Under 
a hypersurface tilt, the vectors {n, ea} are rotated, their 
lengths and angles being preserved. 
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SPACE VECTORS S~CETIME VECTORS 

FIG. 8. Natural covariant derivative in (. (a) A space e-vec
tor \-1(x) is parallel transported by lifting it into a space
time vector field 5;:(x) along the embedding. parallel trans
porting each spacetime vector A(x) along the deformation (
vector N - if (x). and projecting the parallel transported 
vector 11;\ back into the deformed embedding. (b) A spacetime 
e-vector X -xix) is decomposed into the tangential ],11 and 
normal XL components. The tangential component is parallel 
transported as a space vector. The normal component is para
llel transported by plotting xLix) along the normal to the de- _ 
formed embedding. The parallel transported e-vector IIX -IIX 
is the vector sum of <;,XI~ and ALn at the deformed embedding. 

As a consequence, it will also leave the metric field 
g",a covariantly constant, 

* VNg"a=O. (11.3) 

The price we pay for the properties (11.1) and (11.2) is 
that the covariant derivative ~ is not a symmetrical co
variant derivative, but has torsion. By and large, how
ever, the price is worth the advantage which we gain 
when operating on e-tensor fields. 

Unlike the symmetrical covariant derivative, the new 
covariant derivative does not treat the space legs of 
e-tensors as scalars, but operates on space indices as 
well as on the spacetime indices. In fact, the best 
starting point is to define first the covariant derivative 
~ of an e-vector Aa(x). 

We work in coordinate bases dOL, aa, and 6"x' For 
* VN to be a local differentiation on the algebra of e-
tensors, we require that the affine connections r"xax" Yx' 
and yaxbX" Yx' act locally on the spacetime and space 
legs of e-tensors, respectively, 

* * r en
ax" YX' =r"a(x)yX' 1i(x,x"), 

~ axbx" Yx' = ~ab(X)yX' O(X, x"). 

In other words, 

~. A" (x) = 6N A" (x) + r" a(x)yx' Aa(x) NYx', 

~NAa(X)=6NAa(X)+~ab(x)yx' Xb(x)NYx'. 
(11. 4) 

We define the parallel transport of an e-vector Aa(x) 
by lifting it into a spacetime vector field A"'(x) along 
e, parallel propagating each vector A'" (x) in the direc
tion R(x) - N, and projecting the parallel propagated 
vectors back into the new hyper surface (Fig. 8). The 
definition of the parallel transport of Xa(x} thus closely 
follows the pattern used in the definition of the covari
ant derivative I, allowing, however, for the deforma
tion of the hyper surface. 

In terms of covariant derivatives, our definition of 
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the parallel transport is expressed by the rule 

V.Aa(x} ==e~ VN(Abeg}. 

Using Eq. (9.3), we get 

* V N Aa(x) = e~e~ V N Ab + e~ xb V N eg 

= V N xa - Kg XbN + AbN a
lb 

= 6. Aa + iX-Em [- EK~ nyO(x, x') 

(11.5) 

+ yabe e~ o(x, x'} + e~ (x') O.b(X, x'} 1 Ab(x) NY (x't 

From here, we can identify the space leg of the affine 
connection, 

* a () - * a (x ') a e ( ') y b X Yo<' =y bY ,X =y beey X,X 

- EK~ ny O(x, X'} + e~(x') 0, b(X, X'}. (11. 6) 

Using Eq. (9.7), one immediately verifies that the 
* covariant derivative VN with the affine connection (11. 6) 

leaves gab covariantly constant, Eq. (11. 2). 

'" The spacetime leg r'" a(x)yx' of the affine connection is 
determined from the requirements (11.1). If we substi
tute into the equation 

0== V.n'" (x) == V N n" (x) + [r'" a(x)yx' - r" ar 0,.,.,] na(x) N Yx' , 

(11. 7) 

* the result (9.6), we can read off the r"'L(x)YX' projection 
of the affine connection, 

* r'" L (x)Yx' = r'" LY 6(x, x') 

+ E K~ e~e~ 6(x, x') + E ea", (x) 6,.(x, x') ny(x'). 

(11. 8) 

Similarly, if we substitute into the equation 

O V* '" - V '" r'" aNY = .ea - .ea - aye" 

* '" () a( ) NYX' * b () '" ( ) N Yx' + r a x yx' ea x - Y a X Yx' eb X (11. 9) 

the already known connection yba(X)yX' from Eq. (11.6) 
and the expression V. e~ from Eq. (9.3), we can read 
off the r"'b(x)Yx' projection of the affine connection 

r',,&(x)yX' = r"'bY o(x, x') - EKben"'e~ o(x, x') 

-En"'(x)ny(x') O,b(X,X'). (11. 10) 

Putting the projections (11.8) and (11. 10) together, we 
get the final result for the spacetime leg of the affine 
connection, 

* * r'" a(x)yx' == r'" al'(x, x') = r'" ay(x, x') + A'" ay(x, x'}, 

A'" ay(x, x') == - En'" e~ e~Kbe 6(x, x') 

+ E e~ na e~ K~ o(x, x') 

+Ee""'nany(x/) O,a(x, x') 

- En"'eanl'(x') O,a(x, x'). (11. 11) 

The term A" ay (x, x'), being a difference of two affine 
connections, is an e-bitensor. It is conveniently cata
logized by its projections (the last index being always 
projected into the e-basis at the point x'): 
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A\L==- ii.bex,x'), 

A\c = - EKbc ii(x, x'), 

AaLL==Eg ab ii,b(X,X'), 

AaL c == EKca ii(x, x'). 

All other projections of AOt. ay are equal to zero. 

(11.12) 

Because L.ii A Ot. ay == 0, AOt. is actually a hyperbitensor. 
The covariant derivative (. thus satisfies the same 
commutation relation with LM as V. does, namely 

* * * LMVN-V.LM=VL,iilf' (11.13) 

Therefore, if N is anN-vector, the covariant differen
tiation ~lf turns a hypervector field ;\ into a hypervector 

* field VN;\' 

* The covariant hyper derivative V has again the 
standard properties (8.7)- (8.10) of covariant differen
tiation. Note thatjE]([) must be a functional on [, 
rather than a hyperscalar field, to get Eqs. (8.9), 
(8.10). Equation (8.11), however, must be modified. * . . Due to the relation between the V N and V. denvatlves, 
we get 

{VN M- VIlN - [N, MJ}Ot.x 

= AOt. aex)l'x' (Maex) N YX' _ Na(x) MY'"'). 

* The covariant derivative V. thus has torsion. 

(11. 14) 

The basic trick of hypersurface dynamics is to 
project the covariant derivatives of spacetime tensors 
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into normal and tangential components and express them 
by means of the hyperspace derivatives aLX and 15,,:< of 
these projections. For this purpose, anyone of the 
covariant derivatives V and V may be used in inter
mediary steps, though the V derivative is easier to 
handle technically. 
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Various kinematical relations, holding between hypersurface projections of spacetime tensor fields in an 
arbitrary Riemannian spacetime. are studied in terms of differential geometry in hyperspace. A criterion is 
given that a collection of hypertensor fields is generated by the projections of a single spacetime tensor field 
intersected by the embeddings. From here. it is shown that the super-Hamiltonian of an arbitrary tensor 
field splits into two parts. H<f>~ and H<f>r. H<f>~ being local in the field momenta and H<f>7 containing their first 
derivatives. The form of H<f>7 for an arbitrary tensor field is determined from the field behavior under 
hypersurface tilts. The kinematical equations for the intrinsic metric and the extrinsic curvature are written 
in a quasicanocical form. and their connection with the closing relations for the gravitational super
Hamiltonian is exhibited. The conservation laws of charge. energy and momentum, and the contracted 
Bianchi identities. are written as hypertensor equations. 

1. INTRODUCTION 

Hyperspace, which is an infinitely dimensional mani
fold of all spacelike hyper surfaces drawn in a 
Riemannian spacetime, 1 provides a natural way of look
ing at the dynamical evolution of tensor fields (includ
ing the metric field itself). One simply watches how the 
field changes when passing smoothly from one hyper
surface to another along a curve in hyperspace. Ulti
mately, one aims at a dynamical scheme: specifying 
initially appropriate field variables on one hypersurface 
and determining them subsequently on any other hyper
surface by means of the field equations. However, there 
are certain relations among the hypersurfaces, their 
intrinsic and extrinsic geometries, and the projections 
of various tensor fields, which hold in an arbitrary 
Riemannian spacetime containing arbitrarily distributed 
tensor fields. They hold irrespective of the dynamical 
laws which ultimately govern the fields in a dynamical 
theory and irrespective of the Einstein's law of gravi
tation which connects the spacetime curvature with the 
energy-momentum tensor of the fields. We call such 
relations kinematical (using this term well in conform
ity with classical mechanics) and devote the present 
paper to their study. Essentially, the kinematical rela
tions hold because a single spacetime tensor field is 
projected into normal and tangential directions to an 
embedding, and these prOjections must behave in a 
definite way when the embedding is stretched, leaving 
the hypersurface fixed in spacetime, or when the hyper
surface is tilted and bent along a fixed spacetime point. 
Despite their simple origin, the kinematical relations 
are essential for the correct visualization and inter
pretation of geometrodynamics, pure or driven by 
sources. 

The formalism of the differential geometry in hyper
space, introduced in Ref. 1, is the main tool of our in
vestigation. The notation is explained in Sec. 2 of that 
paper, and we quote its equations by prefixing the 
Roman numeral I before their section and equation num
bers; (1·3 -16), e. g., is Eq. (16) in Sec. 3 of Ref. 1. 

The present paper is organized into ten sections. In 
Sec. 2, we use the connection between the spacetime 
covariant derivative V and the covariant hyperderiva-
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tive V, to express the prOjections of spacetime covari
ant derivatives vX of arbitrary spacetime tensor fields 
X(X) in terms of the normal directional derivatives (jN 

and the space covariant derivatives of the hyperfield 
proj ections X(x)[e]. These proj ection formulas are the 
basic tool in casting the spacetime field equations into 
hyperfield equations. In Sec. 3, we ask the question 
when a collection of hyper tensor fields may be thought 
about as generated by the projection of a single space
time tensor field intersected by the embeddings. We 
find the answer to that question in the behavior of the 
collection under hyper surface tilts. In Sec. 4, we show 
that the super-Hamiltonian of any dynamical theory 
which describes the canonical evolution of a spacetime 
tensor field consists of two parts, H~ and Hr. The first 
part, H~, contains the derivatives of the field momenta, 
describes the behavior of the field under hypersurface 
tilts, and is completely determined by the kinematical 
considerations. The second part, Hr, is local in the 
field momenta, describes the truly dynamical evolution 
of the field under hypersurface translations, and is 
determined only by the specific Lagrangian which 
governs this evolution. The relation of the H$ part to 
the spin energy-momentum tensor, and of the Hr part 
to the canonical and symmetrical energy-momentum 
tensors, is discussed in the following paper. In Sec. 5, 
we show that the supermomentum of the field is like
wise completely determined by kinematical considera
tions, from the behavior of the field projections under 
tangential deformations of the embedding. In Sec. 6, 
the Gauss-Codazzi equations and the normal deforma
tion equation for the projections of the spacetime 
Riemann curvature tensor are written in the hyperspace 
language. The evolution equations for the intrinsic 
geometry g and the extrinsic curvature IS of the hyper
surface, which we obtain in this way, do not close, 
but their kinematical structure imposes a strong limita
tion on any possible geometrodynamics. In Sec. 7, we 
indicate how these equations lead to the closing rela
tions between the super-Hamiltonians H g (x) of such 
geometrodynamics. This provides an additional insight 
into our earlier resultz that the Einsteinian geometro
dynamics is the unique canonical realization of these 
closing relations which uses the geometry g as the sole 
configuration variable. In Sec. 8, the kinelnatical equa
tions for !I and L{ are cast into a quasicanonical form, 
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spoiled only by the presence of the Gab projection of 
the Einstein's tensor, which plays the role of an ex
ternal source. In Sec. 9, the conservation laws of 
charge, energy, and momentum are written as the 
evolution equations of these quantities in hyperspace. 
In Sec. 10, it is shown that the conservation laws of 
energy and momentum, when written as projected 
Bianchi identities for the Einstein's tensor G"'s, take 
the form of the closing relations between the ADM 
super-Hamiltonians, and the ADM super-Hamiltonian 
and supermomentum. 

Many results contained in this paper are the current 
results of Einsteinian geometrodynamics, incorporated 
into the new framework of hypertensor geometry. Thus, 
projecting the Riemann tensor is the standard device 
in the theory of embeddings, the kinematical equations 
for g and !S were cast into the quasicanonical form by 
Teitelboim, 3 the connection between the super momenta 
and the Lie derivatives was known to Dirac4 (who formu
lated it in the passive, rather than the active interpre
tation), and the connection between the cloSing relations 
for HK and HKa, and the Bianchi identities was discussed 
by ADM. 5 On the other hand, the elucidation of the role 
which the hypersurface tilts play in hypersurface 
dynamics of tensor fields is, to our best knowledge, 
new. This applies in particular to the critierion when 
the collection of hypertensors represents a spacetime 
tensor field, and to the splitting of the super
Hamiltonian into the parts which are local and non-
local in the field momenta, the nonlocal part describ
ing the kinematical behavior of the tensor field under 
hypersurface tilts. The importance of H~ was masked 
by the fact that H~ vanishes for two of the most widely 
studied fields-the gravitational field and the scalar 
field-while for the third one, the electromagnetic field, 
it degenerates into the divE = a constraint. 

2. PROJECTIONS OF SPACETIME COVARIANT 
DERIVATIVES 

In hyper surface kinematics and dynamics of tensor 
fields, we need to express the projections of spacetime 
covariant derivatives of spacetime tensors in terms of 
hypersurface directional derivatives 6. and the space 
covariant derivatives I of the projections of these 
tensors. This is easily achieved by employing the prop
erties of the induced covariant differentiation V in 
hyperspace. 

We take a spacetime covector field ¢'" as an example. 
Studying first the normal covariant hyperderivative V N 

of the projections ¢1. and ¢a, we get 

V N ¢1. =V N (En"'¢,) = I'. n"'V N ¢",+E¢", V Nn'" 

= I'. n'"¢"';8nsN +E¢",(- Eea"'N,a) =E¢1.;1.N - ¢aN,a (2.1) 

and 

V N¢a=V N (e~¢cr) =e~V N ¢'" + ¢'" V N e~ 

=e~¢"';8nsN + ¢"'(- K:e~N +n'" N,a) 

=E¢a;1. N - K:¢b N +E¢1.N,a 

by Eqs. (1.8.6) and (1. 9. 11) (see Ref. 1). 

(2.2) 

The tangential hyper derivatives V jj are equally easy 

793 J. Math. Phys., Vol. 17, No.5, May 1976 

to handle. We know from Sec. 1. 9 that the tangential 
hyperderivative of a hypertensor equals the Lie deriva
tive Ljj of that hypertensor. Therefore, by Eq. (1. 9.12), 

and 

Nb¢1.,b =Li{ cP1. = Vi{ ¢l. = V jj (I'. n"'cp",) 

= En"'Vii ¢'" +E¢",Vjjn'" 

= I'. n'" cp",;segNI> + Ecp",(- Kab ea"'Nb) 

= (¢l.;b - EKab¢a) N b, 

Nb¢all>+¢bN·la 

=Li{ CPa = Vi{ CPa. = V F1(e~¢",) 

=e~Vjj¢",+cp",Vjje~ 

= e~¢"';8 eg N b+ ¢",(EKabn"'N· + N· la e~) 

(2.3) 

=¢a;bNb+CP1.Ka.Nb+¢bNlJla' (2.4) 

The shift vector N b enters Eqs. (2.3) and (2.4) as an 
arbitrary multiplicative factor; therefore, 

(2.5) 

In tangential proj ections, we need to know how the 
field changes along the hyper surface, not how it be
haves when we pass to another hyper surface. On the 
other hand, the normal projections contain the direc
tional derivatives 6N , 

¢l.;l.N=€ 6N CPl. +€¢aN,a' 

¢a;l.N=E{jN ¢a +EKab ¢I>N - ¢l.N,a' 
(2.6) 

The projections of spacetime covariant derivatives 
of spacetime tensors ¢"' ••• s are obtained when applying 
the rules (2.5) and (2.6) to each tensor index. As an 
example, the projection formulas for a covariant 
second-rank tensor ¢",a give 

and 

¢J.J.;e = ¢J.J.le + EKed cpl.d + EKed¢d1.' 

¢a 1.;e = ¢a1.1 e - Kae¢J.J. + EKed CPad, 

¢u; e = ¢UI e - K.e ¢J.J. + EKed cpd b, 

CPU;1.N=E 6N ¢J.J. +E¢d1.N,d +E¢1.dN,d' 

¢aJ.;1. N = E 6N CPa + EXad cpd1. N + Erf;a dN,d - ¢u N, a' 

¢1. b;1. N =€ 6N ¢1.1J + EKbd¢1. dN + E¢dbN,d - ¢UN,b' 

¢abl1.N=E l'iN ¢ab +EKad ¢dbN +EXbd ¢:N 

- ¢l.bN,a- ¢a1.N,b· 

3. HYPERSURFACE TILTS AND SPACETIME 
HYPERTENSORS 

(2.7) 

(2.8) 

From Eqs. (2.6), we can read off the behavior of the 
¢1. and ¢a projections of a spacetime covector ¢'" under 
the hypersurface tilts, 

(3.1) 

Equations (3.1) tell us that the covector cP", at the fixed 
spacetime point..;r remains unchanged, but is projected 
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FIG. 1. Behavior of tensor projections under hypersurface 
tilts. The spacetime covector <p remains fixed, while its tan
gentail <PII and normal <PL projections change under hypersur
face tilt'S 6r . 

into a tilted basis (1.10.1), 

(3.2) 

(see Fig. 1). 

Further, we know that the projections ¢J. and ¢a of a 
spacetime covector are hypertensors (Sec. 1. 7), 

LiT ¢J.=O=LN¢a' (3.3) 

Equations (3.1) and (3.3) thus hold for the projections 
of an arbitrary covector field ¢et. (X). 

Let us ask now an inverse question, namely, when 
two e-tensor fields, ¢J.(x)[e] and ¢a(x)[e], can be inter
preted as the 1 and II projections of a spacetime covec
tor field ¢et. (X) intersected by the embeddings X = e(x). 
The answer is again given by Eqs. (3.1) and (3.3), 
which are thus both necessary and sufficient conditions 
for an e-vector field 

(3.4) 

to be a spacetime hypervector field. 

To prove that Eqs. (3.1) and (3.3) are sufficient con
ditions for the expression (3.4) to be a spacetime hyper
vector, we must construct a spacetime covector field 
¢et.(X), the intersection of which by an arbitrary em
bedding e gives the expression (3.4). This we do point 
by point in fY1, picking up an embedding e which passes 

. 1 
through the pomt ~ E fY1, 

X=e{f), for a *E m, 
o 1 

(3.5) 

defining 

¢et. (X) '" ¢et. (x)[e] , 
o 0 1 

(3.6) 

and showing that ¢et. '*) is the same for all embeddings 
f passing through the same point~. 

First, from Eq. (3.3) it is obvious that ¢et. (s)[f] 
= ¢et.(rp(s»[r 0 rp-1], i. e., ¢et.(.g). is the. same for two em
beddings e and e = e 0 rp-1, WhiCh define the same hyper-

, 1 2. 
surface, at the given point~=\(.g)=f(rp(s» of that 
hypersurface (Sec.!. 7; Fig. 2). 

Next take an embedding e which intersects the first , 2 
embedding at X, but does not define the same hyper-
surface. Beca~se we already know that the identification 
of space pOints along e does not matter, we are free 
to choose f so that thJ point ~ corresponds to the same 
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FIG. 2. Behavior of tensor 
projections under tangential 
deformations. The spacetime 
covector ¢ and its projections 
<1>11 and <l>Lbehave as hyperten
sors under a tangential defor
mation of the embedding. 

point x E m according to the two embeddings e and e 
o 1 2 

(Fig. 3), 

e(x) =e(x). 
1 0 2 lj 

(3.7) 

We connect the embeddings e and e by a curve e(t) in { 
1 2 such that 

eU) =e, e(t) = e, 
1 1 2 2 

(3.8) 

and 

e(t,*)=-}' VlE(i'!)' (3.9) 

Differentiating Eq. (3.9) with respect to I, we see that 
the deformation vector field 

N(t x) '" ae(t, x) - N(t) , at 

vanishes at the point * Em, 

N(t,x)=O vt~ (t,l). 
o 1 2 

(3,10) 

(3.11) 

Decompose the vector field (3.10) into the lapse func
tion N(t) and the shift vector N(t). The rate of change 
of n, (x)[e(t)] along the curve e(t) at the point c = e(t) is 'Pet. 0 

given by 

(3.12) 

Equation (3.3) ensures that fjiT ¢et. (*)[e] = 0, because 

0= LiT ¢et. (x)[e] =NC(x) ac Aet.(X) I x - fj; ¢",(x)[e] (3.13) 
o a 0 0 

according to Eq. (1. 7.2), and N(*,) = 0 by Eq. (3.11). 
The change fjN ¢et.(x)[e] is the tilt change fjt, because 

o 

FIG. :3. Finite tilts. A finite 
tilt may be accomplished along 
a tilt curve e(t) in C • 
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N(x) = O. Therefore, 
o 

ON cf>" (*")[e] = 6,.. (cf>.L,*")[e ] n" '*") + cf>a,*")[e] e~ (x» 

=n" 0+ cf>.L + cf>.L O,..n" +e~O+ cf>a + cf>a 0,.. e~ =0, 

(3.14) 

by Eqs. (3.1) and (3.2), and because 

O+g"a=O=O+gab (3.15) 

[cf. Eq. (1.9.8)]. This shows that cf>,,(x)[e(t)] remains 
constant along the curve e(t), so that ¢a~)[e] 
=cf>a~)[e]=cf>,,(X). 0 2 

o t 0 

Our proof is thereby completed. It is straightforward 
to generalize the criterion (3. 1), (3.3) so that it applies 
to an arbitrary spacetime tensor and its projections. 
For further use in geometrokinematics, let us write 
down the criterion (3.1) for a second-rank spacetime 
tensor cf>"a [see Eq. (1. 8)], 

0,.. cf>u=- (cf>c.L + ¢.LC)N,c, 

0+ ¢a.L = - ¢/N,c + Ecf>.L.LN,a, 

0+ cf>.Lb=- ¢cbN,c+E¢UN,b' 
(3.16) 

4. CANONICAL REALIZATION OF HYPERSURFACE 
TILTS 

The behavior of a given tensor field under hyper
surface tilts is determined solely by the tensor charac
ter of the field in question. For example, the behavior 
of a vector field is given by Eqs. (3.1). On the other 
hand, the dynamical evolution of that field in any canoni
cal theory is determined by the Poisson bracket of the 
field with a field "super-Hamiltonian" 

(4.1) 

which is a functional of the field variables cf>.L' cf>a and 
their conjugate momenta rr\ rra, according to the 
equation 

6N cf>.L (x) = [cf>.L (x), H<1> x'] Nx' , 

ON ¢a(x) = [¢a(x),H<1> x,]Nx'. 
(4.2) 

At this stage, nothing further is known about the nature 
of the field momenta rr", rra, except that they are canoni
cally conjugate to the field variables ¢.L' ¢a, satisfying 
thus the standard Poisson bracket relations 

[cf>.L (x), rr .L(x')] = 6(x, x'), 

[¢a(x), ~(x')]= 6~ 6(x,x'), 
(4.3) 

with all other fundamental Poisson brackets being equal 
to zero. 

In particular, Eq. (3.2) should generate the change 
of the field under a hyper surface tilt. From this, we can 
deduce that the super-Hamiltonian H<1> must contain a 
certain part, H~, which is determined solely by the 
tensor character of the field, 

(4.4) 

The remaining part of the super-Hamiltonian, Ht, gen
erates the evolution of the field under a hypersurface 
translation, and its detailed structure depends on the 
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specific Lagrangian which governs the field dynamics. 

However, there is at least something which we can 
say at the kinematical level about the translation part 
H~ of the super-Hamiltonian H<1>: H~ (x) must be purely 
local in the field momenta rr.L(x), rra(x) [i. e., it must be 
an algebraic function of rr.L(x) and rra(x)] in order that 
the changes O,cf>.L and O'¢a or the field projections under 
a hyper surface translation be proportional to the lapse 
function. Similarly, we can see that the tilt part H~ of 
the super-Hamiltonian must contain the first space 
derivatives of the field momenta, in order to generate 
the first derivatives of the lapse functions in the tilt 
formulas, like (3.1) or (3.16). In fact, we will now show 
that H~ for any tensor field may be chosen as a space 
divergence of a certain space vector density, which is 
bilinear in the field variables and the field momenta. 

Indeed, comparing the tilt displacement formulas 
(3.1) for a covector field ¢" with the evolution equations 
(4.2), 

6+ ¢.L(x) = - cf>a(x)N,a(x) =[cf>.L(x),H~x']NX' 

_ 6H$.x' N X' 
- 6rr.L(x) , 

0+ ¢a(x) = ¢.L(x) N,a(x) = [¢a(x), H~x,]Nx' 

6H'!J.x' x' 
= orra(x) N , 

we see that the tilt super-Hamiltonian H~ must be equal 
to 

H~ = (cf>arr.L - E¢.L rra),a' 

Similarly, for a tensor field ¢"a, we compare Eq. 
(3.16) with Eq. (4.2), and get 

H~= [(¢/ + cf>a.L) rr u + ¢ba~.L - E¢u rra.L 

(4.5) 

+ ¢ab rr.Lb - E¢.L.L rr.La_ E¢.Lb 71 ab - E¢b.L rrba],a' (4.6) 

For higher order tensor fields, the formulas soon get 
messy, but the general statement that H~ is a divergence 
of a vector density bilinear in the field variables and the 
field momenta, is preserved. 

For two important tensor fields, the tilt super
Hamiltonian vanishes. These are the scalar field cf> and 
the metric field g"a itself. 6 For the scalar field, the 
vanishing of H~ is obvious, because cf> is not changed 
under hypersurface tilts. For the metric field, the 
vanishing of H'!J. is equally obvious, because 0+ gab = 0 
and ga.L = 0, g.L.L = E are not changed by hypersurface 
tilts. The super-Hamiltonians of these two field are 
the only super-Hamiltonians which are purely local in 
the field momenta. (The special situation which arises 
for the electromagnetic field due to the additional 
constraints will be discussed in the following paper). 

5. CANONICAL REALIZATION OF TANGENTIAL 
DEFORMATIONS 

The second type of deformations under which the 
dynamical variables change in a kinematically predicta
ble way are the tangential displacements 

(N)<>X = Na(x) e~ (x). (5.1) 

The field projections p and their conjugate momenta 'if 
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are hypertensors. Further, because all spacetime in
dices are projected, ¢ and 'iT are spacetime scalars, 
i. e., hypertensors oithe rank (~:~). We have seen that 

L N=6fj-Lfj (5.2) 

(see Sec. I. 7). The hypertensor condition 

Lfj;P= 0= Lj{7T (5.3) 

can thus be translated into the equations 

6N;P=LN;P' 6N'iT=LN'iT, (5.4) 

which determine the change of the dynamical variables 
;P, 7i under a tangential deformation of the embedding. 

In a dynamical theory, the same tangential change is 
generated by the Poisson bracket with the 
supermomentum 

H(/J a =H(/Ja(x)[;P, 'iT] 

according to the formulas 

6N p ••• (x) = [P ••• (x), H(/J ar] Nax' 

OH<i>ar N ax' 
07T'" (x) 

6N7T"'(X) = [7T"'(X), H<i> ax,]Nax' 

oH<i> ax' N ar 
op ... (x) 

(5.5) 

Because the tangential deformations (5.4) and (5.5) 
must coincide for any N(x') , the variational derivatives 
OH<i>a(x')/op ••• (x) and oH<i>a(x')/67T"'(X), and with them 
the supermomentum H<i> a itself, are uniquely determined. 

As an example, for the scalar field p(x) with its 
conjugate momentum density 7T(X), we get the equations 

OH<i> ax' Nax' ( ) ( ) N a( ) 
07T(X) =LN P x = P,a X X , 

_ ~:~;; Nax' = Lfl7T(X) = (7T(X) Na(x)),a' 

(5.6) 

These equations, due to the arbitrariness of N a(x), may 
be written in the form 

OH<i> (x') 
07T(X) = P,a(x) o(x, x'), 

O~;(~)') = _ 7T, a(x) o(x, x') - 7T(X) o,a (x, x'), 
(5.7) 

and integrated into 

(5.8) 

A similar analysis of the vector case leads to the sys
tem of equations 

OH<i>bX' bx' ( ) ( )Nb( ) 07T L(X) N =Lj{ pJ. x = PJ.,b X x, 

OH<i>bX' bx' J.() (.L( )Nb( » 
- 0PL(X) N =Lv7T x = 7T X X ,b, 

OH<i>bX' bx' ~ ~ ()~ Na '" Nb 
07Ta(x)N ~LNPaX~Pa,b +'f'b ,a' 

(5.9) 
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which has the unique solution 

H(/J a = 7T 1. PJ.,a - (Pa,b - Po,a) 7T
b 

- Pa ~,b' (5.10) 

Finally, for a tensor field Pc.:a, which is the last field 
we want to discuss in detail, we get 

HrJJ a =:::: 1T l..1¢.lJ.,a 

+ 7T
b

.L PbL ,a - (7T
bL

paJ.),a } 

+ 7T.L bPL b,a - (7T.L bPL a),b 

+ ~cPbc,a - (~CPac),a - (7Tac Paa),c' (5.11) 

Following the sequence of formulas (5.8), (5.10), 
(5.11), we can see how to build the supermomentum for 
the higher-rank tensor fields. The scalar projection 
pJ. of the covector field Pc.: contributes to the covector 
field supermomentum (5. 10), and the scalar proj ec
tion ¢u of ¢c.:a contributes to the tensor field super
momentum (5.11) by the terms which have the form of 
the scalar field ¢ supermomentum (5" 8). Similarly, 
the covector projections ¢L a and ¢aJ. of the tensor field 
¢c.:a contribute to the tensor field supermom en tum by 
the terms} which have the form of the covector field 
supermomentum (5.10). The construction of the suc
cessive terms of higher and higher rank also becomes 
apparent when we follow the consecutive lines in the 
expression (5. 11). 

Specializing the supermomentum (5.11) to antisym
metrical tensors (two-forms), we get 

(5.12) 

Similarly, specializing it to symmetrical tensors, we 
get 

H<i> a = 7T uCPu,a + 2~ L(CPb .L,a - ¢a L,b) 

- 2¢aL 7T
b L,a + 7TbC ¢bc,a - 2(~CPac),b' (5.13) 

In particular, for the metric tensor gc.:a in the role of 
¢c.:a, the projections g u = E and gaL = 0 give the vanish
ing contribution, and the expression (5.13) reduces to 

Hg a = - 2(~Cgac), b + 7T bCg bc, a = - 2~lb' 

the well-known expression for the gravitational 
supermomentum. 

(5.14) 

Summarizing the results of the last two sections, we 
can say that the tensor field supermomentum and the 
tilt part of its super-Hamiltonian (the part which is non
local in the field momenta) are completely determined 
from the purely kinematical considerations. It is only 
the translational part of the super-Hamiltonian (the part 
which is local in the field momenta), which is truly dy
namical and requires the knowledge of the field 
Lagrangian for its determination. 

6. PROJECTIONS OF THE RIEMANN TENSOR 

The Riemann curvature tensors [3 and!i in space and 
in spacetime are defined by the commutation relations 
of the covariant derivatives I and; , 

¢c.:; lay) = ~¢5 4R 5c.:8n 

¢allbC) = ~¢d Rdabc • 

(6.1) 

(6.2) 

Proj ecting Eq. (6.1), we find the three algebraically in-
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dependent projections, 'Rabca , 4RJ.abe, and 4RJ.aJ,b, of 
the spacetime curvature tensor B. 

The abc projection of Eq. (6.1) gives 

(cfJa; [b); e] = ~ ecfJJ. 4R.L abc + cfJd4R dabe• (6. 3) 

Using first Eqs. (2.7) and then Eq. (2.5), we get 

(cfJa;[b);e] = (cfJa;[b) Ie] - Ka[ecfJJ.;b] - K[be]cfJa;l. 

= (cfJal[b - cfJ.LKa[b)le] - Ka[e(cfJJ.lb] +eKbld cfJd) 

= ~cfJd Rdabe - cfJJ.Ka[b I e] + ecfJd Ka[b Ke]d' (6.4) 

Comparing Eqs. (6.3) and (6·.4), we get the Gauss
Codazzi equations 

4Rabed = - 2e Ka[c Kbd ] + R abed , 

4RJ.abc=- 2eKa[bIC]' 
(6.5) 

To get the 4Rl. aJ.b projection is slightly more difficult. 
We start from the 1 b 1 projection of Eq. (6.1), 

(6.6) 

Substituting here for (cfJ.L;b);.L and (cfJl.);b from Eqs. (2.7) 
and (2.8), we get 

N cfJd 4Rd lob l. == e 0N(cfJl.;b) 

- (NcfJl.;.L)lb - eKg(NcfJd;.L) + ecfJd;b N,d' (6.7) 

Again, we substitute here for cfJl.;b' NcfJl.;l.' NcfJd;J.' and 
cfJd;b from Eqs. (2.5), (2.6). Using Eq. (I. 9. 8), 

0Ng ab = 2NK ab , (6.8) 

and realizing that 0N(cfJl. b) == (ONcfJJ.) b' most of the terms 
cancel and we get' , 

0NKab = ('RJ. a lob - K;Keb) N + eNlab • (6.9) 

This is a counterpart of Eq. (I. 9. 7), 

(6.10) 

for the normal change of the intrinsic geometry. Equa
tions (6.9) and (6.10) for gab and Kab , however, do not 
close, because we still ought to know 4RJ.aJ.b before pre-' 
dicting what extrinsic curvature Kab we shall find on the 
deformed hypersurface. In Sec. 8, we shall rewrite 
Eq. (6.9) into a new form, connecting it with the Gab 
proj ection of the Einstein tensor G" 8' 

7. ON CANONICAL REALIZATION OF 
GEOMETROKINEMATICS 

The normal changes of gab and Kab in an arbitrary 
spacetime are governed by Eqs. (6.10) and (6.9). Any 
dynamical theory which aims at reconstructing the 
spacetime by a canonical evolution of the space geom
etry g must respect the kinematical relations (6.9) and 
(6.10). In such a theory, the normal change of an arbi
trary dynamical variable F[g.b, 1Tab ] is determined by 
its Poisson bracket with the geometrodynamical super
Hamiltonian 

(7.1) 

which is a functional of the metric gab and its conjugate 
momentum 1Tab , according to the formula 

(7.2) 
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As in the canonical realization of hypersurface tilts, 
nothing further is known about the nature of the gravi
tational momentum 1TGb(X) , except that it is canonically 
conjugate to the metric gab(x), satisfying the Poisson 
bracket relation 

(7.3) 

In particular, the relation between 1Tab and Kab re
mains unknown; we assume only that KGb is a dynamical 
variable, expressible as a functional of the conjugate 
canonical variables gab and 1Tab, 

(7.4) 

The normal change of Kab is thus given by Eq. (7.2), 

(7.5) 

Comparing this equation with the kinematical relation 
(6.9), we see that 

(7.6) 

where we have written F ab in place of the coefficient of 
the lapse function N in Eq. (6.9). 

However, according to the kinematical relation (6.10) 
and the evolution equation (7.2) for the metric gab' Kab(x) 
itself is expressible in the form 

- 2Kab (x) 6(x, x") = OJ. x" gab (x) 

6HT(X") 
= [gab(x),HT(x")] = 61Tab(x) • 

Bringing Eqs. (7. 6) and (7. 7) together, we get 

[::;~~) ,W(x')] =- 2Fab (x) 6(x,x') 6(x,x") 

- 2e6(x,x") 6Iab (x,x'). 

(7.7) 

(7.8) 

A similar equation can be written down, with the points 
x and x' interchanged. If we subtract it from Eq. (7.8), 
the unknown term Fab drops out, due to the symmetry 
of the 6(x, x') function, and the left-hand side of the re
sulting equation becomes the variational derivative of 
[H(x),H(x')], due to the antisymmetry of this Poisson 
bracket. We thus get 

61Ta~(X") [HT(X),HT(x')] 

= - 2e6(x, x") 6Iab (x, x') - (x- x'). (7.9) 

The last equation can be functionally integrated with 
respect to 1Tab, giving 

[HT(x),HT(X')] = - 2e~(x) 6 Iab (X, x') - (x - x') 

+ I(x, x')[gab]' (7.10) 

Here, I(x, x')[gab] is an arbitrary functional of the 
metric, antisymmetrical in the points x and x', which 
plays the role of the constant of integration. 

We can introduce the gravitational supermomentum 
(5.13) into Eq. (7.10), noting the identity 

HTa(x) 6,.(x, x') - (x - x') == 21Tab (X) 6 Iab (X, x') - (x - x'). 

(7. 11) 

Equation (7. 10) then takes the final form 
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[Hg(x) , Hg(x')] = - eJlKa(x) Ii.a(x, x') - (x --- x') 

+ f(x, x')[gab]' (7.12) 

Studying the evolution of g and !f up to the second 
order in the lapse function 'Iv (which we shall not do 
here), we can actually prove thatf(x,x')[gabJ must be 
put equal to zero. The Poisson brackets between Hg(x) 
and Hg(x') then close exactly in the same way as the 
Lie brackets (1.6.17) between the C -vectors Ii~ x and 
liLX' of the normal C -basis, Hga(x) playing the role of 
liax• We can prove then that the only super-Hamiltonian 
W(x)[g,7i'J which solves Eq. (7.12) (withf= 0) is the 
standard ADM super-Hamiltonian (8.12) with an extra 
cosmological term 2Agt/2. In this way, the Einstein's 
theory can be regarded as the unique canonical realiza
tion of geometrokinematics without sources. 2 

8. GEOMETROKINEMATICS IN FULL 

Working out the different projections of the spacetime 
Ricci tensor, we get 

4RaL=4RcacJ., (8.1) 

4Rab =4Rc
acb +€4RLa .1b· 

Similarly, we get the spacetime scalar curvature 

4R=4ROOcd+2t:4RcJ.cJ.' (8.2) 

From here and the projection formulas of Sec. 6, 
we can evaluate the projections of the spacetime 
Einstein's tensor G",a; 

N 4R = 2EliN K - E(KabKab + K2) N + RN - 2g abN lab , 

(8.3) 

Gu = - iE4ROO cd= - ±(KabKab - K2 +ER), (8.4) 

GJ.a=4Rc
acL =-E(K:-KIi:)lb, (8.5) 

NGab =N(4RC
acb +E 4R La J.b - ±4Rgab ) =€ liN(Kab - Kgab ) 

+E(2K~ KCb - 3KKal> + i (KcaK Cd +K2)gab)N 

- (Nlab - gCd NI cd gab) + 3Gab N. 

(8.6) 

In Eq. (8.6), 3Gab is the Einstein's tensor of (m,!!:). 

At this stage, it is useful to introduce the gravita
tional momentum 

(8.7) 

The relation between the extrinsic curvature Kab and 
the gravitational momentum rrab can be written by means 
of the DeWitt's "supermetric" Gab Cd, 

with 

Gab cd = ±gt/2(2gabgCd _ gaCgbd _ gbCgad), 

Gab cd = ~ g-11 2(gacgbd + gadgbc - gab goo)' 

Gab cd = Gba cd = Gab dc = Gcd ab' 

Gab cd Gcd 
el = Ii~t = Wi~ 6t + IY. 6g). 

(8.8) 

(8.9) 

(8.10) 

Equations (8.3) and (8.4) are then easily expressed in 
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terms of rrab , 

QLL=gtl2 GLJ.=tEHIr, 

QL a =gl/2 GJ. a= tHca; (8.11) 

Htf is the well-known gravitational super-Hamiltonian 
(with the cosmological term put equal to zero), 

and H g
a is the gravitational supermomentum 

H
g

a = - 2rr~lb' 

which we have already encountered in Eq. (5.14). 

(8.12) 

(8.13) 

Equation (8.6) can also be written in terms of the 
gravitational momentum, after we raise the indices a 
and b. Because 

liN(g1/2g acgM) =g 112(_ KgaCgbd + 2KaCgbd + 2Kl>dg aC), 

(8.14) 

we get 

liN 7TaI> = - Eg 1/2 (rrrr"b _ 2rrac~ + t(rrCd 7T cd _ ±7T2) g ab)N 

+ (N lab _ gCdN
I 
cd gab) + (Gal> _ 3Gab )N. 

(8.15) 

The quadratic combination of rral> on the right-hand 
side of Eq. (8.15) is equal to 

o (G cd e/) 
E -~- cd of rr rr • 

ugab 
(8.16) 

Further, 

_6_ (gl!2R) N'1:' = (N1ab _ gCdN gal» _ 3 GabN, 
ogab(X) X' ICd 

(8.17) 

If we consider rrab as the canonical momentum conju
gate to gab' 

[ga~(X), rrcd (X')) = Ii~g Ii (X , X'), (8" 18) 

we can write Eq. (8.15) in a very compact form 

liN rrab(x) = [rrab (x), W x'] N X
' + Gab N, (8. 19) 

where Htf is the super-Hamiltonian introduced by Eq. 
(8.12). Similarly, 

CiN gab (x) = [gab(x),Wx,lNx' . (B. 20) 

Equations (8.19) and (8.20) hold in an arbitrary 
Riemannian spacetime and are thus kinematical equa
tions. Note that Einstein's law was never used in their 
derivation. In effect, Eqs. (8.19) and (8.20) are just a 
fancy way of writing down the kinematical equations 
(6.9) and (6.10) Again, Eqs. (8.19) and (8.20) are not 
closed in the variables gab and 7Tab , because Eq. (8.19) 
contains a source term GabN, which is proportional to 
the tangential proj ection of the spacetime Einstein's 
tensor. While the Gu and GJ. a proj ections of the 
Einstein's tensor are determined by the initial data
the intrinsic geometry gal> and the extrinsic curvature 
KaI> (or the gravitational momentum rral»_bY Eqs. 
(8.11)-(8.13), the tangential projection Gab is not de
termined by the initial data. In addition to gab and rrab , 
Gab must be specified on an initial hypersurface before 
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the gravitational momentum can be calculated on a de
formed hypersurface from Eq. (8.19). If we want to 
proceed yet to another hypersurface, we must again 
specify the projection Gab on the deformed hypersurface, 
and so on at each successive step. It must be so, be
cause otherwise the initial data on an initial hypersur
face would determine the whole spacetime geometry 
by themselves. This is clearly impossible, because 
spacetime geometry is arbitrary at this stage and may 
thus be freely readjusted in the regions away from the 
initial hypersurface. 

If we subject the spacetime to Einstein's law of gravi
tation, Gab becomes proportional to the stress tensor as 
measured by the family of observers who move in the 
normal direction to the hypersurface. In a vacuum 
Einstein's spacetime, Gab = 0 and the initial data gab, 7T ab 

must satisfy the constraints H" = 0 =H"a' Equations 
(8.19) and (8.20) close in the variables gab' 7T

ab , becom
ing canonical equations generated by the Hamiltonian 
HK",N"'. In this section, we have derived Eqs. (8.19) 
and (8.20) by the direct projection of the Einstein's law. 
In the final paper of this series, we will discuss how to 
get these dynamical equations from an action principle. 

9. CONSERVATION LAWS 

External sources, like the four-current JOI. in electro
dynamics or the energy-momentum tensor TOI.B in the 
Einstein's theory of gravitation, often obey the conser
vation laws in the form of spacetime divergence 
equations, 

JOI.,OI.=O, 

TOI.B;B= O. 

(9.1) 

(9.2) 

In hypersurface dynamics, the conservation laws tell us 
how the charge density t'=-g1/2J\ the energy density 
r U =-g1/ 2T U

, and the momentum density r1.a=-g1/ 2T1.a, 
measured by the family of observers moving perpen
dicular to a hypersurface, change when we pass to 
another hyper surface. In other words, the conservation 
laws are to be written as restrictions on the normal 
changes 15N of the projections {\ r H

, and r1. a • To do 
that, we project Eqs. (9.1) and (9.2), writing them in 
the form 

(9.3) 

and 

Ng1/2T B =Ng 1/2g abT +ENg1/2T -0 
l. jJ9 l.a;b ..LJ.;L- , 

Ng1/2T B. =Ngl/2gbCT +ENg1/2T _ 0 (9.4) 
a , (3 ab; c a ..L;.L - • 

We then use the formulas (2.5)-(2.8) for the projec
tions of the spacetime covariant derivatives, and 
Eq. (1.9.9), 

15
N

g 1/2 = _ gl/2KN, 

getting 

Ng 1/2JOI.. = 15 J + (NJ a) = 0 ,a: N ..... .1 ....,a , 

and 
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(9.5) 

(9.6) 

Ng 1J2T/;B= 15N Ta 1. + (NT/)Ib - ETHNla 

+ NK:(Tu - !l.b) = O. (9.8) 

Note that the extrinsic curvature does not enter into 
Eq. (9.6), corresponding to the fact that the conserva
tion law Jot;ot = 0 can be written in the form 

(N(- 4g )1/2 Jot),ot = 0, 

using only the partial derivatives of the spacetime 
vector density (- 4g )1/2 JOI.. For a symmetrical tensor, 
the last term in Eq. (9.8) vanishes and the extrinsic 
curvature thus disappears from the momentum conser
vation law as well. However, the extrinsic curvature 
remains in the conservation law (9.7) for the energy. 

A number of terms in Eqs. (9.6)- (9.8) can be easily 
understood if we realize that {J.L' Ja} and 
{TH , T.La, TaJ.' Tab}, like the projections of any space
time vector JOI. and any spacetime tensor TOI.B, must be
have in a definite way under hypersurface tilts. Indeed, 
for hypersurface tilts, Eqs. (9.6)-(9.8) pass into the 
already known equations (3.1) and (3.16). The real in
formation about the charge conservation is carried 
only in the translation parts of Eqs. (9.6)-(9.8), 
namely, 

15,;J1.=-{a,a N , 

15, ru = - (r1. b
,b + EKabr ab) N, 

15, ra1.=- r/lb N . 

(9.9) 

(9.10) 

(9.11) 

Using the arbitrariness of the lapse function, Eqs. 
(9.6)-(9.8) can also be written in the form (TOI.B being 
taken symmetrical), 

g1/2 JOI.;OI. 15 (x, x') = 151.,;' {1.(x) + {a15,a(x, x') 

+ {a,a B(x, x') = 0, 

gl/2 T/;B B(x, x') = 151.,;' !l.l.(x) + !1.b,b 15 (x, x') 

+ 2!1.b(x) 15,b(x, x') 

+ EKabT ab 15 (x, x') = 0, 

gl/2 T/;B 15(x,x') = 151.,,' Ial(x) + 1: 1& B(x, x') 

+ T~ (x) 15,b(X,X' ) 

-ETH(x) B,a(x,x/)=O. 

10. BIANCHI IDENTITIES 

(9.12) 

(9.13) 

(9.14) 

The Einstein's tensor COI.B satisfies the divergence 
equation (9.2) identically, by virtue of the contracted 
Bianchi identities. To express the contracted Bianchi 
identities in hypersurface language, apply Eq. (9.13) 
to the Einstein's tensor, using the definitions (8.11) of 
the super-Hamiltonian and supermomentum, 

o =- 2Eg 1/2 G/;B B(x, x') = 151.,;' H"(x) + EHK ala (X) B(x, x') 

+ 2EHK a(X) B,a(x, x') + 2 Cab (x) Kab(x) B(x, x'). 

(10.1) 

On the other hand, HK(X) is a functional of gab and 7T ab , 
and its normal change can thus be evaluated from Eqs. 
(8. 19) and (8.20), 
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Further, 

[g,w(x'), W(x)] = 0,Lx g,w (x') = - 2Kab (x') Ii (x' ,x). (10.3) 

Putting Eqs. (10.1)-(10.3) together, we get 

0==- 2g1/2 G L8;81i(X,X') = [HI(x),H'(X')] 

(10.4) 

This is the well-known7 closing relation for the gravi
tational super-Hamiltonians. It is equivalent to Eq. 
(7.12), withJ= O. 

Similarly, start from Eq. (9.8), substituting into it 
the projections (8.11) of the Einstein's tensor, 

Evaluate again the normal change of H'. from Eqs. 
(8.19) and (8.20), getting 

(10.5) 

(jNW.(X) = [H'. (x) , H' ",]N x' + (deNV [gbex" H'.(x)]. 

(10.6) 

Because 

[gbe(X'), H'.x]N ax = (jiigbe(X') = 2N(ble), 

we can integrate by parts the expression 

(deN) x' [gbex' ,Hi' ax] N ax = 2(GbeN) x' Nb lex' 

= - 2(Gb
e N)lex,N bX', 
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(10.7) 

and deduce from there the equation 

(de N)'" [gbe"', H' ax] = - 2(G;N) Ie' (10.8) 

Putting Eqs. (10.5), (10.6), and (10.8) together, we 
see that 

0==- 2eg1/2 G/;8N = [H"a(x) , HI'",] N x' - Hi' N I., (10.9) 

or 

0== 2 g 1/2 G/; 8 Ii (x, x') 

= [W.(x),H'(x')]-H"(x) Ii,.(x,x'). (10.10) 

This is an equally well-known closing relation between 
the supermomentum H' .(x) and the super-Hamiltonian 
W(x'). 
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The dynamics of tensor fields with derivative gravitational coupling on a given Riemannian background is 
formulated as Hamiltonian dynamics of hypersurface projections of these fields propagating in hyperspace. 
The first-order spacetime action is transformed into an equivalent hypersurface form. The supermomentum 
and different parts of the super-Hamiltonian are identified with projected pieces of the (symmetrical, 
canonical, and spin) energy-momentum tensors, and their kinematical and dynamical roles are analyzed. 
Hypersurface variables are included among the canonical variables, and the resulting first-order generalized 
Hamiltonian dynamics of hypertensor fields is discussed. The closing relations for the constraint functions 
in the generalized Hamiltonian dynamics are derived from the foliation independence of the hypersurface 
action. The elimination of the A-multipliers, which are characteristic to the first-order theory, is 
accomplished. The general formalism is specialized to the n-form fields with nonderivative gravitational 
coupling. 

1. INTRODUCTION 

Hypersurface dynamics gives the rules according to 
which the perpendicular and parallel prOjections of 
spacetime tensor fields to a spacelike hypersurface 
change when the hyper surface is deformed through a 
Riemannian spacetime, Following the program set in 
our previous papers, 1,2 we visualize the hypersurface 
dynamics as dynamics of hypertensor fields in hyper
space. Hyperspace is an infinitely dimensional mani
fold of all space like hypersurfaces drawn in a 
Riemannian spacetime (!Yi,g). It has a rich geometrical 
structure which we have studied in Ref. 1. The pro
jections of spacetime tensor fields form a fiber of 
hypertensors over the hypersurface, Hypersurface dy
namics tells us how the field point in this fiber moves 
when the base point follows a curve in hyperspace. 
Starting from the spacetime action functional, we en
dow the fiber of hypertensors with the Hamiltonian 
structure and cast the hypersurface dynamics into a 
Hamiltonian form, 

The idea of hypersurface dynamics of tensor fields 
on a flat Minkowskian background goes back to Dirac. 3 

The hyper surface dynamics of simple tensor fields 
(scalar and electromagnetic) with nonderivative gravi
tational coupling was studied in detail. 4 The general 
features of hypersurface dynamics of tensor fields with 
derivative gravitational coupling, on the other hand, 
were never elaborated into a complete scheme. In this 
paper, we build such a scheme, paying special atten
tion to the correct interpretation of various pieces of 
the hypersurface Hamiltonian, and to the matching of 
the kinematical2 and dynamical aspects of the theory, 

We organize the material into twelve sections. First, 
we remind the reader what is the first-order form of 
the spacetime field action (Sec, 2) and how it generates 
the symmetrical, canonical, and spin energy-momen
tum tensors (Sec. 3), The first-order form of the action 
is better suited to hyper surface dynamics than the 
second-order form, because it is directly related to the 
Hamiltonian formalism, its projections are simpler, 
and the projected terms are easier to interpret. The 
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detailed knowledge of the construction of the energy
momentum tensors is needed, because the projected 
parts of these tensors play important and conceptually 
different roles in hypersurface dynamics, In Sec, 4, 
we transform the spacetime action S4J into an equivalent 
hypersurface action S4>, which is expressed as a func
tional of the field proj ections 1 and II to a foliation e (t) 
of embeddings, and of the foliation itself. The hyper
surface action S4> of a covector field is worked out in 
Sec. 5, and cast into the Hamiltonian form. The consti
tuent parts of the field super-Hamiltonian and super
momentum are identified. The algorithm developed in 
this section is easily generalized to higher-rank tensor 
fields. (It is applied to the second-rank tensor fields 
in Sec. 9.) The Hamiltonian dynamics of spacetime 
hypertensors generated by the hypersurface action is 
discussed in Sec. 6. The first-order form of the action 
leads to the appearance of the Lagrange multipliers A 

in the hypersurface Lagrangian and to the separation of 
the Euler equations into Hamilton's equations and A 

equations. The mixing of the field momenta and the A 

multipliers under hypersurface tilts leads to the dis
covery of the kinematical role of the tilt super-Hamilto
nian H~·). The symplectic structure of the hypertensor 
phase space P and the many-fingered-time nature of 
field curves in P are discussed in geometrical terms. 
In Sec. 7, the embedding e with conjugate energy-mo
mentum densities p is included among the canonical 
variables, and the generalized Hamiltonian dynamics of 
hypertensor fields on the constraint hypersurface in the 
generalized phase space e P is developed. In Sec. 8, we 
show what roles are played by various prOjections of the 
energy-momentum tensors in hyper surface dynamics. 
In particular, we generate all prOjections, T U

, TJ.b, 
and Tab, of the symmetrical energy-momentum tensor 
TOI.B directly from the hypersurface Lagrangian. As we 
have already mentioned, Sec. 9 constructs the hyper
surface Lagrangian for second- rank tensor fields. In 
Sec. 10, we explain the process by which the A multipli
ers are eliminated from the formalism on the level of 
the hyper surface action, We illustrate the process on a 
covector field satisfying the wave equation. The hyper
surface dynamics notably simplifies for the fields with 
nonderivative gravitational coupling (no derivatives of 
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the metric tensor g appear in the spacetime action). In 
Sec. 11, we give a-systematic treatment of such fields 
(n-form fields!p'E TaUr}), n=O, 1,2,3), and study the 
Proca's and Maxwell's fields as illustrations of the 
general theory. In Sec. 12, we derive the closing rela
tions between the constraint functions in generalized 
Hamiltonian dynamics of hypertensor fields from the 
invariance of the hypersurface action under the change 
of foliation. These closing relations are complicated by 
terms involving the ,\ equations. After the ,\ multi
pliers are eliminated, the closing relations assume 
the standard universal form. 

The dynamical interaction between geometry and the 
tensor fields with derivative gravitational coupling is 
the subject of the last paper of this series, "Tensor 
Sources in Geometrodynamics, " 

2. FI ELD ACTION 
In this paper, we study the tensor fields ¢ propagat

ing on a given Riemannian background (In,gT, For uni
formity, we always take the fields ¢ in a completely 
covariant form. We assume that the field equations 
follow from the field action 

S'" =S"'[¢J= f 1/L(¢, ~!I!.,g), - - - -
(2.1) 

which is an integral of the Lagrangian L with respect 
to the Levi-Civita form 1/. The Lagrangian is a scalar 
invariant constructed from the field ¢, its first covari
ant derivatives ~ ¢, and the metric g-of the background. 
In a coordinate basis aCt' -

(2.2) 

where {a} stands for the collection O't'" an of indices, 
and 

-141 1/2 0 1/ CtaY6 - g CtaY6 • (2.3) 

The variation of the field action (2.1) with respect to 5l!. 
yields the field equations 

OS~ _1 4 ,,1 1/2 (fJL _ fJL \_ 
05l!.(X)- h a!p' ~a a(~ap.))-O. (2.4) 

The dependence of the second-order Lagrangian L 
on the field derivatives V ¢ may be fairly complicated. 
In hypersurface dynamics~ we are required to project 
everything into the normal and tangential directions 
to spacelike hyper surfaces, and cast the action into a 
Hamiltonian form. The projections are much easier to 
handle if the covariant derivatives enter the action in 
a standard linear way which is directly connected with 
the Hamiltonian formalism. It is thus useful to bring 
the action into such a "first-order form, " at the price 
of introducing supplementary variables X which form a 
contravariant tensor of rank n + 1. Certain projections 
of this contravariant tensor are then identified with 
the field momenta, while other projections stay in the 
formalism as Lagrange multipliers. The interpretation 
of the hypersurface dynamics is most easily carried 
through in this form, the Lagrange multipliers being 
eliminated only in the last step. 

We pass from the "second-order form" (2.1) of the 
action to the "first-order form" by putting 

(2.5) 
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and performing the Legendre dual transformation 

5l!., V5l!., L -5l!., A, A. (2.6) 

Assuming that Eq. (2.5) is invertible with respect to 
V5l!., 

V5l!.=V5l!.(!p',X,K), (2.7) 

we introduce the function A by the equation 

A=[XJ V5l!. - L]V1=V!(!.X,!) 

=[,\{cd8cp -L] {Y)6 (2 8) 
{Ct);a 4>{a);a:"'(Ct);a("'{r),A ,gyfil' • 

and express the action (2.1) in terms of the new 
variables ;k, X, 

S"'=S4>[5l!.,XJ=~!l(XJV5l!.-A). (2.9) 

This is the first-order form of the action. The scalar 
invariant A(cp, X,g) completely characterizes the dy
namical properties of the field; we will call it the 
Lagrangian potentiaL 

Varying ¢ and A as independent variables in the 
action (2.9), we get the field equations 

rl, 2A v.X=- aA 
V~= aX ' fJ5£ ' 

(2.10) 

or, writing the same equations in the coordinate basis, 

aA 
CP{OC);Il=~' 

Eliminating X from these equations and using the 
property 

aA(cp, X) 
05l!. 

aL('p', vcp) 
a5l!. 

(2.11) 

(2.12) 

of the Legendre dual transformation, we return to the 
second-order field equations (2,4), 

Sometimes, however, we cannot calculate all ¢{ct!;a 

in terms of A{Ct)!l from Eq, (2.5). This happens when L 
does not depend on all derivatives ¢{Ct);a, but only on 
some combination of them. As an important and typical 
example, take a covector field cp", and decompose its 
covariant derivatives ¢Ct;a into symmetrical and anti
symmetrical parts, 

CPa;ll= ¢ (Ct;il) + ¢CCt;lll, 

¢ (Ct;a) = t(CPCt;a + ¢a;Ct)' 

Let now L depend only on the antisymmetrical combina
tion <{JC<>;Sl' From Eq. (2.5), we see that the symmetri
cal part of ACta automatically vanishes, A (",a) = O. There-

fore, we cannot calculate all CPa;s from Eq. (2.5). How
ever, we can calculate exactly that combination of ¢ Ct;!l 

which we need, namely cP [Ct; a1, by inverting the equation 

A[Ctlll_~ (2,14) 
- fJq:,[Ct;al ' 

We then perform the Legendre transformation in the 
variables ¢[Ct;Bl only, getting 

A = ;\[Ctlll¢[OC;lll - L(¢a, ¢[Ct,al, gCtIl) , 

¢[Ct;lll = ¢[Ct;a1(¢Y, A[Yfil, gYfi)' 
(2.15) 

We obtain the field equations by varying the first-order 
action 
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Sq, = sq,[¢,o ,\[aa)] = f 1/p .. [aa)¢a;a - A) (2.16) 
in -

with respect to ¢a and antisymmetrical A[all) as inde
pendent variables. 

A similar procedure is applicable whenever L depends 
on an irreducible combination of the covariant deriva
tives ¢(a);a rather than on all such derivatives. With 
these remarks in mind, we return to the treatment of 
the general case in which Eq. (2.5) is fully invertible. 

3. SYMMETRICAL AND CANONICAL ENERGY
MOMENTUM TENSORS 

Long time ago, Belinfante,5 Rosenfeld,6 and Pauli7 

discovered the connection between the symmetrical 
energy-momentum tensor Taa, which is the source of 
the gravitational field gaa' and the canonical energy
momentum tensor 8 aa, which follows from the field 
Lagrangian by standard procedures of the Hamiltonian 
theory. We shall review the basic results of the 
Belinfante-Rosenfeld approach adopted to the first
order action, because they are essential for the proper 
understanding of the structure of the field super
Hamiltonian Hq, and supermomentum jjq, in hypersurface 
dynamics. 

The symmetrical energy-momentum tensor is defined 
as the variational derivative of the field action with re
spect to the spacetime metric, 

14gl1f2Taa(X) 0=2 ~ , 
ogaa(X) 

(3.1) 

the factor 2 being inserted to get the correct coefficients 
in the Einstein's law (our units are 2K 0= 167TG c-4 = 1; see 
the final paper of this series). It is well-known that the 
energy-momentum tensor (3.1) is covariantly con
served by virtue of the field equations (2.4) or (2.11), 

(3.2) 

because the field action (2. 1) or (2.9) is left invariant 
by spacetime diffeomorphisms. 8 

To find the detailed structure of the symmetrical 
energy-momentum tensor, vary the first-order action 
(2.9) with respect to the metric tensor [I, 

OgSq, = ~ :1 { [- a~~" + HA(oda ¢(a);B- A) g'""] og,"" 

+ A (a)A Og¢(a);A } • (3.3) 

Here, the second term in the [ ] brackets comes from 
the variation of the Levi-Civita form 1/. To evaluate 
the variation Og¢(cd ;A' write the covariant derivative 
¢(a);A as 

(3.4) 

where T( ad (B) ,K is a combination of Kronecker's deltas, 

(3.5) 

The variation of ¢(a);A is then reduced to the variation 
of the affine connection r' KA , 

(3.6) 
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which is given by the well-known formula 

O~'.cA = H- g,a o~{ + g''"o~ + g'" o~:). (og,"v);a, 

o~{ 0= o(~ o~) . 

From Eqs. (3.6) and (3.7), we get 

where 

P ,""a=( A(a)aT (a)<'"")+A(a)'"T (aHa") - - (,,) (,,) 

(3.7) 

(3.8) 

+ ,\ (")"T(od (a) [apJ) ¢(a) (3.9) 

is a bilinear form of A(")A and ¢(a)' symmetrical in the 
indices /lv. Integrating the term (3.8) in Eq. (3.3) by 
parts, we identify the symmetrical energy-momentum 
tensor (30 1) as 

T'""=-2 aagA + (A(odB¢(a);B-A)g'"v-p"vu;u' (3.10) 
,"v 

To find the relation of the symmetrical energy-mo
mentum tensor (3.10) to the canonical energy-momen
tum tensor 8 aB , write down the condition ensuring that 
A behaves as a scalar under the change 

(3.11) 

of the spacetime basis at a given point X. During the 
transformation (3.11), the components ¢(,,) and ¢(,,) of 
covariant and contravariant tensors, respectively, 
undergo the change 

and 

¢("') =Al~)) ¢(a), A!a)) =A~i ... A:> 

where Afi' is the inverse matrix to Aa., 
ArA~. =o~:. 

(3.12) 

(3.13) 

(3. 14) 

Differentiating Eqs. (3.12)-(3.14) with respect to A~', 
we get 

a ¢( "',! I - T (8)" A., a A'" ,,' - (,,) '" '1-'(8), 
v Av =o~ 

(3.15) 

and 

aA.,("·) I 
-'1-'- -_ T (,,) VA.,(8) 

aA '"' • - (8) '" 'I-' • 
v At' =o~ 

(3.16) 

The expression A(¢(,,), A(odB, gaB) behaves as a scalar 
iff 

(3.17) 

substituting here the appropriate expressions from 
Eqs. (3.15), (3.16), we can express aA/ag,," as 

2 ~ =-~ T (8),""A., + aA T (a)""A(8)r 
ag,," - a¢(a) (a) 'I-'(a) aA(ajr (a) 

(3.18) 

Using the field equations (2.11) in the identity (3.18), 
we cast it into the form 
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FIG. la. Sandwich action. The sandwich action S0['6,ej is de
fined as the field action contained in the spacetime sandwich 
enclosed between two embeddings, 'is and e. The contributions 
are taken with the positive sign in the regions where e lies to 
the future of ~ and with the negative sign in the regions where 
e lies to the past of 'if • 

(3.19) 

Substituting the expression (3.19) into Eq. (3.10), we 
express T~v in the form 

T~V = e~v + 5~va;a , (3.20) 

where 

(3.21) 

is known as the canonical energy- momentum tensor, 
and 

5'" va = _ p~va _ ,\{ ala T{al (M ~v ¢{M = (_ ,\Iod a T(al (M [~v) 

+ ,\Ial '" T (~)[val +,\ (odv T (e) [~al) '" 
(ad (ad 'r'(a} 

(3. 22) 

is a bilinear form of ,\(ala and ¢(a) anti symmetrical in 
the indices vCJ, called the spin tensor. Its divergence, 
5~va;", is called the spin energy-momentum tensor. 

The canonical energy-momentum tensor is not co
variantly conserved in curved spacetimes. Indeed, 
from the conservation law (3. 2) and the commutation 
relations (11.6.1) (see Ref. 2) for the covariant deriva
tives, we get 

(3.23) 

The projections of the symmetrical and spin energy
momentum tensors play an important role in hyper sur
face dynamics, where they are identified with the differ 
ent pieces of the super-Hamiltonian and supermomen
tum. We shall return to this subject in Sec. 8, 

4. HYPERSURFACE ACTION 

The action (2.9) is a functional of the spacetime 
tensor fields ¢(X)E T:,((I1), X(X)E To"+l(;)1) and 
,dX) c T20(;)1). -We shall now consider the action 5° also 
as a functional of the embedding. This is done by 
limiting the region of integration /I} to a sandwich of 
spacetime enclosed between two embeddings, ~ and e. 
We adopt the convention that this integral is taken with 
a positive sign when c lies to the future of ~, and with 
a negative sign when e lies to the past of ~. If e and ~ 
intersect, we have alternating regions in which the in
tegral is taken with positive and negative signs [Fig. 
l(a)]. We write 
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50 [e,e]= (e 1JL 
o Jg _ (4,1) 

for the action enclosed between the embeddings ~ and e. 
In the limit when the initial embedding is pushed far 
back into the past, we write 

5~[e] = Ie:~ !l L, (4,2) 

the integration being performed over the entire past of 
the embedding e. 

The action (4.2) is a functional of the embedding, 
5~[e]EJ([). It is obvious, however, that if we change 
the embedding e while leaving the hypersurface fixed, 
e - e 0 c{J, c{JE Diff(m), the action 5~[e] remains the same. 
The action (4.2) may thus be considered as a functional 
5~[h]EJ(H) of the hypersurface, and we can write 

5~[h]= fL !1. L. 

The same remark applies to the action (4.1). In the 
differential language (Sec. I. 4) (see Ref. 1) we have 

(4.3) 

Let us adopt the convention that the normal n to the 
embedding e points into the future and the embedding is 
oriented so that the vectors {n; e1, ez, e.;} form a right
handed system. Projecting the Levi-Civita form !l, 
we get 

and, of course, 

1) abcd = O. 

Therefore, 

(4.4) 

(4.5) 

(4.6) 

Asking how the action (4.2) changes under the defor
mation N of the embedding e, we get 

15 5~[e]=<L ""= r N a1J Ldxa/\dxb/\dx c N ,~. d~ _ _ _ 
m 

(4.7) 

Here, (L, N) is the inner product in [ between the de
formation [-vector N and the [-covector 

with the coordinate [-basis components 

To get the final line of Eq. (4.7), we have used Eq, 

e(t+lI.t) 

e(f) 

(4,8) 

(4,9) 

FIG. lb. Hypersurface Lagrangian. The hypersurface Lagran
gian OIP4> is interpreted as (~t)-1 times the action contained 
in the thin sandwich enclosed by the nearby embeddings e(t) 
and e(t + DJ) with the normal proper time separation NDJ. 
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----~----Tx ~ (v'{,) 

FIG. 2. Hypersurface action. The commutative diagram de
fining the hyper surface action S~ in terms of the spacetime 
action S</>. 

(4.6), checking thus directly that 5<1>[e] is anH-scalar, 
Eq. (4.3). 

We shall call 0N5<1>[e] the hypersurface Lagrangian 
and L the LagrangianH-covector. The expression 
t:.t ON 5<1> [e] can be interpreted as the field action con
tained in a thin spacetime sandwich enclosed between 
the hypersurfaces {e(t)} and {e(t + t:.t)} which have the 
normal proper time separation Nt:.t [Fig. 1 (b)]. 

To recover the field action contained in a finite sand
wich between the hyper surfaces {e} and {e}, we connect 
f and e by a path e(t) in { and intJgrate t~e hypersur
face L

2
agrangian along this path, 

51/! = hf (L, N) dt. (4.10) 
1 

Consider the path e(t) as a mapping e from the mani
fold N= RX m into the spacetime /11, 

e: Y=(t,x)EON-X=e(t,x)c:::/I1. (4.11) 

For the rest of this section, e will not denote an indi
vidual embedding, but the whole path (4.11), the indi
vidual embedding corresponding to a fixed t being de
noted by et. For simplicity, we shall assume that e(t) 
is a foliation of /11, i. e., that the mapping e is a 
diffeomorphism. In the final results, we can waive 
this simplifying assumption and consider again any 
path e(t) in { (this will be done in Sec. 6). 

The mapping e refers the fields ¢(X) and Xex) back 
to the manifold N, -

.p(Y) = ~(e(Y», X(Y) =X{e(y). (4.12) 

Note that the fields ~(Y) and X(Y) defined by Eq. (4.12) 
are considered as the fields of spacetime tensors, and 
are thus different from the fields e* ¢ and e-1 * X, which 
are tensor fields on N. For a fixed t; Eqs. (4.12) de
fine the spacetime hypertensors I/>t and Xt along the 
embedding et. We can thus think about the fields (4.12) 
as hypertensors specified along the path e(t). In this 
spirit, we write 

1/>: YEO N-'p(Y) E: Te(Y)~ (/11), 

X: Y c::: N - X(Y) EO Te(y) n01(/I1). 
(4.13) 

The action functional 5<1> maps the fields ~(X), X(X) 
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on (/I1,g) into real numbers. For a given path e, we 
define the functional S· so that it assigns the same 
number to the fields 1/>, X as the action functional S~ did 
to the fields ~, X: 

SI/I[I/>,X;e]=SI/![~,X;,[]. (4.14) 

This is expressed by the commutative diagram in Fig. 
2. Because we have specialized e to a diffeomorphism, 
S~ is uniquely defined for every field 1/>, X. Applying 
the rule (4.14) to the action (4.1), we get exactly the 
action (4.10). We shall call the action SI/I[I/>, X, e] ex
pressed as a functional of the hypertensors 1/>, X along 
an embedding e the hypersurjace action. 

From Eq. (4.14), we immediately see that cf>(Y), X(Y) 
extremizes the functional SI/I evaluated along a fixed 
path e if and only if ¢(X), X(X) extremizes the functional 
5<1> on a fixed Riemallnian background (/I1,g). Moreover, 
5~ is obviously unchanged if we keep the spacetime 
fields ¢ex), Xex), and gex) fixed, but change the path 
e between the fixed end points e, e. Such a change of 

. 1 2 ' 
course, lIlduces the change in the fields cf>(Y), X(y), 

(4.15) 

Under the variation (4.15), the functional S~ is left 
unchanged for any cf>, X, and e: 

oS 6'+'Y OS Y 6S Y _ 
ocf>Y • 'I' + W 6. X + 5eY Oe = O. (4.16) 

If cf>(Y), X(Y) extremize the functional S· along a given 
path e, the first two variational derivatives in Eq. 
(4.16) must vanish. We thus conclude that 

OS~ 
Be(Y} =0 (4.17) 

for any e(Y) and the extremal fields cf>(Y), X(Y). Equa
tion (4. 17) is a consequence of the field equations, due 
to the identity (4.16). This means we get the correct 
equations by varying the action functional S~[cf>, X; e] 
with respect to all the variables ¢, X, e. These equa
tions, however, are not all independent, being con
nected by the identity (4.16). The path e(Y) cannot be 
determined from them, but may be prescribed arbi
trarily. The equations then determine the extremal 
field cf>(Y), X(Y) along the given path e(Y). 

At this point, we can project the fields ¢(Y) and 
X(Y) into 1 and II directions to the embedciings et, i. e. , 
we can split the hypertensors I/>(x)[e t ] and X(x)[e t ] 
with respect to the normal hyperbasis. We can then 
vary the proj ec tions ¢.1.,,, (y), X.1.," (Y) [keeping e (y) 
fixed or varying it as well], instead of varying the 
original variables cf>(Y), X(Y) [keeping e(Y) fixed or 
varying it as well]. Because {n,~} are some functionals 
of e (Y) in a given Riemannian spacetime (/11, g), the new 
variables are some functionals of the old variables. 
Moreover, the process can be easily inverted, and the 
old variables expressed as some functionals of the new 
variables. 

The equations which we get by varying 51/! with re
spect to the projected variables ¢l.."(Y) and X.1.,,,(y) 
with e(Y) kept fixed are thus equivalent to the original 
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field equations. Also, we may decide to vary e (Y) in 
addition to ¢l. ,,(Y) and Jtl.,I'(y), and still get a correct 
(though redundant) set of equations. These are the main 
conclusions of this section. 

Our basic technical task then is to express the hyper
surface Lagrangian in terms of the projections ¢l.,,,(Y), 
Jtl..,,(y) and the path e(y), and cast it into the Hamiltonian 
form. This is done in the next section. 

5. HYPERSURFACE LAGRANGIAN OF A COVECTOR 
FIELD 

The simplest field on which the prOjection of the 
hypersurface Lagrangian may be illustrated with all its 
complexities is a covector field ¢CX) E TtO(!'tI) •. The 
scalar field ¢(X) E J (m) is too special for this purpose, 
because the covariant derivatives Y'¢ may be replaced 
by the exterior derivatives 4¢. The scalar field action 
thus does not depend on the derivatives of the metric 
tensor; we say that the scalar field has a nonderivative 
gravitational coupling. 9 We will treat it, together with 
other fields sharing this property, in Sec. 11. 

The hypersurface Lagrangian of a covector field has 
the form 

ONs¢=f '!IN('JlJY':k-A{J!.,X,[{)). (5.1) 
m 

We will rearrange it into the Hamiltonian form in four 
steps. In the first step, we project the spacetime 
fields ¢CX), XCX), and g(X), substitute the projections 
into the Lagrangian potential A, and write down the 
conditions that A expressed in this way is a spacetime 
scalar. In the second step, we project the bilinear form 
Ng lf2JtfY.BrpfY.;8' In the third step, we identify the momen
ta conjugate to the projections rpl. and ¢a as the coef
ficients of ON rp l. and ON rpu in the hypersurface 
Lagrangian. In the fourth step, we integrate by parts 
those terms which contain the space derivatives of the 
lapse function and the shift vector, and identify the 
field super-Hamiltonian and supermomentum. 

Start with the first step of this program. The fields 
¢(X), X (X) , and g(X) in Eq. (5.1) are spacetime tensor 
fields defined along the embedding X == e (x); according 
to the terminology introduced in Sec. 1. 7, each of these 
fields is a hypertensor. We split these hypertensors 
with respect to the normal hyperbasis {n, e}, 1. e., de
compose the constituent spacetime tensors with respect 
to the normal basis {ii, €"} according to the scheme of 
Sec.!. 3, 

The Lagrangian potential A may be expressed in 
terms of these projections, 

(5.3) 

Because A is a spacetime scalar, the function (5.3) 
must be a space scalar, and an invariant under the 
hypersurface tilts (see Sec. II. 3). The first condition 
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leads to an identity of the type (3.18), with the space 
indices replacing the spacetime indices, 

2 aA _ ilA ",m ilA amJtnl. aA amJtl.n 
(}g"", -- a¢n't' + ilAul. g + aJtl. a g 

+ (}A bmJtan+ aA gamJtnb (5.4) 
~g ~ 0 

The second condition states that 

o iJA 0 ilA 1> '" ClA 1> Al..l. 3A 0 AJ.b 
f-A=a¢l. f¢.L+a<Pa f-'f'a+ilJtl..l. f +iJII7i f-

+~!I X·l.+ aA 0 Xab=O 
ilJtal. f- aJtab f 

(5.5) 

for an arbitrary hypersurface tilt N(x) = 0, N, c(x) *- 0. 
Using Eqs. (II. 3. 1) and (II. 3. 16) for the tilt changes of 
tensor projections, and taking into account [as we al
ready did when writing Eq. (5.5)] that 1>+ gab = 0, we 
get the identity 

_ ~ n.C+E~ fl.. _ ilA (Xl. C + XC.l) 
a¢l. 'v a¢c 'f"l. w-r 

+ aA (eX.Ll.gbC_XCb)+ aA (EJtl.l.gOC_Xac) 
axd axaI 

+E aA (Xo.LgbC+X.l.bgac) =0. 
3Jt ab 

(5.6) 

The identities (5.4) and (5. 6) may also be considered 
as the II II and II 1 projections of the spacetime identity 
(3.18). 

The second step of our program is to project the 
bilinear form NAfY.~¢O!;B' We write 

NJt"'~ ¢fY.;~ = Xl.l.(N¢l.;l.) + E A
a 

1. (N¢a) 

+ENAl. a ¢l.;a +NXab <Pa;b 
(5.7) 

and use Eqs. (II. 2. 5) and (Il.2. 6) for the proj ections of 
the covariant derivatives. This yields 

Nn A"'~ ¢fY.;B =E'!l XU ON ¢l. +!J. xa l. ON ¢. 

+'!lP,ab ¢aib +EX.La ¢l.ia)N 

_ 2K pabN 
ab_ 

+ E 17 (Jt.L.l¢a - Jta.L ¢l.) N, a' (5.8) 

We have introduced the symmetrical bilinear form E ab 

in the projections of the X and 5E. tensors by the formula 

E ab = f!1(- Jtl.(a¢b) + A (ab) ¢l. - Jt (a.L <pb)). (5.9) 

In the third step, we replace the normal changes 
ON of the projections ¢l. and ¢a by the changes 
O. along an arbitrary deformation [-vector N, and use 
the fact that the tangential changes ON of the hyper
vectors ¢l. and ¢a are equal to the Lie derivatives LJI 
[cf. Eqs. (II. 50 3) and (II. 5. 4)], 

1>N ¢l. = ON ¢l. - 1>j{ ¢l. = O. ¢l. - L N ¢l.' 

ON ¢a== O. <Pa - ()il <P. = ON ¢a - Ljj ¢a' 

The coefficients 

(5,10) 

7Tl.(X) =E1](X) Jtl.l.(x) , 1!a(x) =1] (x) xal.(x) (5.11) - - -
of the directional derivatives 1>N ¢l. and 1>N rp. in the 
hypersurface Lagrangian ON Sit> [e 1 are identified with 
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the field momenta conjugate to cf>J.(x) and cf>a(x)' For 
convenience, we often supress the indices of the Levi
Civita form, using the space densities notation for the 
field momenta and the projections XJ.," , 

T(X)=E~.lJ.(x), 1Ta(X)=~aJ.(x), 3-J.'''=gl/2XJ.,,,. (5.12) 

The momenta (5.11) or (5.12) are the space tensor 
fields defined along the embedding, which are left un
changed by the Lie derivative Ljf (Sec. 1. 7), and may 
thus be considered as hypertensors 1T\ 1T" canonically 
conjugate to the field hypertensors cf>J.' cf>". 

The hyper surface Lagrangian contains the terms de
pending on the derivatives of the lapse function (the last 
term in the expression (5.8)] and on the derivatives of 
the shift vector [arising when the Lie derivatives L; cf>J. 
and Ln cf>a are substituted from Eqs. (5.10) into the ex
pression (5.8)]. In the fourth step, we integrate these 
terms by parts in the hypersurface Lagrangian (5.1), 
getting 

+ r (Np</l b + N a p</l b ) da Jam a b' (5.13) 

This is the final form of the hypersurface Lagrangian. 
In it, we have introduced a number of abbreviations. 
Discussing the boundary term first, 

p'" b =g-1/2(cf>b1T J. _ Ecf>J.1Tb), P'" ba = _ g-1/2 cf>a 1Tb (5.14) 

are space tensors which are bilinear forms of the field 
coordinates and the field momenta, and dab is a space
covector valued volume measure on the boundary. If 
the boundary is specified by the equations xa =Ea(~A), 
where the intrinsic coordinates ~A, A == 1, 2, on am are 
oriented so that the tangent vectors E1 =E" A form with 
the outward normal v" to the boundary th~ right-handed 
system {v", e1}, then 

(5.15) 

For a compact m, am == 0 and the boundary term van
ishes. In the rest of this paper, we will limit our at
tention to this case. The role of the boundary terms in 
an asymptotically flat spacetime is discussed, e. g. , 
in Refs. 10. 

The main part of the hypersurface Lagrangian is the 
space integral in Eq. (5.13). In it, we have introduced 
the super- Hamiltonian H</l and the supermomentum H'" 
of the field cf> propagating on a given Riemannian back
ground. In our notation, the symbols with a circle 0 

above them denote the quantities taken on a fixed back
ground, while the same symbols without the circle de
note the corresponding quantities when the interaction 
of the field with geometry is included. Anticipating the 
results of the last paper of this series, this notation 
is used in the following formulas. 

o The super-Hamiltonian H'" and the supermomentum 
H</l a are written in several parts, the interpretation of 
which is discussed in Secs. 6 and 8: 

o 0 0 

H</l=Ht +Hf , 

H'" =H</l + 2K pab t t ab , (5.17) 
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pab == ~(_ cf> (a~J. b) + cf>J.yab) _ cf> (a'TTb» , 

H~ =H~ = (cf>a T - Ecf>J.1Ta) I a , 

(5.18) 

(5.19) 

(5.20) 

H</la=cf>J.,a1TJ.-2tP[a,bl1Tb-tParrblb' (5.21) 

The expression (5.19) is the space density form of 
the expression (5.9). The term Hf has arisen by the 
integration by parts of the terms containing the deriva
tives of the lapse function, and the term k l

, a has arisen 
similarly from the Lie derivatives LiJ tPJ. and Lif tPa' 

The hypersurface Lagrangian (5.13)- (5.21) governs 
the dynamicS of a covector field c/J on a fixed 
Riemannian background (/i1, g) expressed as the dy
namics of conjugate hypervector fields {cf>J., cf>", r, 1T"} 
in hyperspace. The way in which this is done is dis
cussed in the next section. 

6. HAMilTONIAN DYNAMICS OF SPACETIME 
HYPERTENSORS 

In Sec. 4, we have found that the field equations may 
be obtained by varying the action functional 

S</l[.+. XJ.,"· e] = J dt Ii S'" 'I'.L., ,,,, If (6.1) 

with respect to the projections ¢J, ,,(Y) and XJ.,,,(y). The 
variation of the action functional (6. 1) with respect to 
the foliation e(l") also yields a valid equation, which is 
a consequence of the field equations. 

In Sec. 5, we have expressed the hypersurface 
Lagrangian lilfS</l of a covector field in terms of the 
field projections tPJ.(x), rex) =Eg 1/2 (x) xJ.J.(x), tPa(X), 
1Ta(X)=gl/2(X) XaJ.(X), xJ.a(X), Xab(x), and the geometri
cal variables gab (x) Ka~(x), N(x), Na(x). On a fixed 
Riemannian background (/i1,g), the geometrical varia
bles become functionals of the foliation e(Y). The gen
eral structure (5.13) of the hypersurface Lagrangian 
is preserved when we come to higher rank tensor fields 
tP(X) (the tensor field of rank 2 is discussed in detail 
in Sec. 9). The covector field may thus serve as a typi
cal illustration of the general case. 

In the action (6.1), the directional derivatives liN are 
taken along the deformation vectors tangent to the curve 
e(t) in C. Therefore, 

d d 
dt tPJ.(Y) = dt tPJ,(x)[e(t)]=/ilftPJ,(x)[e], 

a similar equation holding for the projection tPa(Y)' The 
action (6. 1) for the covector field then assumes the 
form 

S"'[tPJ.> 1T\ tPa,rr4;XJ.a,xaJ.;e] 

== J dt Jm (1TJ.¢J. + 1Ta¢a - NH'" - NaH<i> a)' 

All variables in the action (6.3) are considered ~" 
functions of Y= (t, x). The action itself is in the 

(6.3) 

Hamiltonian form, with tPJ.>:, r" and A. 1T"" being the '-Pax' 0 

pairs oof conjugate canonical variables, and N"H'" X' 
+ N ·X'H'" "" playing the role of the Hamiltonian. Of course 
the momenta 1TJ,(Y), 1Ta(y) can be varied in the action ' 
(6.3) in place of the projections ALL(y), AaJ.(y) because 
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they are functionals of these projections and of the em
bedding. In addition to the canonical variables, the 
action (6.3) depends through the super-Hamiltonian 
H'" on the variables XLa(y), Xab(Y) as the Lagrange 
multipliers. 

Varying the action (6 0 3) with respect to the canoni
cal variables, we get the field equations in the 
Hamiltonian form. So, the variation of <P Land TT L gives 

¢L (x) = [<PL (x), H"':c'] Nx' + [<PL (x), H'" ax,] NaT , 

ir"(X) = [7T l (X), H"'x,]Nx' + l7T l(X), H'" ax']Nax' , 
(604) 

A similar pair of equations is obtained by varying <Pa 
and 7T a

• Using the arbitrariness of the foliation e(t) and 
taking into account Eq. (6. 2) for <Pl and 7T\ we can re
write Eqs. (6.4) as variational equations in hyperspace, 

ON <PL(x)[e] = [<Pl(X), H"'",]W:' , 
(6.5) 

and 
o 

0ii <Pl (x)[e] = [<p leX), H'" ax'] Nax', 

IlN7T l (x)[e] = [7T"(X) , H'" ax,]Nax'. 
(6.6) 

These are the evolution equations we have already used 
in the kinematical considerations of Secs. II. 4, II. 5 
and II. 7. (See Ref. 2.) 

Deriving Eqs. (6.4), we made a simplifying assump
tion that e (t) is a foliation. This imposed a limitation 
N(t, x)"* 0 on the lapse function. At this stage, however, 
we can easily take the limit in which N(x) goes to zero 
at some points or regions of m and still get correct 
equations. Equations (6.4)- (6.6) thus hold for an arbi
trary path in t, not only for a foliation. 

In addition to Hamilton's equations, supplementary 
equations are needed to determine the Lagrange multi
pliers Xlb , X ab. The inspection of the hypersurface 
Lagrangian (5.13)-(5.21) reveals that the only place in 
which the multipliers enter into the action is the trans
lational part H~ of the super-Hamiltonian. The super
momentum II'" a' the tilt part of the super-Hamiltonian 
lit, and the boundary terms (5.14) do not depe~d on the 
multipliers. Moreover, the translational part H~(x) of 
the super-Hamiltonian is an algebraic function of X" b(X) 
and Xab(x). The equations obtained by varying the multi
pliers thus have the simple form 

aH~(x) aH~(x) 
2Xlb(x) = 0 = oXab(x) . 

(6.7) 

We will use Eqs. (6.7) for the elimination of multipliers 
in Sec, 10. 

Writing the Hamilton's equations as a double set of 
equations (6.5), (6.6), we have separated the normal 
evolution of the field from the tangential evolution. The 
tangential evolution is in a sense trivial, as it amounts 
to a mere reshuffling of the data on a single hypersur
face expressed in terms of two equivalent embeddings, 
e and eo cpo This enabled us to derive the supermo
mentum H'" a which generates the tangential dynamics 
from purely kinematical considerations in Sec. II.5. 
Indeed, the actual form (II. 5. 10) of the supermomen
tum of a covector field derived there coincides with 
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the supermomentum (5.21) which we have arrived at by 
the rearrangement of the action functional S'" • 

The normal evolution of the field under a hyper sur
face tilt is also reducible to purely kinematical consid
erations. Again, the actual form (II. 4. 5) of the tilt 
super-Hamiltonian H$ of a covector field which was de
rived in Sec. II. 4 in a kinematical way, coincides with 
the tilt super-Hamiltonian (5020) which emerges from 
the rearrangement of the spacetime action functional S'" 0 

The supermomentum and the tilt super-Hamiltonian 
are universal for a given tensor field, i. e., they depend 
only on the rank of that field, not on the specific dynami
cal properties of the field, which are coded in the 
Lagrangian potential A. The particular dynamics ap
pears only in the translational part (5.18) of the super
Hamiltonian. A closer inspection of the expression 
(5.18) shOWS, however, that one part of that super
Hamiltonian, namely, 

(6.8) 

is also universal. Is there any way of understanding the 
necessity of the terms (6.8) from kinematical 
considerations? 

There is, and we are able to complete the kinemati
cal argument now, having information which we lacked 
in Sec. II. 4: we know that the momenta 71'1 and 7T a to
gether with the multipliers XU and Xab compose the 
single spacetime tensor X "'8, 

X 0:8 = xab e~eg + X" bn"'eg + g-1/2 7Ta e~n8 

(6.9) 

Consequently, they must mix as the projections of a 
single spacetime tensor do under hypersurface tilts. 

This means, according to Eqs. (n. 3. 16) applied to 
the projections of X"'8, that 

0t 7T l = - E7TcN,c - E ~" C N,c, 

lit 7T
a = 7T" N, a - ~ ac N, c • 

(60 10) 

On the other hand, the same change should be generated 
by the super- Hamiltonian H'" accor~ing to the normal 
evolution equations (6.5). We call H!P that part of the 
super-Hamiltonian H'" which is necessary for the pur
pose, and write 

0"f 7T"(X) = [7T"(X) , Hf')x'] W:' 

__ OHf')x' N X ' 

- °<Pl(X) , 

Il f 7Ta(X) = [rra(x) , HfO)x'] N X
' 

~.9T(n 
-_~Nx' 
- o¢a(x) . 

(6.11) 

Comparing Eqs. (6.10) and (6.11) for an arbitrary tilt 
N(x') , proceeding in th~ same way as we did in Sec. 
II.4, we conclude that Hf')(x) is equal to the expression 

(- E Y b<Pli b - ~ab¢aib)' 
(6.12) 

The second line in Eq. (6.12) contains exactly the terms 
(6,8), the presence of which in H~ we have tried to 
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understand. They are necessary to generate the correct 
behavior of the field momenta under hypersurface tilts. 
The terms in the first line in Eq. (6. 12) are also duely 
present in the full super-Hamiltonian 1Iq,; we have 
chosen, however, to include them into the tilt super
Hamiltonian 1I~ =H~. Strictly speaking, this was not 
required. The tilt super-Hamiltonian H~ was built 
to generate the tilt change of ¢ ~ and ¢a and for this 
purpose, the expression 

Ho (q,)~H(q,)-1f~ ",a E1fa '" 
f - -t - la'f' - la'f'~ (6.13) 

would be sufficient. We have included the terms 
1fL¢a1a _ E1fa¢Lla into H~ only to complete it nicely to a 
divergence. 

The tilt super-Hamiltonians H~ or H?) explain merely 
the behavior of the canonical coordinates ¢~, ¢a under 
the hypersurface tilts; to obtain a tilt super-Hamiltonian 
H~rt>,·) which explains the behavior of the canonical mo
menta r,1fa as well as of the canonical coordinates 
$L' ¢a, we should put 

(6.14) 

with H;'q,) and H;") given by Eqs. (6.12) and (6,13). This 
ieads to a finer splitting 

1Iq, =Hq, + 2p ab K ab , 

Hrt> =H,<<IJ,n +H;'<IJ,<) 

(6.15) 

(6.16) 

of the field super-Hamiltonian Hq, than that which was 
given in Sec. 5. Under this splitting, 

(6,17) 

and the universal and the particular parts of the super
Hamiltonian are thus completely separated, 

The coarser and, in a sense, less consistent splitting 
of Sec. 5 has, however, the advantages of its own, The 
tilt super-Hamiltonian H$ is a complete divergence and, 
as we shall see in Sec. 8, it is directly related to a pro
jection of the spin tensor S",ar. Moreover, it does not 
depend on the multipliers AH

, Aab and drops thus com
pletely out of Eq. (6.7). In the following, we shall use 
either one of the decompositions (6.12)- (6.17) or 
(5.16)-(5.20) according to convenience. 

The canonical structure of the hyper surface action 
may be described in a more geometrical language. We 
have seen that the collection {¢~, ¢,,; rr\ rr"} of hyperten
sors may be considered as a canonical coordinate chart 
in the phase space P. After the coordinates x a = xa(x) 
are introduced in In, the canonical coordinates in Pare 
represented by a collection {¢~(Xb), ¢a(xb); 1f~(~), 1fa(~)} 
of functions from] (R3) , Let II E:: P be a point of P and 
D the exterior differential in P. The canonical coordi
nates in P are to be considered as functions from ](P), 
Apply the exterior differentiation D to them and define 
the Cartan one-form eE Tti(P) by 

(6.18) 

The exterior differential of e yields then the symplectic 
form (lE T~(P) on the phase space p, 

(l= De=D 1fLxI\ D ¢h + D1f=/\ D ¢a". (6.19) 

Let r=dr(t)/dt be the tangent vector to a curve 
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II=r(t) in p. We can form the inner product.l in P be
tween the tangent vector r and the one-form e, 

(6.20) 

This inner product enters the hyper surface action 
(6.3). 

We have seen, however, that the single time param
eter t E R is most naturally replaced by the whole hyper
surface hEf! in the relativistic field theory. The hyper
space f( is an infinitely dimensional manifold and h thus 
has the character of a "many-fingered time. 11" Follow
ing this idea, it is appropriate to replace the single 
curve II = r(t) in P by a "many-finger ed-time curve" in 
P. Represent h by an embedding e which is a member 
of the equivalence class {e} defining h. The many
fingered-time curve r is then defined as the mapping 

(6.21) 

The mapping (6.21) induces the linear mapping r * of 
the tangent space T e([) into the tangent space T reel (P), 

r* :NE Te([)-rN=r*(N)=ONr[e]E Treel(P), (6.22) 

which assigns to each tangent vector N from T e([) the 
tangent vector r N from T nel (P) 0 The inner product .I 
of the Cartan's form e with this tangent vector r N, 

rN J e = 1m (1fL(X) ON ¢L (X) + 1fa(X) ON ¢a(x», (6,23) 

characterizes geometrically the canonical structure of 
the hypersurface Lagrangian (5.13). 

7. GENERALIZED HAMILTONIAN DYNAMICS OF 
SPACETIME HYPERTENSORS 

The Hamilton's equations (6.5), (6.6) (together with 
those for the canonical variables ¢a' 1fa) and the supple
mentary equations (6.7) for the multipliers ALb, A ab are 
in themselves sufficient to determine the evolution of 
the covector field. However, the variation of the curve 
e(t) also leads to a correct equation. The embedding e 
enters into the action (6.3) through the geometrical 
variables 

gab(x)[e] =g",a(e(x» e~e~, 

(7.1) 

N(x)[e] = En", (x)[e] e'" (X), Na(x)[e] = e~ (x)[e] e'" (X). 

(7.2) 

For a giveng",e(X) [and thus rr",e(X)], the intrinsic 
geometry gab(x)[e] and the extrinsic curvature Kab(x)[e] 
depend only on the embedding e(x), not on the further 
course of the e(t) curve. The deformation [-vector 

(7.3) 

thus enters the action (6.3) linearly, through the lapse 
function and the shift vector (7,2). The momentum 
p"'(x) conjugate to e"'(x) does not thus depend on the 
deformation [-vector at all, 

P'" (x) = - En", (x) i'Iq, (x) - e~ (x) 1Iq, a(x). (7.4) 

Introducing it into the action (6.3), we cast the action 
into the homogeneous form 
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(7.5) 

The ac tion (7. 5) is still to be varied with respect to 
the old variables, so that p,Ax) is to be varied under the 
constraint (7.4). Rather than taking the constraint in 
this form, we proj ect it perpendicular and parallel to 
the embedding e, writing 

H(x)=O=H,(x), (7.6) 

with 

H(x) = EPL(X) + H<I> (x), 

H,(x) = P.(x) + H<I> a(x)' 
(7,7) 

We then add the constraints (7.7) to the action (7.5) by 
means of the new Lagrange multipliers N(x), N'(x), 

'" f dt fm (p",e'" + rrL¢L + rra¢a - NH - NaHa), 

and vary all the variables ¢L' rr\ ¢a, rra, ALb, Aab, e"', 
P"" N, N a independently. 

The variation of the action (7.8) with respect to the 
momentum P'" gives the equation 

e"'=NI1"'+Nae~ (7.9) 

which shows that the Lagrange multipliers N and N a 

are actually the lapse function and the shift vector, 
This justifies the use of the old symbols N, N a for the 
multipliers. The variables N, N a , however, play an 
entirely different role in the old action (603) and in the 
new action (7.8). In the action (6.3), they are to be con
sidered as the functionals (7.2) of the curve e(t). In 
the action (7.8), they are treated as independent 
variables. 

The variation of the action (7.8) with respect to the 
Lagrange multipliers N, N a leads back to the con
straints (7. 6) [or (7.4)], and the variation with respect 
to e'" leads to the statement that the constraints (7. 6) 
are preserved in time. The variation with respect to 
¢L, rr\ \0 a , rra

, A'-b, Aab then gives the old field equations 
(6.4) and (6.7). 

The inclusion of the variables e'" and P'" among the 
canonical variables leads necessarily to the constraints 
(7. 6). The transition from the action (6. 3) to the action 
(7.8) is sometimes called the parametrization of the 
action. It was discussed by Dirac3 and ADM, 4 though 
primarily only on the flat background, for the insight 
which it provides to the constraint structure in pure 
geometrodynamics. Dirac called the newly introduced 
variables e'" and P'" the (hyper) surface variables. For 
further discussion of the parametrization of field theo
ries, see also Ref. 12. 

The parametrization of field theories has its prede
cessor in the parametrization of particle dynamics (see, 
e. g., Lanczos13). There, the time and energy are intro
duced as conjugate canonical variables. The Hamiltonian 
form of parametrized particle dynamics is called gen
eralized Halllilto1lian dynamics (see Estabrook and 
Wahlquist11 for the history of this term and further 
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references on the subject). Adopting this expression to 
the Hamiltonian dynamics described by the action (7.8), 
we will speak about generalized Hamiltonian dynamics 
of spacetime hypertensors. 

The hypersurface Lagrangian corresponding to the 
parametrized form (7.8) of the action is 

ONSrJ> = J (p",(x) N "'(x) + rrL(x) ON ¢L(X) + rra(x) ON ¢a(X) 
m 

- N(x) H(X) - N"(X) Ha(X». (7,10) 

We can consider the spacetime covector-space density 
p",(x)[e]-p",bCd(x)[e] defined along the embedding e as 
the component expression of an f/-covector p, and write 
the first term on the right-hand side of Eq. (7. 10) as 
the inner product (p, N) in hyperspace. The fI-covector 
p has the components PL(x)[e] and Pa(x)[e] with respect 
to the normal hyperbasis {0Lx' 0aJ, These are related 
to the energy and momentum densities measured by a 
family of observers moving in the normal direction to 
the hyper surface by the formulas derived in the next 
section. 

Similarly as in the last section, the canonical struc
ture of the hyper surface Lagrangian (7.10) can be de
scribed in geometrical terms, The collection 
{e, rpL' rp,,; p, rr\ rrl'} formed by the embedding e and the 
hypertensors rpL, rp", p, r, rr" may be considered as a 
canonical coordinate chart in the generalized phase 
space ep. After the coordinates xa=xa(x) and X'" =X"'(X) 
are introduced in m and 111, the canonical coordinates 
in e p are represented by the collection {e'" (~), ¢ L (xb

), 

¢a(xb); p"'(~)' rrL(x b
), rra(x b

)} of functions from ](R3). 
The canonical coordinates in e p are to be considered 
as func tions from] (e Pl. Let err E: e P be a point in the 
generalized phase space e P and eD the exterior differen
tial in e P. Define the Cartan one-form eeoC: T! (e P) by 

n 

and the symplectic form eOE: T 2 (ep) by 

The many-fingered-time curve (6.21) in P may be 
lifted to e P, 

er: eE: [-er[e]= {e, pre], r[e]}E: ep, 

(7,11) 

(7.12) 

(7. 13) 

and the induced mapping er * from Te([) into Tenel (ep) 
defined, The tangent vector erN = er * (N) from 
T e (e P) enters into the inner product J with the 
Cfr~~n form ee to yield the canonical structure of the 
hypersurface Lagrangian (7.10), 

erNJ e9= J~ (p",(x)N"'(x) +r(x) ON ¢.l(x) 

(7.14) 

Not the whole generalized phase space e p is spanned 
by the dynamical trajectories of the system, because 
the generalized Hamiltonian dynamics takes place only 
on the constraint hyper surface in e p, defined by Eqs., 
(7.6). For this aspect of the generalized Hamiltonian 
dynamics, see again Ref. 14. 
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8. HYPERSURFACE LAGRANGIAN AND THE 
ENERGY-MOMENTUM TENSOR 

In Sec. 3, we have derived the symmetrical energy
momentum tensor TCJl.6 from the first-order spacetime 
form S<P of the action by the Belinfante-Rosenfeld pro
cedureo We will now show how to obtain the projections 
1'"- '-, T"-., and Tab of the symmetrical energy- momen
tum tensor directly from the hypersurface Lagrangian. 

For this purpose, we rewrite the hypersurface action 
(6.3) in a slightly different form. We introduce into 
the hypersurface Lagrangian the extrinsic curvature 

Kab(x)[e]=- 2~ °Ngab(X) = 2~ (- /jNgab+Lligab) 

1 
= 2N (- /jNgab + 2N(alb» (8.1) 

from Eq. (I. 9,7) and integrate the shift terms in the 
expression - 2NKabpab by parts. This brings us to the 
hypersurface Lagrangian 

ONS<P = fm (7T" ON cPJ. + 7T
a ON CPa + pab /jNgab - NH<P - NaH<P a) 

= f
m

[7T" /jN cPJ. + 7T" /jN CPa + pab ONgab 

- NH<P - Na(i}<P a - 2P:lb)] (8.2) 

and to the corresponding hypersurface action Sib consid
ered as a functional of the variables CPJ.' r, CPa' 7T

a , 
XJ.b, Aab , and N, N a

, gab' 

The symmetrical energy-momentum tensor T"'6(X) 
is given by the variational derivative (3.1) of the space
time action So with respect to the spacetime metric 
g",s(X)' When expressing the action in the hypersurface 
form Sib, the new variables CPJ.' r, CPa, 7Ta, XJ.b, Xab

, 

and N, N a, gab are the functionals of the old variables 
and of g"s(X)' The variational derivatives of the hyper
surface action Sib with respect to the field variables 
CPJ., 7T\ CPa' 7T

a, X"b, Xab vanish, due to the field equa
tions. Modulo the field equations, the energy-momen
tum tensor T"B may thus be expressed as 

i 14g 11/2 T"B(X) = ~ 
og",s(X) 

OSIb 6NY 6S lb 6N aY 6S Ib 6gaby 
= oNY og"'i3(X) + 6NaY og"'B(X) + ogabY ogCJI.B(X) 0 

(8.3) 

The variational derivatives of N, N a, and gab on a 
fixed embedding et with respect to the metric g"B(X) of 
the surrounding spacetime are obtained by varying 
Eqs. (7. 1), (7. 2)0 The variation of the first of Eqs. 
(7.1) gives directly 

ogab (Y) (" III 0' (Y) ) 
~(X) =ea eb \e ,X. 

g"'B 
(8.4) 

To get the variational derivatives of N a and N, we first 
determine the variational derivatives of e~ and n",. 
Varying the equation 

we get 

811 

oe~(Y) =Eea("nV)n o(e(Y) X) 
og"v(X) "" , 
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(8.5) 

(806) 

and varying the definition equations of n", 

we get 

6n",«(Xy» = iErfnvna o(e(Y),X). 
og"v 

Returning then to Eqs. (7.2), we obtain 

ONa(y) _ N ea("'nB> o(e(Y) X) 
Og",s(X) - , , 

oON«(XY» = i ENn"nB o(e(Y),X). 
g"'B 

(807) 

(8.8) 

(8.9) 

(8.10) 

Due to the 0 functions in Eqs. (8.4), (8.9), and (8.10), 
the integration over YEN in Eqo (8.3) is trivial. At this 
stage, it is straightforward to project the resulting 
equation into the 11, 111, and 1111 directions. Because 
J4g J =Ng 1/2, we get 

""( ,,'I OSIb 
'[ L/=EON(y)' 

os<t> 
'[1. a(Y) = ONa(y) , 

OSIb 
N! ab(Y) = 2 6g

ab
(Y)' 

(8.11) 

(8. 12) 

(8.13) 

The variational derivatives (8.11), (8.12) are easily 
read off from the hypersurface action (6.1) generated by 
the hypersurface Lagrangian (8.2). We get 

(8.14) 

and 

'[1. a (x) = - H0 a + 2P:lb' (8.15) 

To get the remaining variational derivative (8.13), 
we first evaluate the term 

(8.16) 

In the hypersurface Lagrangian (8.2), the supermomen
tum H<P a does not depend on the intrinsic metric gab (X). 
Therefore, 

Of -2-
ogab m 

NH<Po (8.17) 

The virtue of Eqs. (8.14), (8.15), and (8.17) is that 
they generate the projections of the symmetrical 
energy-momentum tensor directly from the hypersur
face Hamiltonian N" H<P" + N a" H<P ax' We have derived 
them for a covector field cP(X), but the derivation is 
equally valid for an arbitrary tensor field. According 
to Eq. (8.14), the H<P part of the super-Hamiltonian 
may be physically identified with the energy density on 
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e measured by a family of observers moving perpen
dicular to e. The super-Hamiltonian /iq) of the field 
propagating on a Riemannian background thus differs 
from this energy density by the term + 2Kab p abo Simi
larly, the supermomentum Hq) a of the field propagating 
on a Riemannian background differs from the minus 
momentum density measured by a family of observers 
moving perpendicular to e by the term 2P:lb, accord
ing to Eq. (8. 15). In short, 

Hq) = - E T" L + 2pabK ab , 

HWa=- T~a+2P:lb' (8.18) 

The symmetrical tensor density pab, introduced for 
the covector field by Eq. (5.9), enters prominently into 
all the formulas (8. 17), (8. 18). One can check directly 
that pab is nothing else but the projection ig1/ 2 pab~ of 
the spacetime tensor P ,,$Y defined by Eq. (3.9), which 
participates in the construction of the symmetrical 
energy-momentum tensor (3.10). Indeed, for a covec
tor field 

(8. 19) 

and the ab 1 projection of pOl.~r leads to the expression 
(5.9), 

(8.20) 

Again, Eq. (8.20) is generally valid for an arbitrary 
tensor field !p"{X). 

The tensor pJJ.va got to the formula (3.10) for the 
symmetrical energy-momentum tensor through the 
variation (3.7) of the spacetime affine connection. When 
the affine connection does not enter into the field 
Lagrangian, we say that the field has nonderivative 
gravitational coupling. This happens for the n-form 
fields, n= 0,1,2,3, for which Vcp =dcp. The term pJJ.va. cr 
then disappears from the formula (3.10) for TJJ.v. Simu'l
taneously, the extrinsic curvature Kab , which got into 
the hypersurface Lagrangian by the rearrangement of 
the covariant derivatives ;\{"'18cp(OI.} ;~, disappears from 
there as well. Therefore, 

(8.21) 

for the fields with nonderivative gravitational coupling. 
The equations (8.14), (8.15), (8.17), (8.18) for the pro
jections of the symmetrical energy-momentum tensor 
then vastly simplify, giving in this case 

T" L = _ E j{w = _ E HW , 

_ 0 W _ HW 
T ~ a - - H a - - a' 

(8.22) 

and 

O(NX'HW ) O(NX'H<P ) NT ab = _ 2 x' = _ 2 x' • 

OKab ogab 
(8.23) 

This is one of the reasons why the theories with non
derivative gravitational coupling are so much simpler 
than the theories with derivative gravitational coupling 
when expressed in the hyperspace language. 

Similarly as P ab may be identified with a projection 
of the spacetime tensor P 0I.8Y, the tilt part H~ of the 
super-Hamiltonian is related to the lla projection of 
the spin tensor SJJ.va, introduced by Eqs. (3.20) and 
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(3.22): 

Check this again for the covector field. From Eq. 
(3.22), 

Sl"vcr = _ X [va 1 cpJJ. _ XJJ. [v cpal + X [all cpvl. 

The lla projection of Silva gives the expression 

SUa=_E(rcpa_ cp~rra), 

so that Eqs. (8.26) and (5.20) lead to Eq. (8.24). 

(8.24) 

(8.25) 

(8.26) 

The e~ ~ projection of the canonical energy-momen
tum tensor, however, does not coincide with the trans
lational part of either H<P or H<P. When we proj ect Eq. 
(3.20), taking into account the antisymmetry of Silva and 
applying the prOjection formulas of Sec. 11.2 to the 
covariant derivatives of Silva, we get 

(8.27) 

We have already identified r u with _EH<P and §uc1c 
with - EH~, so that Eq. (8. 27) can be written as 

~H = _ E(Hr _ §(ab)~ K ab ). 

Projecting the expression (8.25), we get 

_ §(ab).l. = ~ (ab) cpJ. _ x~(acpb). 

The term - s<ab)~Kab thus differs from the term 
+ 2p"bK ab , which would be needed to turn eH into 
-EHt, by cp(arrb)Kab , 

(8.28) 

(8.29) 

eH =_ EfJir + cp(arrb)Kab ). (8.30) 

Finally, comparing the expression (8.26) with the 
first equation (5.14), we see that the boundary term 
p<P b coincides with the llb projection of the spin tensor, 

(8.31) 

We have thus identified the different pieces of the 
hypersurface Lagrangian with various prOjections of the 
symmetrical energy-momentum tensor and the spin 
tensor. Also, which was the main task of this section, 
we have generated the Tab projection of the symmetri
cal energy-momentum tensor directly from the hyper
surface Lagrangian. 

9. HYPERSURFACE LAGRANGIAN FOR SECOND· 
RANK TENSOR FIELDS 

The higher rank tensor fields cp (X) E T2(;11) are easily 
handled by the algorithm developed in Sec. 5 for the 
covector field. We will outline the procedure and state 
the results for a second-rank covariant tensor field 

cp"${X)' 

We start from the spacetime action 

S<P = Jm 14g 11/2 (XOI.$Y</l0l.8;Y- A), 

with 

A=A(cpOl.~,X"8Y, g0l.8)' 

(9.1) 

(9.2) 

In the first step, we proj ect the tensors CP"B' X "'BY, 

gOl.B and express the Lagrangian potential in terms of the 
projections. The spacetime scalar character of A leads 
to certain identities [analogous to the identities (5.4) 
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and (5.6) for a covector field] which we will not, how
ever, write down explicitly. 

In the second step, we project the bilinear form 
),.<>.IlY ¢"Il;l" 

),. allY A, := ),. abc A, + E ),.00 LA, + E ),. a Lc A, 
"Pall;)' 'f'ab;c 't'abjJ. \f'al.;c 

+€A.J.bC¢L~;C + Aa.J.l.¢a.l.;.L +A.J. bJ.¢hl1;J. 

+ AU cCPu;e + E A
U

.1.¢u;J., (9.3) 

and use the projection formulas (II. 2. 7), (n. 2. 8) for 
the covariant derivatives of' a second-rank tensor. 

In the third step, we replace the normal directional 
derivatives ON by ON - L N, Similarly as we have done 
in Eqs. (5.10). We then identify the hyperfield momenta 
as the coefficients of OJ( ¢.l.,11 in the action: 

r.1.:=gl/211..1..1.L, 

'lfa.1. == Eg 112~a L\ 'lfL b:= Egl/2XL b"\ 

'lfoo := g 112),. OO.l.. 

(9.4) 

The operations cast the hypersurface Lagrangian 
into the form 

~Nse := f)('If.J..l. 05 CPu + rraL 0. ¢o;J. 

+ 'lfq ~ cP L b + 'lf ab 0. ¢ ab) ] 

- ('If.1.LL; ¢H + 'lfULj{ 1>a.1. + rbLjJ 1>u 

+ 'lfabLil¢ab) + Qa N,a - 2N poo Kab - NHt)]' (9.5) 

with 

Q a=1iLL (cp.l.a + ¢a.1.) _ E 'If' a CPu _ E 'lfa 1.cpu 

+ 'If' bcpab + 1T b.1.CPb a - E 'lfb"¢u - 'lfabcp'b' (9.6) 

pab,= teE ),.U(acpb\ + E xH(acp,b) _ E X(a 1. b) ¢U _ E x.l.(ab) ¢J.J. 

+ Ac.l.( a¢eb) + A.l. c(acpb\ _ A(acb) ¢1. c _ \c(oo) ¢C.l. 

+ 7rL(acp/) +1T (aJ.¢b).1. + 7r(aC¢b) c + 7rc(a¢/», (9.7) 

and 

Hr '=- ,\L.1. c
CPL .1.le- EA,bC¢Hlc- E,\a.l.C¢a.1.lc 

- AabC¢OOI c + 1\.. (9.8) 

In the fourth step, we integrate by parts the term 
Q a N,a and those terms in the hypersurface Lagrangian 
(9.5) which contain the derivatives of the shift vector 
in L; .... This casts the hypersurface Lagrangian (9.5) 
into the final form 

O.s~ = fm (7rH
O. ¢ + lTaJ.O. ¢aJ. + 'If" bON CP.1.b + 'lfabON CPoo 

- Nlrl> - N a H<I> a) + !am (NP<l> b +Nap~ ba)dIJb .(9. 9) 

Similarly as in Sec. 5, we have introduced the 
abbreviations 
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H~ =H<I> +2p abK oo , 

H<I> =c.H.,'i' +H~, 

H~=lI~"=Qala, 
04J J...L 

H a'='If ¢J.J.,a 

+ T/./>J.¢b.1.,a - (7T H ¢a.1.),b 

+7T'b¢ib,a- (7T.1.b1>.1.a),b 
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(9.10) 

(9.11) 

(9. 12) 

+ ~c¢bc,a - (lTbeCP"c),b - (7r
0c

CPba),c, (9.13) 

where Qa, pab, and H~ were already given by Eqs. 
(9.6)-(9.8). The supermQmentum (9.13) and the tilt 
super-Hamiltonian (9.6), (9.12) again coincide with the 
expression (II. 5. 11) and (II. 4. 6) determined for the 
tensor field from purely kinematical considerations. All 
the relations (8.14), (8.15), (8.17)-(8.19), (8.22), 
(8.28) between the projections T.L~, T1.a' e/, pab\ 
SJ.J. a, and s(ab).L on one hand, and H<I>, II<I> a' H~, H~ on 
the other hand, remain valid for the tensor field. 

The boundary terms in the tensor field hypersurface 
Lagrangian (9.9) are given by 

p<l>b=Qb, 

p0 11.= _ (~1.¢a~ + tT" b¢l.a + 1J bC¢ac _ rrCb¢ca)' 
(9.14) 

The hypersurface Lagrangian (9.9) may be special
ized to symmetrical tensors. The symmetry conditions 

imply several symmetries of the projections: 

Usings Eqs. (9.16), we get 

H~ = - ~l.l. cCPHI c - 2E ~al c¢a.1.1 C - ~(ab)c¢(ab) Ie +~, 

H~ =2(r .1.cp1_ E lTa.1.¢l.l. + rrb 1.cP~ - E rrab cpb.1.)la, 

pOO = E ~ (aJ.J.¢b), + E ~J.J.(a1>b)1. _ E ~J.(OO) 1>.1.J. + ~el.(a¢/) 

(9. 15) 

(9.16) 

(9.17) 

(9.18) 

- t ~(aC)b!fic l. - ~ ~(bC)a¢c' + n(a l ¢ll) 1 + lTiac¢bl, (9.19) 

1£<1> a = r .1.CPu,a + 2nb.1.CPb.1.,a - 2(nb.1.¢a.l),b 

+ rrbC¢bc, a - 2(11'b c¢a.C),b' (9.20) 

In Sec. 11, we specialize Eqs. (9.6)-(9.13) further 
to the two-form sources with nonderivative gravitational 
coupling. 

10. ELIMINATION OF A MULTIPLIERS 

The projections A{J.,II}Ii of the spacetime tensor ;\(O£}6 

enter into the hyper surface Lagrangian as Lagrange 
multipliers. They are present only in the translational 
part lIr of the super-Hamiltonian, not in the super
momentum H~a, the tilt super-Hamiltonian H~, or in the 
boundary terms. These statements, which hold for an 
arbitrary tensor field, can be checked directly for the 
covector field (with the multipliers Al.o, ;\00) by in
specting the formulas in Sec,S, and for the second-
rank tensor field (with the multipliers Xl..1. c ;\' bc Aa.1. C 

bC\ ' , , 
AO I by inspecting the analogous formulas in Sec, 9. 
We will discuss the elimination of the A{J.,II}II multipliers 
for the covector field, the generalization of the pro
cedure for the higher rank tensor fields being 
straightforward. 

The variation of the hyper surface action s~ with re
spect to the multipliers leads to Eqso (607), 

okr aH~ 
oxLa '= 0= OA"b • (10.1) 

Of course, we are free to replace h? in Eq. (10.1) by 
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H", or even by H of the generalized Hamiltonian dy
namics, because the additional terms do not contain 
the multipliers. 

From the actual form, (5.17)- (5.19), of Ht we can 
calculate the derivatives in Eq. (10.1) and get 

0<1> 
-112 (JH, (JA b 

g aA~a= aA~a -E¢la-Kab¢ =0, 

-lIZ oHr _ (JA _ 
g (J",ab - (JAab - ¢alb + ¢~Kab - O. 

(10.2) 

In general, we have assumed that the equation aA/aAa8 

= ¢cr.;8 is invertible with respect to ",,,,8. Consequently, 
the Lagrange multipliers A.L a and A ab may be determined 
from Eqs. (10.2) as algebraic functions of the canoni
cal variables ¢~, H", CPa, Ha, the space derivatives ¢aib 

and ¢lib of canonical coordinates, and the geometrical 
variables gab,Kob ' Note that the Lagrange multipliers do 
not depend on the lapse function N or the shift vector N a• 

The multipliers determined from Eqs. (10.2) may 
then be introduced into the field equations. The elimi
nation of the multipliers, however, is much more con
veniently carried at the level of the action principle, 
The general transformation theory of the action func
tional allows us to eliminate in the action functional a 
part of the variables in terms of the rest of the varia
bles by using the Euler equations of the variables which 
are to be eliminated, The action functional considered 
as a functional of the remaining variables then leads to 
the correct Euler equations under the variation of these 
variables. (See, e. g., Lanczos13 for the discussion of 
this standard procedure. ) In our case, the variables to 
be eliminated are A"b, Aab , and the Euler equations ob
tained by varying A.L b, A ab are just the algebraic equa
tions (10. 1). Solving these equations for AH

, Aab and 
substituting these solutions into the translational super
Hamiltonian H~ (which is the only part of the hypersur
face Lagrangian which contains the multipliers), we 
get the modified super-Hamiltonian 

and the modified action 

*S"['" H> '" lTa el=J'dtf (rr",), +lTaA, -N*H"-NaH") ~l.' ,"f-Ja' , m '+'1. "Pa a , 

(10.3) 

which is equivalent to the original action S". The action 
(10.3) is again in the Hamiltonian form and the normal 
Hamilton's equations in hyperspace follow from it as in 
Sec. 6, 

fJN ¢l(X) = [¢~(x), * H</} ",jN X
', 

fJ.vlT>(x) = [1T"(X), *ir" x,lif', 
(10.4) 

with a similar set for the canonical pair ¢a, lT a
• The 

tangential set (6.6) of Hamilton's equations is left un
touched because the elimination of the multipliers does 

, 0 

not effect the supermomentum H" a' The difference be-
tween Eqs. (6.5) and (10.4) is that the multipliers are 
kept fixed as external parameters in the poisson 
brackets in Eqs. (6.5), but they are implicitly varied 
in Eqs. (10.4), because the canonical variables enter 
the modified Hamiltonian *H" also through the Lagrange 
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multipliers. The equivalence of the two sets of equa
tions, (6.5) and (10.4), is, however, ensured by 
Eqs. (10.1). 

One can easily pass to the generalized Hamiltonian 
form of the modified action *S¢> by defining the modified 
super-Hamiltonian 

*H =Ep~ + *H", (10.5) 

following otherwise the procedures of Sec. 7. 

To have a concrete example of the elimination process 
in mind, take the covector field described by the 
Lagrangian potential 

(10,6) 

This Lagrangian potential leads to the wave equation 

(10.7) 

for the covector field. The vector potential ¢a of 
Maxwell's electrodynamics, of course, is subject to 
a different wave equation, containing the DeRham's 
D' Alembertian. We will study it in detail in the next 
section. Here, we have chosen the Lagrangian potential 
(10,6) consciously, in spite of the traditional difficulties 
to keep the energy positive and the spin 1 of the field 
pure, to illustrate the peculiarities of the elimination 
process for a field with derivative gravitational 
coupling. 

We express the Lagrangian potential (10.6) in terms 
of the projected variables, 

A = - i Aab Aab - ~ E AHAU - -~ Eg-l 1TalTa - ~ g -1 (1Jl)2 , (10.8) 

and determine the Lagrange multipliers from Eqs. 
(10.2), 

(10.9) 

Substituting them into Eqs, (10,6), (5.18), (5.19), we 
get 

* Ht = - ± Eg-1/2 1Ja1Ta + ~ g 11 2 ¢aJb <l>Olb 

_ ±g-1/2(1TL )2 +1Eg1/2 cplla¢lla 

_ ~Egl/2 KabK:¢b¢C - ~g1/2 KabKab(¢y (10.10) 

and 

* P ab = ~(g 1!2ql J( "<1>0) _ g 1/2¢(alb) <l>l- "(a<flb) 

+ [(¢.L)2 KGb + K (ac¢c¢b) 1. (10.11) 

The super-Hamiltonian *i!r is then obtained from Eq. 
(5.17). It is a quadratic function of the extrinsic curva
ture K ao ' 

The elimination of multipliers for a field which is 
derivatively coupled to geometry screws the gravita
tional part of the super-Hamiltonian, as it makes the 
"supermetric" dependent on the source-field variables. 
We shall tell this part of the story in the final paper of 
this series. 

11. HYPERSPACE DYNAMICS OF FIELDS WITH 
NONDERIVATIVE GRAVITATIONAL COUPLING 

The presence of the extrinsic curvature Kab in the 
hyper surface Lagrangian SOl is a source of numerous 
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complications, especially when the fields are to be dy
namically coupled to the gravitational field. We have 
already seen in Sec. 8 that the extrinsic curvature drops 
out of the hyper surface Lagrangian for theories with 
nonderivative gravitational coupling. We shall study 
now such theories systematically. 

We say that the field has nonderivative graVitational 
coupling when the Lagrangian L does not depend on the 
derivatives of the metric tensor g. This happens when 
the field cP is an n-form field, n;; 0,1,2,3, cP E Tn(/l1), 
and the Lagrangian depends on its derivatives solely 
through the exterior differential dcp. In other wordS, 
the tensors cP and A in the first-order form of the action 
S<I> should be-completely anti symmetrical, so that 

(110 1) 

We will cast the action of the n-form fields with non
derivative graVitational coupling into hypersurface form, 
starting with the scalar field cP (X) E J (1f1) and paying 
special attention to the one-form field f (x) E Tl (1f1), 
which case includes the Maxwell electrodynamics. 

A. Scalar field 

The action S<I> of a scalar field cP E J (1f1) is 

S'" = f 1

4gI 1/2 {A" CP,,, - A(CP, A", g"8)}' 

We project the bilinear form 

14g 1112 A" CP,,, =Ng 1/2 (E AJ..CP,J.. + AaCP ,a) 

and use the equation 

ON cP = ON cP - Lf! cP = E CP,J..N - CP,a Na• 

(11. 2) 

(11.3) 

(11. 4) 

Identifying the scalar field momentum 71 with the coef
ficient of ON cP in the action (11. 2), 

71=gl/2 A"-, 

we come to the hyper surface Lagrangian 

liN S<I> = j~ (71 liN rj) - Nlr' - NaH'" a), 

with 

if'" =H'" =gl/2{_ AaCP, a +A(CP, 71, Aa,gab»' 
o 

H'" a = 71 CP,a' 

(110 5) 

(11.6) 

(11. 7) 

(11. 8) 

We see that Kab does not occur in the field super
Hamiltonian (11.7), and P ab for the scalar field thus 
vanishes. This implies the simplified equations (8.22), 
(8.23) for the projections of the symmetrical energy
momentum tensor. 

Let us write yet the condition that A(CP, 71, Aa,gab) be
haves as a spacetime scalar under hypersurface tilts. 
We have 

0r71=_gl/2AaN,a, °f Aa =E71g-1/ 2N,a 

by Eqs. (n. 3. 1), while 

Of gab = 0, Of cP = O. 

(11. 9) 

(11.10) 

Consequently, the condition Of A = 0, expressing the 
scalar character of A, becomes 

1/2 aA A _ -1/2 ~ 
g 071 a-Eg OAa 71. (11.11) 
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This is an analog of a more complicated equation (5.6) 
for the covector field. 

B. n-form fields, n = 1,2,3 

To specialize the general results of Sec, 5 to a one
form field with nonderivative gravitational coupling, we 
impose the condition that A"8 is an antisymmetrical 
tensor, 

(11. 12) 

Projected, Eq. (11.12) informs us that Aab is to be 
treated as an anitsymmetrical tensor, 

(110 13) 

and that 

(110 14) 

As a consequence of Eqs. (11.13), (11.14), pab defined 
by Eq. (5.19) vanishes, 

(11. 15) 

Further, the different parts of the super-Hamiltonian 
H<I>, defined by Eqs. (5.18), (5.20), (6.12), (6,13), 
(6,17) reduce to 

H~ =H~ = - E(CPJ.. 71a
) la' 

(11. 16) 

(11. 17) 

Note that the space derivatives of cPJ.. dropped out from 
Eqs, (11. 17) and consequently also from the total super
Hamiltonian 

H'" =H'" = - ~abCP[a,b]- E cpJ..71a
la + 1).. (11.18) 

Similarly, the supermomentum (5.21) reduces to 

0", '" b 2'" ...h H a =- 'Pa 71 Ib - 'P[a,b]lr 0 

It does not depend on cPJ.. at all. 

(11. 19) 

The hyper surface Lagrangian is to be considered as 
a functional of the variables CPa, 71a, and CPJ.., Aab = A[ab]. 
We have seen that cPJ.. enters liN 5<1> in a purely algebraic 
way solely through the super-Hamiltonian (11. 18), so 
that it stands on an equal footing with the A ab multiplier. 
The variables 71"-, AJ.. b were eliminated from the action 
altogether, using Eqs. (11.14). The hypersurface action 
is thus in a canonical form in the pair of variables 
CPa, 71a, and it depends on cPJ.. and Aab = A[ab] as Lagrange 
multipliers, 

S<I> = S<I>[CPa, 71a; CPJ.., Aab ] = f dt fm (71acpa - NH'" - NaH'" a)' 

(11. 20) 

The Euler equations following from the action (11. 20) 
thus split into Hamilton's equations for the canonical 
variables CPa, 71a, and the multiplier equations 

-1/2 oH<I> _ oA _ 
g OAab - - CP[a,b] + OA tab] - 0 (11. 21) 

and 

OHoI> a aA 
OcpJ.. =-E71 la+~=O, (110 22) 
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In general, 3 + 1 equations (11. 21), (11.22) may be 
solved for the 3 + 1 multipliers ::\ab =::\[ab1 and I/>J.' In 
special cases, however, the equations (11. 21) and 
(11.22) for ::\ab, I/>J. are not all independent and lead then 
to the constraints for the dynamical variables I/>a, 1Ta• 

This happens in an important case of Maxwell's elec
trodynamics, which we will discuss in a little while. 

The two-form fields with nonderivative gravitational 
coupling may be treated by specializing the results of 
Sec. 9 to completely anti symmetrical tensors I/>"'Il' ::\all~, 

I/>(,,~)=O, ::\("~)Y=::\"(~~)=O. (11.23) 

Projecting Eqs. (11. 23), we get the conditions 

cfhJ.=O, l/>J.a=-l/>aJ.' I/>(ab) =0, 

rL=O, 1TLa =1TaL =O, 1T(ab) =0, 

(11. 24) 

(11. 25) 

(11.26) 

Due to Eqs. (11.24)- (11.26), the hypersurface action 
may be expressed as a functional of the antisymmetri
cal tensors I/>ab' rrab , ::\abe, and the covector I/>La' The 
hypersurface action has the canonical form with respect 
to the variables I/>ab' rrab, while I/>La and ::\abe play the 
role of Lagrange multipliers. The conditions (11. 24)
(11. 26) imply that P ab = ° and the super-Hamiltonian 
H</> and the supermomentum HI/J a reduce to the form 

II'!> = H</J = _ g 1!2 ::\ abc rl, _ 2E rl, 1Tab 
'f"abtc '¥J..b ,a 

+g1/2A(l/>ab' rr Gb ; I/>J.b' ::\abe), (11.27) 

(11.28) 

Note that I/>J.b enters the super-Hamiltonian (11. 27) 
algebraically and it is not to be found in the super
momentumo The conclusions to be drawn from Eqs. 
(11. 27), (11. 28) are parallel to those for the one-forms. 

Following ~he re~larities which appear in the con
struction of H'" and H</J a for the one-form fields [Eqs. 
(11.18) (11.19)] and two-form fields [Eqs. (11. 27), 
(11.28)], we easily guess what the H'" and HI/J a are for 
the three-form fields. 

For three-forms, the antisymmetrical tensors 
I/>abe, rrabe play the role of canonical variables, and the 
antisymmetrical tensor I/>L ab, plays the role of a 
Lagrange multiplier. The super-Hamiltonian and super
momentum are given by the expressions 

H
o

'" -H<i> - _ 3E rl, rrabe + 0"1/2 A (11.29) - - '-f/l.ab ,c h , 

o '" _ bed 3 ( bed ) (11 30) H a - rr I/>bcd, a - rr I/>aed. b' • 

The first-order formalism for the four-forms be
comes completely degenerate, because the antisymme
trical tensor ::\ "~~5' of the rank 5 automatically vanishes. 
The n-forms game thus stops with n = 3. 

C. Proca's field and Maxwell's electrodynamics 

We illustrate the general theory of one-form fields 
with nonderivative gravitional coupling by choosing the 
special Lagrangian 

(11. 31) 
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For J.1. *- 0, the Lagrangian (11.31) describes neutral 
vector bosons with mass (Compton wavelength) J.1.; for 
J.1. = 0, we pass to Maxwell's electrodynamics. The 
field equations 

21/>[",1l\8- J.1.21/>" =0 

imply (for J.1. *- 0) the Lorentz condition 

1/>"';,,=0 

(11.32) 

(11.33) 

which ensures the positive definite character of the 
field energy and its pure spin 1 character. The differ
ential operator acting on I/>a in the first term of Eq. 
(11. 34) is the DeRham's d' Alembertian. 

Defining ::\,,/3 in the standard way, 

::\all= ~ = ~ =_ 21/>[",81=::\[a81. 
ocp,,;~ 01/>[",B1 

(11.34) 

We see it is necessarily antisymmetrical, because L 
depends only on the anti symmetrical combination 
I/>[";B) = l/>(a,1l1 of the covariant derivatives I/>";il' This 
is a situation which we have already mentioned in 
Sec. 2. Introducing ::\",8 into the action by means of the 
Legendre dual transformation, we arrive at the first
order action with the Lagrangian potential (2.8), 

(11.35) 

The Lagrangian potential (11.35) differs from the 
Lagrangian potential (10.6) by the mass term and by 
the explicit assumption that ::\"B in Eq. (11.35) is an 
anti symmetrical tensor. Expressed in terms of the 
hypertensors I/>a, rra, I/>J.' ::\ab, the Lagrangian potential 
(11. 35) becomes 

H~</J, ,) = g 1/2 A = _ t g 1/2::\ab::\ab _ tEg -1/2 rr arra 

(11.36) 

the full super-Hamiltonian being given by Eq. (11.18). 

The Lagrange multipliers ::\ab, rpL may be determined 
from Eqs. (11.21), (11.22), 

::\ab = - 21/>[a,b1 '" Bob, 

rpJ. = - fl-2 g-lf2 rra[a' 

(11.37) 

(11.38) 

Bab is the analog of the magnetic field strength. Elimi
nating the multipliers ::\ ab, rp L from the action, we get 
the modified action * 5<1>, with 

and 

*HI/J = _ tEg-1/21Ta1Ta + t g1/2Bab Bab + ~j.l2 gl/2<Parpa 

_ tEj.l-2 g-1/2(1Ta[a)2, 

(11. 39) 

(11.40) 

An alternative approach would be to eliminate only 
the ::\ ab multipliers from the action 5<1>, but leave rpJ. as 
a multiplier in the super-Hamiltonian. 

For j.l = 0, we pass to Maxwell's electrodynamics. 
The canonical momentum 1Ta is the electric field 
strength measured by an observer moving perpendicu
lar to the hypersurface. The A equations (11,21) still 
lead to the identification (11. 37) of Aab with the magnetic 
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field strength B ab • The rp1. equation (11. 22), however, 
leads to the divergence constraint 

(11. 41) 

for the electric field strengtho We thus lack the equa
tion which would enable us to determine the scalar po
tential rp1.' We must leave it in the super-Hamiltonian, 
eliminating only the :\ab multipliers, 

*H0 = *H'" = - E rp1. 7Ta
1a - iEg-1/ 2 7Ta ~ + t g 1/2 Bab Bab. 

(11. 42) 

The term - E rp1. 7T'la is often set apart, the remainder 
being the standard expression for the electromagnetic 
field energy in terms of the electric and magnetic field 
strengthso The two expressions, with and without the 
term - E rp1. 7T'la, are numerically equal to each other, 
modulo the constraint (11.41). Similarly, one often 
drops the term - rpa~ Ib from the supermomentum 
(11. 40), identifying the rest with the Poynting vector. 
These modifications of the action, achieved by using 
the Euler equation (11. 41) back in the action, are en
tirely permissible. However, the truncated *H0 and 
*H0a , with the terms containing 7Ta

1a omitted, do not 
close according to the universal relations (12.45)
(12.47) which we derive in the next section. The right
hand sides of Eqs. (12.45)-(12.47) written for the 
truncated * H"', * H0a contain some extra terms propor
tional to 7Ta

1a • For principal reasons, it is thus better 
to work with the original expressions (11. 42) and 
(11. 40). 

12. CLOSING OF CONSTRAINTS IN GENERALIZED 
HAMILTONIAN DYNAMICS 

The super-Hamiltonian H and the supermomentum 
Ha of the generalized Hamiltonian dynamics are con
strained to vanisho In order that the constraints (7. 6) 
be preserved along a path in [, the Poisson brackets 
of the constraint functions must close. In a first-order 
theory, the presence of the additional equations (6.7) 
for the A multipliers complicates the closing relations. 
After the multipliers are eliminated, the Poisson 
brackets between the modified constraint functions * H 
and *Ha close in the universal way which is independent 
of the tensor character of the field. In this section, we 
derive the closing relations of the constraint functions 
H, Ha and, by eliminating the :\ multipliers, pass to 
thoe cl~sing relations of the modified constraint functions 
*H, *H,. 

We discuss the closing relations first for the scalar 
field rp (X) E: J (111). The generalization to tensor fields 
is then straightforward. 

Our starting point is the fact discussed already in 
Sec. 4, that the hypersurface action SO does not depend 
on the foliation e'" (Y) if the spacetime fields rp(X), 
:\ '" (X) are kept fixed. For our purposes, it is best to 
write the hypersurface action in the form 

S·[rp, 7T; Aa
; e"'] = f dt fm (7T~ - N"'B'" ",), 

with 
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(12.1) 

(12.2) 

Its foliation independence leads to the identity 

oS. OS0 Y 

0eS• = orpy Oe rpy + 07T Y 0e 7T 

oS· 0 aY oS· 0 '" Y - 0 + OA'Y e A + oe'" Y e =, (12.3) 

where 0e are the variations of the hyperfields induced 
by the variation Oe'" (Y) of the foliation when the space
time fields rp(X), A"'(X), and g",~(X) are kept fixed 
[compare with the variations (4.15) J. 

The identity (12. 3) remains an identity if the time 
derivatives 1> and ir are eliminated from it by means of 
the Hamilton's equations 

oS· oS· 
oCPY = 0= 07TY' (12.4) 

In this case, it reduces to the statement 

roS0 0 AaY + oS· oe'" YJ '= 00 
[o~ay e BeQ!Y rP

t
1r eliminated 

(12.5) 

Because H'" '" depends algebraically on Aa
, and the 

derivatives olIO ",/0:\' do not depend on the velocities 
;p, n, the first term in Eq. (12.5) becomes 

(12 0 6) 

The rearrangement of the second term in Eq. (1205) 
is more complicated. First, 

'" 0°'" ~ 0 ",y -_ H aYN"'Yo 8Y' _ PT o'",Y' 
Oe"'Y e - oeSY' e li",y' e 

(12.7) 

Second, we evaluate the last term in Eq. (12 0 7) using 
the Hamilton equations, 

(H0 8Y')" <'Je 8r' = f dt VI''' 8x' (t)" oe8x
' (t) 

= f dt {(H'" 8x', H'" ",xl N "'r oe8
x' 

+ OH0 8x' N",rOe8x' + (OH0 8 ~,\ oe8>:} 
oe"'''' 0:\' Jr . 

(12.8) 

Third, we use the fact that H0 '" does not depend on the 
time derivatives of e8

, so that 

(1209) 

Last, we put all Eqso (12.7)- (12.9) together, noticing 
that neither H'" '" nor its (variational) derivatives depend 
on .p, n, 
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[
OSf> 0 "y,] 
~ e • 
Be !P,u eliminated 

f {( of> o°f/)) _ oH ax' H "X 

- dt oe"x - oeax' + [Hf/) !r1J J} Nc!'''oe6x' I3r' Q:'.X 

+ f dt (a!:a ~") x' oe 6x'. 

(12.10) 

The expression in the { } bracket is equal to the 
Poisson bracket between the constraint functions 

° 0., 
H"=p,,+H,, 

of the generalized Hamiltonian dynamics, 

° 0· 01I" oH" 0 0 

[H6,;"H"x1= oe"f{ - oeS':>x + [H"6,;', H""J. (12. 12) 

The constraint functions H", may also replace the func
tions H" '" in the derivatives alI" ",/ax". Substituting Eqs. 
(12.6), (12.10), (12.12) into the identity (12.5), we get 

f (0 0] "'x 0 6x' - dt H",x, H6x' N e 

+jdt
aH

" (~"oe"'-N"o X")=o aX" e' 
m 

For symmetry, we write 

M=l5e 

(12.13) 

(12.14) 

for the H-vector characterizing the change of the folia
tion e(Y), remembering that N is the tangent H-vector 
to the foliation itself. In this notation, 

(~a DeC!. _ N"oe Xa) = (M "I5N _ N"oll) X", 

and the identity (12.13) assumes the final form 

f dt {[II "X, H6,;'] 

+ (aH", (x) oX"(x) _ (Q'x-{3x')~ l N"" M"'x'=O 
aX" oe6(x') I) ) . 

(12.15) 

Equation (12. 15) expresses the fact that the action Sq, 
does not depend on the foliation e(l') when the spacetime 
fields ¢(X), X'" (X), and g"'6(X) are kept fixed. 

Due ~o the arbitrariness of the fl.-vectors Nand M, 
Eq. (12.15) implies that 

(12.16) 

where we have introduced the abbreviations 

lIax 6x' = [H"x, 1I6x']' 

o _ aH", oX" (x) , 
I",x 6x' = oxa (x) oe$(x') - (ax - (3x ). 

(12.17) 

Our next task is to project Eq. (12.16) into lx lx', 
ax lx', and ax bx' directions. The projections of 
H",x6x' are the same for all tensor fields, being equal 
to 

kx lX' = [H(x) , H(x')] + E(H"(X) 0 a(x, x') - (x - x')), , 

(12.18) 
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Hax.Lx' = E[H" (x) , H(x') J - EH(x) 0, "(x, x'), (12.19) 

Hax bx'= [H"(x) , Hb(x')] - (fIb (x) 0, "(x, x') - (ax - bx'). 

(12.20) 

We shall prove Eq. (12.18) and indicate how to pro
ceed in the case of Eqs. (12. 19}-(12. 20). The basic 
properties of the Poisson brackets give 

o [0 0 0 P. 
H.LX .Lx' = H(x), H(x')] - [n'" (x), H(x'}] HOI (x) 

- [H(x), n"'(x')]H",(x'). (12.21) 

Because H(x') does not depend on P,,,, and n'" (x) does not 
depend on the field variables rp, 1T, 

[n"'(x), H(x')] = [n"'(x), EP.L(X')]=E 15.Lx' n"'(x), (12.22) 

The derivative l5,x' n"'(x) is given by Eq. (1.6.16), 

15.Lx' n"'(x} = - ea"(x) o,a(x, x') +A~(x) o(x, x'). (12.23) 

Substituting Eq. (12.23) into Eq. (12.22), and Eq. 
(12.22) into Eq. (12.21), the term Af'(x) o(x,x') drops 
out and we get the desired result, Eq. (12.18). 

The proof of Eqs. (12.19) and (12.20) is similar. It 
uses Eqs. (I. 6.9), (I. 6.10), and the relation L;;n'" 
= l5;;n" for the hypertensor n"'. 

o 
Returning to the proj ections of I"x 6x', we get 

tXLx,=E :f. (x) <'i.Lx,Xa(x)-(x-x'), (12.24) 

o 

I.X.LX' = - E :~ (x') 0b:<Xa(X'), (12.25) 

and 
o 

laxbx'= 0, (12.26) 

because only H depends on X a. 

In Eq. (12.24), we can substitute for <'i'x'xa(x) the 
tilt change <'iTx' X a (x) , because the translational change 
drops out due to the interchange (x - x'). Because 

I5 f x' X"(x) = X.L(x) 0," (x, x') = g-1!2 (x) 1T(X) 0, "(x, x'), 

(12.27) 

Eq. (12.24) becomes 

tX.LX,=EI"(x) O,a(x,x') - (x-x'), 

Ja =g-1/2 1Tg ab ali 
oXo • 

(12.28) 

In Eq. (12.25), 0oxxa(x') is determined from the 
relation 

(12.29) 

for the hypertensor xa; it is thus given by 

<'ibxXa(x') =Xa,b(X') o(x',x) -ogXC(x') O,c' (x', x), (12,30) 

Collecting Eqs. (12.18)- (12.20), and Eqs. (12.25), 
(12.26), (12.28), (12.30) together, the projected iden
tities (12,16) assume the final form 

[H(x), II (x') ] = - E{(Ha(X) + Ja(x) 6, a(x, x') - (x - x')}, 

(12.31) 
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o 
o 0 0 aH 

[Ha(x), H(x')] =H(x) 0, a(x, X') + ai" (X') Xa,b (X') O(X', X) 

- ~(X')XC(x') o,c(x', X), 

(12.32) 

(12.33) 

The closing relations (12.31)-(12.33) ensure that 
the constraints 

H(x) = 0 = Ha(x) (12.34) 

will hold on a deformed embedding, if they hold on the 
original embedding together with the X equations 

aH 
axa (x) = o. (12.35) 

Indeed, 
o [0 0] f _0 0 x' 

ON H(x) = H(x), Hx' N X + [H(x), Har]N' 
o 

+ :~ (x) 0. ;l.a(x), (12.36) 

and Eqs. (12.34), (12.35) imply through the closing re
lations (12.31), (12.32) that O.H(x) = 00 The same 
argument applies to oNk,(x). 

The X equations (12.35) resemble the constraints 
(12.34) in the respect that they contain no directional 
derivatives ON and therefore limit only the choice of 
the field variables X', </J, 1T on the initial hypersurface. 
Superficially, one tends to guess that the Poisson 
brackets 

aH 0, o ~ [aA' (x), H(x ) (12037) 

must also be closed, in order that the X equations be 
preserved along a curve in [. Such a conjecture, how
ever, is misleading. On the contrary, we will prove 
that the Poisson brackets (12.37) cannot be closed; if 
they were, the theory would be internally inconsistent. 

To see this, calculate 

( 

0 \ 2 0 

ON :~ (x)) = a~'~Xb (x) 0NXb(X) 

aH 0 x' aH 0 ax' 
[ 

0 [ 0 J 
+ axa (x), Hr] N + aA' (x), H ox' N 

(12.38) 

The left-hand side of this equation vanishes, because 
the X equations hold on an arbitrary embedding. Equa
tion (12.38) may then be used for determining X'(x) on 
the deformed embedding if X'(x) is known on the old 
embedding; it is a linear nonhomogeneous equation for 
oJ( X '(x) which has the unique solution due to the as
sumed regularity of the a2k/ax'axb matrix. However, 
if the Poisson brackets (12.37) were closed, the con
straints (12.34) and the A equations (12.35) on the initial 
embedding would imply that this solution is necessarily 
zero, 0. X'(x) = 0, which is an obvious contradiction, 
because Xa(x) may change from one embedding to 
another. Therefore, the Poisson brackets between 0/ 0 0 aH ax' and the constraint functions H, H, cannot close. 
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This is a vital difference between the constraints 
(12.34) and the X equations (12.35). 

Generalize now the closing relations (12.31)- (12.33) 
to a covector field. For the covector field, J ",x ~x' in the 
identity (12.16) assumes the form 

o aH OX.Lb(X) aH oXab(x) 
l",x8x'= aX.LHx) oeS(x') + ax'~(x) oeS(x') - (x-x'). 

(12.39) 
The lx lx' projection of the expression (12.39) gives 

(12.40) 

all J. all 
=E aX.Lb(X) 0J.x' X b(X)+E axab (x) 0J.x' Xab(x)_ (x-x'). 

Again, due to the antisymmetrization (x - x'), we can 
replace the expressions 0J.x' X.L b (x) and 0J.x'Xab(x) in Eq. 
(12.40) by the tilt changes, which we read off from 
Eqs. (n. 3. 16), 

Of-x' X.L b(X) = - E XCb(x) o,c(x, x') + XJ. J.(x) 0, b(X, x') 

= - E X cb (x) 0, c(x, x') + E g -1 / 2 7TJ.(X) 6, b (x, x'), 

0J.X' X,b(X) = x,J. o, b(X, x') + XJ. b 6, '(x, x') 

= 7T' 5, b (x, x') + X J. b 0, ' (x, x'). (12.41) 

This leads to Eq. (12.28) and the closing relation 
(12.31), with [a(x) given by 

o _ -112 7r'- ok b all 
Ia-Eg axJ., -EX, axJ.b 

-l/L.1> aH ok.L b + g "11- axb, + oXab X (12.42) 

Similarly, the ax lx' projection of the expression 
(12.40) leads to the closing relation which is analogous 
to Eq. (12.32), with appropriate Lie derivative term so 
The closing relation (12.33) remains unchanged. 

At the end, let us pass to the closing relations among 
the constraint functions 

*lI(x) =i/(x)[</J, 7T, X'(</J, 1T, ea ), e'" ,p",l, 
o p. [] (12.43) *H,(X)=H,(X) </J,7T, e"',p", 

of the modified Hamiltonian theory in which the X multi
pliers were eliminated by means of the X equations 
(12.35). When we calculate the Poisson brackets be
tween the constraint functions (12.43), any derivative 
of the original functions H(x), with respect to the 
variables </J, 1T, e'" hidden in the multipliers 
X'[</J, 1T, e"'] vanishes, because we differentiate lI(x), 
first with respect to the multiplier Xa, getting 
thus the X equations. Therefore, 

(12.44) 

with similar equations holding for any other pairs of 
constraint functions. The right-hand sides of these 
equations are given by the closing relations (12.31)
(12.33), in which all terms containing [aH/2i\a]xb=xb(<I>,.,e"') 
are killed. This leads to the simplied closing relations 
between the modified constraint functions, 

[*k(x), *H(x /)] = - E(*H'(x) 5,,(x, x') - (x - x')), 

(12.45) 
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(12.46) 

(12.47) 

The closing relations (12.45)- (12. 47) for a parame
trized field theory on a flat Minkowskian background 
were first obtained by Dirac3,4 who used a consistency 
argument to prove their validity. Here we have seen 
that the closing relations are the consequence of the 
foliation independence of the hypersurface action. 

The closing relations (12.31)-(12.33) for scalar 
field, their generalization for an arbitrary tensor field, 
and the universal closing relations (12.45)-(12.47) 
for the constraint functions with eliminated ,\ multi
pliers, hold unchanged for the super-Hamiltonian H(x) 
[or *H(x)] and the supermomentum Ha(x) [or *Ha(x)] of 
the tensor fields interacting with the gravitational field. 
We will discuss them in the final paper of this series. 
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We establish the general fonn of the generator of a completely positive dynamical semigroup of an N-Ievel 
quantum system, and we apply the result to derive explicit inequalities among the physical parameters 
characterizing the Markovian evolution of a 2-level system. 

J. INTRODUCTION 

In this paper we establish the general form of the 
generator of a completely positive dynamical semi
group of an N-Ievel quantum system (Sec. II) and we 
find the conditions, in the form of explicit inequalities, 
that complete positivity imposes on the physical param
eters which characterize the Markovian evolution of a 
two-level system (Sec. III). The term dynamical semi
group was introduced by one of us to mean a continuous 
one parameter semigroup A: t - At, t E JR+, of positive 
trace preserving linear maps At: T(H) - T(H), where 
T(H) is the Banach space [under the trace norm 110:111 

= tr(a*a)1 12] of trace class operators on a complex 
separable Hilbert space H. 1 Other terminologies which 
have been used in the literature are "quantum stochastic 
process"2 and" (stationary) noncommutative Markov 
process. "3 Since At is a contraction, 4 it follOWS from 
the Hille- Yosida theorem5 that there exists a linear 
operator L: T(H) - T(H) with dense domain of definition 
D(L) such that 

liml/La- r 1(A ta- a)II 1 = 0, uED(L). 
t·o 

L is called the generator of the semigroup. Therefore, 
if we regard H as the Hilbert space associated to some 
quantum system, we can interpret At as the integrated 
form of a Markovian master equation for the density 
operator representing the state of the system 

~~=Lp, PET(H), p~O, tr(p)=1. (1. 1) 

Master equations of the form (1. 1) are encountered in 
a wide variety of physical problems such as quantum 
optics, laser action, superradiance, oscillator damp
ing, atomic and spin relaxation, decay of unstable sys
tems, etc. 6-14 Generally speaking, an equation of the 
form (1. 1) gives a correct description of the irreversi
ble evolution of a quantum open system in contact with 
stationary surroundings, provided the decay time TR of 
the correlations of the "reservoir" is much shorter than 
the typical relaxation times Ts of the system, so that 
memory effects can be neglected. If the latter condition 
is not met, one has in prinCiple to solve for p a 
formally more complicated intergrodifferential equation 
with memory which is usually referred to as the gen
eralized master equation (gme).8.15-19 Recently, it has 
been shown by Davies that under suitable assumptions 
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the gme does indeed go over into an equation of the 
form (1. 1) with a rescaled time variable in the limit 
when the coupling of the system to its surroundings is 
made to tend to zero (weak-coupling limit, T s -00).20 

It is also possible to obtain (1. 1) rigorously in the limit 
TR - O. This has been called the limit of singular 
reservoir. 21 See our next paper for an explicit model 
thereof. 22 

In order to proceed further we need to recall the no
tion of completely positive map. Let M(n) denote the 
C* algebra of the n Xn complex matrices and In the 
identity map M(n) - M(n). A linear map O!: A - B, A 
and B C* algebras, is said to be com.pletely positive if 
the tensor product map O! (n) = O! 01n: A 0M(n) - B 0M(n) 
is positive for all positive integers n (if O! (p) is positive 
for a given positive integer p, then O! is called {) posi
tive).23 For the theory of positive and completely posi
tive maps of C* algebras see Refs. 23-30. To show 
that complete positivity is actually a stronger condition 
than positivity, we give in Appendix A a general ex
ample of a positive map which is not two positive. Now 
let A be a dynamical semigroup and let B (H) denote the 
C* algebra of bounded operators on H. Let A * : t - A ~, 
t E lR+, be the positive, normal (i. e., ultraweakly con
tinuous), and identity, preserving semigroup At :B (H) 
- B(H), dual to A, defined by 

tr[(Ata)A]=tr[a(A'tA)], aET(H), AEB(H), tElR+ 

(1. 2) 

(A* provides the evolution in the Heisenberg picture). 
We say that A is a completely positive dynamical semi
group if the map A~, tEJR+, is completely positive. One 
can argue that dynamical semigroups describing the 
evolution of physical systems should be completely 
positive. Indeed, assume we have a quantum system 5 
coupled to a reservoir R. If we regard the total system 
5 +R as isolated, its dynamics will be given by a one
parameter group U: t - Ut of unitary transformations of 
Hs0HR , the tensor product of the Hilbert spaces as
sociated to 5 and to R, respectively. Assume that 5 + R 
has been initially prepared in a product state p0a, 
p E T(H s), a E T(H R), in which 5 and Rare uncorrelated. 
The Heisenberg reduced dynamics of 5, <P: t- <P t :B(Hs) 
-B(Hs), tElR+, is defined by 

(1. 3) 
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where trs denotes the trace on T(H s). It is easy to see 
that <P t is completely positive. The proof can be found 
in a paper by Kraus, 25 who was the first, to our know
ledge, to recognize the physical significance of com
plete positivity, in connection with state changes pro
duced by quantum measurements. For the reader's con
venience, we give in Appendix B a straightforward inde
pendent proof based on the definition. One can show by 
continuity that complete positivity will not be destroyed 
by any of the limiting procedures, such as weak-cou
pling or the singular-reservoir limit, which give rise 
from <P t to a dynamical semigroup. Other arguments 
justifying complete positivity have been given by 
Accardi3 and by Lindblad, 31 which are based on the 
requirement of positivity, respectively, of quasicon
ditional expectations on the algebras of local (in time) 
observables and of the dynamics of the system S + S', 
where S' is an auxiliary N-level system coupled trivial
ly to the open system S. Both these arguments do not 
make reference to the dynamics of S being a subdynam
ics of a global unitary dynamics. We have received 
Lindblad's preprint after the completion of the first 
version of the present paper. In his work, using meth
ods different from ours, the author gives the general 
form of the generator of a norm continuous completely 
positive dynamical semigroup. This result generalizes 
our theorem 2.2. 

II. DYNAMICAL SEMIGROUPS OF N·LEVEL 
SYSTEMS 

We now proceed to determine the structure of the 
generator of a completely positive dynamical semigroup 
of an N-level system. For such a system, we have the 
identifications T(H) =8 (H) =M(N) and if A is a com
pletely positive dynamical semigroup thereof, it is 
clear that the map At: M(N) - M(N), t E 1R+, is com
pletely positive. We call A a completely positive dynam
ical semigroup of M(N). 

Let P N denote the set of all complete families 
{p 1 , P 2, ••• , P N} of mutually orthogonal one- dimensional 
self-adjoint projections in M(N): PjPj = OjjP j , P j =Pt, 
'iN PI = 1. The following theorem is a special case of 

1=1 
theorem 5 of Ref. 32: 

TheoreJJl 2.1. In order for a linear map L : M(N) 
- M (N) to be the generator of a dynamical semigroup 
of M(N) it is necessary and sufficient that the 
conditions 

(2.1) 
and 

N 

0tr[Pr (LPs )]=O, s=I,2, ... ,N (2.2) 
ro! 

hold for all {P 1 ,P2 , ••• ,PN}E PN' Condition (2.2) is 
necessary and sufficient for L to generate a trace pre
serving semigroup, whereas (2.1) expresses the posi
tivity requirement. 

TheoreJJl 2.2. A linear operator L : M(N) - M(N) is 
the generator of a completely positive dynamical semi
group of M(N) if it can be expressed in the form 

L : p - Lp = - i[H, P 1 
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2 1 N -I 
+"2° cij{[Fi,pF1]+[Fjp,Fj], pEM(N), 

!,J=I (2.3) 
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whereH=H*, tr(H)=O,tr(F/)=O, tr(FtFj)=ojj, (i,j 
= 1, 2, .•. ,N2 -1), and {eij} is a complex positive 
matrix. For a given L, H is uniquely determined by the 
condition tr(H) = ° and {clj} is uniquely determined by 
the choice of the F/s. 

Remark. We may call - i[H,'] the "Hamiltonian" 
part of the generator and L + i[H, .] its dissipative part. 
In general, H is not the same as the Hamiltonian Ho of 
the free N-Ievel system. 20.22 The proof of theorem 2.2 
is based on some lemmas. 

Lemma 2.1 t - At is a completely positive dynamical 
semigroup of M(N) iff t - A t 0 IN is a dynamical semi
group of M(N)0 M(N). 

Proof. From theorem 5 of Ref. 28, a linear map 
r: M(N) - M(N) is completely positive iff r@ IN is posi
tive. Expressing an element 

N 

..4EM(N)@M(N) as ..4=.0 A;/i:i)Eii , AjiEM(N), 
'tl=1 

(Ej)r. = o/rOjs and denoting by Tr the trace on M(N) 
@M(N) we have 

N 

Tr[(r@ IN)A] = ~ Tr(rAij@E jj ) 
I. J=1 

N N 
= ~ tr(rAjj)tr(Eij)=~tr(rAji)' 

i, i=l ,=1 

Hence r is trace preserving iff r@ IN is trace pre-
serving. QED 

Lemma 2.2. Let r be a linear operator M(N) - M(N) 
and let {F,,1,=1.2 ..... N2 be a complete orthonormal set 
(c. o. s) in M(N), viz., (F"" F s) = tr(F~F s) = O",B' Then r 
can be uniquely written in the form 

H2 

r:A-rA= ~ c",aF",AFt, AEM(N). 
0: ,,6=1 

Moreover, if rA*=(rA)*, then C"'B=(CB"')' 

Proof. First note that 

H2 

~ F~ AF", =.11. tr(A), 'fI A E M(N). 
",=1 

(2.4) 

(2.5) 

Indeed, the left-hand side of (2.5) is invariant under a 
change of C.o.S. F",-E", and choosing {E",}={Ed, we 
have 

N N 

~ EtjAEiJ=.~ EjiAEij 
i, i=l 1,3=1 

=(t Ejj) (tAli) =.11. tr(A). 
J=1 .=1 

Now let L (M(N») denote the vector space of linear 
operators M(N) - M(N) and let {C",} be a c. o. s. in M(N). 
L WeN»~ becomes a unitary space with the inner product 

Define 

r"s:A-r",aA=F~Ft (a,/3=1,2, .•. ,N2
). (2.6) 

Then {r "'s} is a c. o. s. in LW(N»). Indeed, using (2.5) 
we have 
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N2 

(r a6' r "'.) = L; tr[ (r a6G~)* (r ",.GJ] 
,=1 

N 2 

= L; tr[(F aGxFt)*(F ",GxF~)] 
X=I 

= tr [F 6(E G1:F~F IJ. Gx) F~ ] 
= tr(F~F "') tr(F~F 6) = Oa606.' 

The last assertion of the lemma is now easily verified. 

QED 

Lemma 2.3. Let {F ,,}a=I.2,, ••• N2 be a c. o. s. in M(N) 
such that F N2 = (1/N)1I2 1 and let L be a linear operator 
M(N) - M(N) such that (LA)* =LA* and tr(LA) =0 for all 
A E M(N). Then L can be uniquely written in the form 

L:A -LA =- i[H,A] 

whereH=H*, tr(H) = 0, andcij=(cfI)av' 

Proof. From (2.4) we have 

I (1)112 N
2

_1 
LA = jjCN2N2A + N E (CIN2F jA + c N2jAFr) 

N 2_1 

+ L; c jjF jAF1 = - i[H,A] + {G,A} 
i, i=1 

N2_1 

+ :0 C IjFjAFt, (2.8) 
it i=1 

where H = (1/2i)(F* - F) and G = (l/2N)C N2N2Jl 
+(1/2)(F*+F), withF=(I/N)1I2'Zf:l-lC/N2Fj. Now 

0= tr(LA) = tr ~(2G + ~~I CiJF1Fi)A] , 'f/ A E M(N) r &,J-l 

implies G = - i'Ztj-=\ CjjF1F j , whence (2.7) follows. The 
uniqueness follows from dimensionality considerations, 
since tr(LA) = 0, 'f/ A E M(N) implies N 2-independent con-
ditions on L. QED 

Lenmw 2.4. Let {F ',}a=I.2 ..... N2 be a c. o. s. in M(N). 
Then 

{

A A N 

pip = L; P j/& Ejj; 
(od (a) i.i=1 (a) 

P ij =F OlEiiF~; QI = 1,2, ... ,N2} 
(a) 

is a complete family of mutually orthogonal self-adjoint 
projections in M(N)® M(N). 

A 'NZ 
Proof· An element P = Li.i=IPij® Eij of M(N)® M(N) is 

a self-adjoint projection iff 
N 

pri =Pji and :0PjlP/j =Pij (i,j = 1,2, ... ,N). (2.9) 
1:1 A _ 

Two such projections P and Q are orthogonal iff 
N 

6 Pi/QIj = 0 (i,j = 1, 2, ... ,N). 
1=1 

We have 

pii = (F aEiiF~)* =F aEtiF~ = Pji 
(a) (a) 

and 
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(2.10) 

N N 

:0 Pi! P /j = L; F aEIlF~F BE liFt 
1=1 (a) (B) 1=1 

=FaEI~t tr(F~F6) = 0aB Pij. QED 
(a) 

Proof of theorem 2.2. The "if" part: If t - At is the 
semigroup generated by (2.3), the generator of the 
semigroup t - A t ® IN is L® IN' By Lemma 2. 1 we must 
show that {cpq}~ 1 implies L ® IN to satisfy the condi
tions of Theorem 2.1. Since tr(Lp)=O for all pEM(N), 
we need only check that 

Tr {p [(L®I N) p]} ~ 0 
(1) (2) 

for all pairs P, P of mutually orthogonal self-ad
(t) (2) 

joint projections in M(N)® M(N). And indeed, using 
(2.9) and (2.10), we get 

Tr{p [(L01 N) pJ} = t tr[pji(L Pii)~ 
(1) (2) i,i=1 (1) (2) ~ 

= - i t tr (p Ii [H, P jj] ) 
i.i=1 (1) (2) 

since {cpq} ~ O. 

The "only if" part: If a linear operator L : M(N) - M(N) 
generates a completely positive dynamical semigroup 
of M(N) we have tr(LA) = 0 and (LA)* =LA * for all 
A EM(N). Hence, by Lemma 2.3, L can be written in 
the form (2.3) with H =H*, tr(H) = 0, and Cii = (c ii)av' 

Since the matrix {ciJ} is self-adjoint, we can choose 
another orthonormal set of traceless matrices 
{G 1 , G2 , ••• , GN2_ 1} such that 

Lp=- i[H,p] 

1 N2_1 

+"2.0 Ap{[Gp,pGt] + [Gpp, Gt]}, pEM(N). 
9=1 

Define 

N 

p= :0 (GqEijG:)®Eii' q=I,2, ... ,N2 _1 and 
(q) i. i=1 

A 1 N 
P= jj 6 E jj ® EiJ. 

i,i=1 

Then, by Lemma 2.4, Theorem 2.1, and Lemma 2.1 
we have 
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N2_1 N 
= 6 Ap 6 tr(CqEijC!CpEjict) 

P=1 i, j=1 

N2_1 

= 6 Ap tr(CtCp) tr(CqCt)=Aq, q=1,2, ... ,N2 _1. 
P=1 

The uniqueness of H and of {eij} follows from Lemma 
2.3. QED 

III. TWO-LEVEL SYSTEM 

In Ref. 33, Theorem 2.1 was applied to give the 
following characterization of the generator of a dynam
ical semigroup of M(2). 

Theorem 3.1. A linear operator L:M(2) - M(2) is the 
generator of a dynamical s emigroup t - At of M (2) iff 
it can be written in the form 

L:p-Lp=-i[H,p] 

1 3 
+2.6 Cii{[Fi,pF j ] + [FiP,FJ}, pc::l\J(2), 

t, J~1 

where (i) H = 1.1 =1 hiF i, hi E lR; 

(ii) Fi =Ft and 

(3.1) 

i 3 
FiF j = '!Oij .II. +26 EijI)' k( =:> tr(FiF j) = iOij, tr(Fi ) = 0); 

k=1 

~
-2')11 

(iii) {Cij}= i~3 
- W2 

(iv) ')11> ')12' ')13 0 0: 
3 

(v) ai =')Ii11l~ + 6 Eiikm~hk; 
it 1;:=1 

(vi) 11l~ = 0 if ')11')12')13 = 0; 

(vii) (1J1~, /11~, m~) E 5 = {(z l,z2, z 3) [z 1, z 2, Z 3 E lR; 

inf [t (')IiXi (Xi' - Z i) 
++x~=1 i=1 

+.t Eii~ih;zk)l;:-o; Xl,X2,X3 ElR } ifYl')12')13>0. 
1,k=1 'J 

Let Pt = At Po be the density matrix describing the 
system at time t 0 0 and define the polarization com
ponents Mi(t)=tr(ptF/), i=1,2,3. One easily verifies 
that the latter satisfy the following equations of motion 
(Bloch equations34 ): 

dA
d
l i (t) = t Eijkhi(Alk(t)-I'vlg)-Yi(lvli(t)-IV11), i=1,2,3, 
t i, k=1 

(3.2) 

where M~ = tnl~ (i = 1,2,3). MO is a stationary state and 
it is the only stationary state iff ')IIY2')13 > 0 (in the latter 
case every state approaches MO as t- co). 

If, for instance, we think of 2VI(2) as the algebra of 
observables of a spin-i magnetic moment, we can in
terpret Eqs. (3.2) as describing spin relaxation in a 
molecular surrounding under the action of an external 
magnetic field H = (11 tlg)h, g being the gyromagnetic 
ratio. 1'1' Yz, and 1'3 are damping factors which are 
directly related to the relaxation times of the polariza
tion components towards their equilibrium values; they 
are in fact inverse relaxation times ')Ii = l/T i, if L 
commutes with its Hamiltonian part - i[H, .]. 
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If ')I = 0, we have L = - i[H, .]. This corresponds to a 
purely Hamiltonian evolution which is of course com
pletely positive. Let I' > 0 and define Ki = Y - 2')1i' Then, 
it follows from Theorem 2.2 that in order for the 
evolution to be completely positive it is necessary and 
sufficient that 

(a) Kl + K2 + /(3 00, 

(b) /(2/(3 + /(3/(1 + /(1/(2? ai +a~ +aL 

(c) /(1"2'(3'" t /(ia~. 
i =1 

Conditions (3.3) are equivalent to the following: 

(a) /(1'/(2'/(3 0, 

(b) al = (/(2/(3)1/2y1 , 

(c) a2 = (/(3/(1)112"2, 

(d) ([3 = (/(1/(2)1I2y3 , 

(e) YI +y~ +Y§ '" 1. 

In terms of the y;'s, (3.4) (a) can be written 

(3.3) 

(3.4) 

(3.5) 

showing that no two relaxation times can be much long
er than the third. 

In particular, we see that no two y;'s can be zero 
without the third being zero too. Hence a non-Hamil
tonian completely positive evolution admits for at most 
a one dimensional manifold of equilibrium states. This 
is the case when one of the ')I;'S, say Yl, is zero. Then 
')12 = ')13 and there is essentially only one relaxatiom 
time. 

As a special example, we consider the case ')11 =')12 
=')11 c· 0, Y3 = ')I" > 0, and hi =lzz =0. Then we have /(1 

= f(~~ =, ')I", /(3 = 21'1 - ')I" and conditions (3.4) become 

(a) 21'1' ')I,,, (3.6) 

(b)ai= [y,,(2')11-')1,,)]1I2yi , i=1,2, a 3 =')I,L}'3' 

:VI+Y~+Y~'" 1. 
For the equilibrium state we get 

,,0_ [( )]tl2(')Il.Yl- h3Y2 ) 
M 1- ')I" 2Y1 - Y" \ 2 (')II +lz~) , 

(3.7) 

If the system is rotationally symmetric about the direc
tion of the magnetic field, we have M~ =M~ = O. In this 
case Y1 and 1'" are, respectively, the inverse transverse 
and the inverse longitudinal relaxation times and (3.6) 
(a) is written 

(3.8) 

a relation which had been previously derived by Favre 
and Martin for a spin system weakly coupled to a high
temperature bath. 18 To our knowledge, relation (3.8) 
is experimentally satisfied in all known cases. 
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APPENDIX A 

The following proposition provides a fairly general 
example of a positive map which is not two positive. 

Proposition. LetA be a non commutative C* algebra 
which identity and let {3 be a * antiautomorphism ofA. 
Then (3 is not two positive. 

Proof. LetA be a self-adjoint element ofA0M(2). It 
A 2 

has the form A=Ii,i=0ii0 E ii , where (Eij)rl = 0irOn and 
Ati=Aii' and we have 

13m (.42) - [(3(2) (A) F = {3[A 12 ,At2]0 E11 + {3[A l1 - A 22 , A 12 ] 

o E12 - {3[A l1 -A22 ,At2]0 E 21 - {3[A 12 ,At2]0 E 22 • 

Assume (3(2) is positive. Then, since 13 m is self-adjoint 
and identity preserving, we have 11{3(1) II = 1. 35 Therefore, 
(3(2) satisfies Kadison's inequality36 13m (li2) - [(3(2) (li)]2 
'" O. By the above, this implies (3[A12,At2] = 0, which, 
by the arbitrariness of A 12 , contradicts the noncom-
mutativeness of A. QED 

APPENDIX B 

To simplify notations we drop the subscript t from 
<l>t and U t and write p(A) in place of tr( pA). An element 
AEB(Hs)0M(n) admits of a unique decomposition A 
=Ii,I=0n0Eil, AilEB(Hs), (Eil)rs=OirOIs> and ifAis 
positive we have 

A density operator on B (H s)0 M(n) can be written as a 
finite convex combination of states of the form p0 w, 
where p is a density operator on B (H s) and w is a pure 
state on M(n), viz., W(Eii) =Xixi' Set Qki = U*(Bki 
o l)U and Qs=I~=lxrQsr" Then 

(p0 w)[ <1>(")(.8*.8)] = (p0w) [~(~<I>(BtiBki)0 Eii)] 

= 6 P[<I>(BtiBk)]XiXi 
i, i. k 

= 6 (p0 a)[U*(Bt/Bki0 .Jl)U]XiXi 
i,i,k 

= 6 xi(p0 a)(QtiQki)Xi 
i,i,k 

= (p0 a)(~QNs)'" o. QED 
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A characteristic glimpse of the renormalization group 
John R. Klauder 

Bell Laboratories, Murray Hill, New Jersey 07974 
(Received 15 September 1975) 

Characteristic functions for arbitrary physical systems are discussed in general terms with special emphasis 
on the space of allowed test variables for which the characteristic function is defined. A fundamental 
change in the probability measure (at a phase boundary, for example) is reflected in a change of allOWed 
test variables, generally, some new ones added and some old ones dropped. Physically motivated 
transformations on the space of test variables (implicitly introducing block spins, for example) are designed, 
after repeated operation, to accentuate or even to isolate the fundamental changes. Several examples of 
such renormalization-group type transformations are given. 

Renormalization group ideas and methods have be
come all pervasive in the last few years and justifiably 
so, 1 The language of probability theory enables one to 
unify many of these ideas and partially relate them to 
certain limit theorems known in mathematics as has 
been emphasized recently by Jona-Lasinio. 2 Here we 
restate and extend some of these ideas in the language 
of characteristic functions which often provides a use
ful complementary description. 

Quite generally, a characteristic function C(h) is 
defined for a variety of test variables h and has the 
general structure 

C(h) = J exp[i(h, <1»] df.l(<I», 

where h is a real variable (number, sequence, function, 
etc.), <I> denotes a generalized real random variable 
(number, sequence, function, generalized function, 
etc., discrete, continuous or both), f.l is a probability 
measure on configurations (normalized Gibbs distribu
tion, etc.), and (h, <1» denotes the relevant (real) inner 
product. We are particularly interested in infinite
dimensional test variable spaces. Both statistical 
mechanics and certain Euclidean field theory problems 
are covered in the present generality, and a few ex
amples will be given below, 

The measure f.l depends on the parameters of the 
problem (temperature, spin coupling, coefficients of 
nonlinearities, masses, cutoffs, etc.), and as a con
sequence so does the characteristic function C; in fact, 
given either f.l or C the other quantity is uniquely 
determined. In general cases the support of f.l is a com
plicated issue and we will not discuss it. 3 A com
plementary question, in some sense, is the allowed 
class of test variables and this is somewhat easier. In 
the general case, we note without proof that 

d~(h) '" 71-1 12 J [1- ReC(Xh)] exp(- X 2) dX 

=J {1-exp[-i(h,<I»21}df.l(<I» 

defines a metric dc(h) on the space of test variables, 
that this space may be completed to include limits of 
Cauchy sequences, and that each element of the com
pleted (linear vector) space V c defines an acceptable. 4 

test variable. 4 By construction, C(h) is a continuous 
junction on Vc in the topology induced by de. Commonly 
one starts with a restricted and conservative class of 
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test variables, applicable to a wide variety of prob
lems; however, the specific problem at hand, namely 
f.l or C, ultimately determines the maximally allowed 
class of test variables, and this is as it should be. For 
instance, when a physical system crosses a phase 
boundary the support of f.l generally changes fundamen
tally (e. g., revised long-range order, modified sym
metry breaking, etc.), and there is a corresponding 
fundamental change in the characteristic function c.: that 
reflects itself in a fundamental change in the space of 
allowed test variables V c. 

The renormalization group attempts to isolate the 
fundamental changes in f.l, C, and V c by selectively 
emphasizing one or another of the fundamental changes. 
To this end consider a general transformation T (real, 
linear, nonsingular) that maps the space of test varia
bles into itself, i. e., T: V c - V c. For the test varia
bles themselves, h f- h T", Th for all allowed h. Such a 
transformation induces a transformation of C (and 
therefore of f.l) according to 

C(h) I- CT(h) '" C(Th). 

Being a normalized, continuous, positive-definite func
tion, C T(h) necessarily has the representation 

CT(h)=J exp[i(h, <I»]df.lT(<I», 

which implicitly defines the map of f.l to f.lT (generally, 
f.l and f.lT are inequivalent measures). More explicitly 
we also note that 

CT(h)=J exp[i(Th, <l>ll df.l (<I» 

= J exp[i(h, r<l»]df.l(<I», 

where r denotes the transposed transformation. Al
though we choose T as nonsingular, it may well happen 
that or is singular. 

For the sake of illustration suppose <I> denotes a 
sequence of spin variables {<I>k; k = 1, 2,"'}, h is also 
a sequence {hk; k = 1, 2, ... }, and (h, <1» = Z;=1 hk<l>k' Then 
T is a matrix {Tkl }, and we specifically choose Tkl 
= P0[1+(k-1) 1m), I, where [x] denotes the largest integer in 
x, m is an integer, m? 2, and p is a parameter to be 
chosen as needed. Consequently, 

(Th, <1» = (h, r<l» = is hk(P ~ <1>,), 
k=1 1=1+m(k-1l 
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which leads directly to a block spin encompassing m 
"old" spins in each "new" spin. In this example, there
fore, J.i.T, as determined by C T, is the probability mea
sure for block spins. Observe that a transformation on 
test variables has in effect introduced a conjugate 
transformation of physical interest on the spin variables. 

Any given transformation T may be repeated arbi
trarily often which leads to the sequence of characteris
tic functions 

c(n)(h) -= C(Tnh), 

and one may ask whether 

cln) (h) - C( T) (h), 

as n - 00, where CIT) denotes a characteristic function. 
Evidently, if this is the case, 

CIT) (Th) = CIT) (h), 

and thus CIT) is invariant under T (or in other words, 
we have a fixed point of the transformation T). 

Generally, however, a sequence of characteristic 
functions does not converge; more typically, there may 
exist one or more convergent subsequences. One suf
ficient condition to ensure convergent subsequences re
quires a metric dc. T (equivalent to de> for V c such that 
dc(Tnh) ~ dc. T(h) uniformly in n. In this case there 
exists a subsequence {n r ; r = 1,2,' .. } such that as 
r- oo (and nr-co), 

c(nr ) (h) = C(T"rh) - CiT} (h). 

The resultant characteristic function CiT} (h) is gen
erally not invariant under T. For instance, in terms of 
test variables {hk; k ="', - 2, -1, 0, 1, ... } and (hTh 
-= hk+t. suppose the limiting function is 

CiT) (h) = exp(- 6akh~). 

If tX r = r, then ak is required to be independent of k and 
CITI is invariant under T. However, if nr=2r, then ak 
is only restricted to be periodic with period 2, i. e. , 
ak =f(k/2, mod 1), for somef(O) andf(t), and CiT} is 
invariant under T2 but generally not under T. If, in
stead, nr = 2r , then ak is restricted to be log periodiC, 
1. e., for k> 0, a"k = f,,(ln Ik l/ln2, mod 1), for some 
f"Vc), ° ~ x < 1 and ao arbitrary. In the latter case, C l 

T} 

is generally noninvariant under 1""' for any m. 

Since a general transformation T leads only to a con
vergent subsequence of c(n)(h)=C(Tnh) interest centers 
on those special transformations for which c(n)(h) 
- C(T)(h). When a phase boundary is reached or crossed 
and special features change, the space of test variables 
can change in essentially just two ways: either by adding 
new vectors or deleting old vectors (or a combination 
of the two). The role of the renormalization group is to 
bring such changes into prominence. In the first type, 
the special feature is already revealed by special vec
tors in V c, and in this case it suffices to arrange that 
h(n) -= Tnh is a Cauchy sequence in Vc, or more general
ly that Tn: V C is, in the limit, a map onto a subspace of 
V c. EVidently the resultant subspace is invariant under 
T. In the second type, the special feature appears im
plicitly since the space Vc has in part diminished. The 
effect of the requisite transformation is to expose the 
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special feature, and this is generally accompanied by 
a change of the space of test variables. Specifically, if 
d~n)(h) -=dc(Tnh) ~ dc(h) converges to a metric dc(T)(h), 
then the new space Vc(T)(h) is just the completion of the 
space V c(h) with respect to the metric dc(T)(h). Cor
respondingly, c(n)(h)_c(T)(h), and both CIT) and dc(T) 

are invariant under T. [It should perhaps be remarked 
that in the general case convergence of dbn

) implies 
convergence of C(n> but not conversely. It is useful to 
note that convergence of d~n)(h) is equivalent to con
vergence of c(n) (Ah) for all real A, and this often proves 
a fairly simple way to determine Vc.] 

Some examples will illustrate the two types of be
havior. First consider the simple case for which Co(h) 
=exp(-a2;h~), where a> 0. The metric dco is equiv
alent to that induced by the standard norm and V Co = 12 
-={hk :2;hk <cO} independently of the variable a. Next 
consider 

where a, b > 0, for which the space of allowed test 
variables is given by 

V c ={hk :0h~ <00, (0 hk)2 <cO}. 

(Schematically, the former expreSSion is meant to 
apply above a critical temperature, the latter below. 5) 
The spaces V Co and V c are fundamentally different, 
and to illustrate this difference consider the transfor
mation T specified previously (with p = m-1) and choose 
hk=gk-=Okl' Then for this specific test variable, 

gkn) = (Tng)k = m-n, 1 ~ k ~ m n, 

=0, k>mn. 

With b=O, gIn> is a Cauchy sequence in Vco=12 con
verging to zero, gIn) - 0; with b> 0, gIn) is a Cauchy 
sequence in V c converging to a nonzero element, gIn) 
- go * 0, an element not contained at all in V Co = 12. 
Stated otherwise, when b = 0, there is, as usual, an 
equivalence class of zero elements in 12; effectively 
speaking, when b> 0, this equivalence class is "broken 
up" into some zero and some new nonzero elements. 
It is such novel elements of V c that the renormalization 
group attempts to bring into prominence. Specifically, 
with T as just defined, 

C(Tnh) - CIT) (h) = exp[- b(6 hk)2], 

which no longer depends on the variable a (a reflection 
of the concept of universality). Observe also that only 
one giant block spin survives in the limit here since 

exp[- b(0hk)2] = (47Tbt1/ 2 J exp[i(0hk)S- ib-1s2]dS. 

Moreover, we must also remark, since Tnh is a 
Cauchy sequence our limiting function in this case 
amounts to no more than looking at a special subspace 
of Vc. In particular, for any hE Vc, T nh-h1g, where 
g is the specific element of V c introduced above. As 
n - 00, then, TnV c collapses to a one-dimensional 
space, a subspace within V c, with a basis vector g. 
The vector g is evidently invariant under T. In sum
mary, the study of the limiting fixed-point characteris
tic function 

C(y) =' C(T)(h) = exp(- by2), 
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where y = L; hk' is neither more nor less than the study 
of the original characteristic function for restricted 
test variables of the form h =iii since 

C(yg) = exp(- by2) = Cry). 

Of course, a given C(h) may admit interesting limit 
points for several different transformations. One need 
only augment the previous example so that 

C(h) = exp{- a6h~ - b(6hk)2 - b'[6 (- l)khkF}. 
In this case we have in addition a "staggered magneti
zation," which is exposed by a transformation T' deter
mined from T by 

T~l = (- l)kTkl • 

In particular, it follows that 

C(T'"h) - CCT')(h) = exp{- b'[L.; (-l)khkf}. 

Just as in the preceding case, there is a one-dimen
sional subspace of V c with basis vector g' = limT"'g 
that provides the same information since 

CCV'g') = exp(- b'y,2). 

Evidently, additional variations on this theme may be 
readily played. 

We continue with another simple example appropriate
ly described on a continuous space (chosen for con
venience as three dimensional). Thus we consider hex), 
x E R3

, and assume 

C(It) = exp[ - a I h2(x) dx - b I h(x)W(x - y)h(y)dxdy). 

{When a> 0 and b=O [and Vc=L2(R3»), we suppose we 
are above a critical temperature; when a, b > 0 we are 
at or below as we shall discuss.} Here W(x) admits the 
general representation 

W(x) = (27Tt3 I exp(ikx)da(k), 

where a is a positive measure. Consequently, we may 
also write 

C(h)=exp[-aI Ih(k)1 2dk-bj Ih(k)1 2da(k)]. 

Fixed point properties of this example depend strongly 
on the detailed nature of a. 

If a(k) is discrete, then 

C(ll) = exp[ - a I 1 h(k) 12 dk - b 6 r ar 1 h(kr ) 12], 

where aT> 0 and Ilr belong to the atoms of a. In this case 

Ve=Vl:I Ih(1l)1 2 dk<oo, Ih(kr )12<oo all r}, 

which contains elements not in L2. Transformations 
Tn where 

hT (x)=- (2L)"3exp(-ik.x)j,X+Lh(X/)dx' 
r x-L 

for some L '. 0, lead to the behavior 

C(T~h) - C(Tr)(lZ) = exp[ - bar 1 h(kr ) 12); 

these cases are just equivalent to examining certain 
subspaces of V c (exactly as in the discrete spin case 
below the critical temperature). 

If u(k) is absolutelv continuous the analysis is dif
ferent. Let dark) = W(k) dll, W(k)? 0, and then 

Ve={li:j [1 + U'(k)llh(1<) 12 dl? <oo}. 
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If W(k) < M, then V c = L 2 (R 3
) and no anomaly exists; 

but if W(k) is not uniformly bounded Vc CL2(R 3), and 
this happens generally at the critical temperature for 
some ordering. Commonly one considers as II? I - 0 
that W(I?) - Ik I""", 0 <a < 2 (but, of course, an unbound
ed behavior is not limited to I? = 0). A scaling limit can 
be taken to isolate this long-range order by taking T to 
be defined by hT(x) =st-3h(S-1x ) or equivalently by hT(k) 
= glh(Sk), where 1 < S < 00 (S is the analog of m in the 
discrete case), and d will be fixed later. (The param
eter d is a scale dimension and not a space dimension. ) 
It follows that 

C(Th)=exp{-I [a+bW(k))lhT(k)1 2 dk} 

=exp{- I [a + bW(k)]SZd Ih(SI?) 12 dk} 

= exp{- .<;2d-3 I [a + b W(S-!kJlI h(k) 12 dk}. 

Under repeated transformations and as n - CXJ, only the 
small I k I dependence of W(k) is tested [or the large 
Ix I dependence of W(x)]. Since we assume that 

W(k) - I k I-a, 0 < a < 2, 

choose d:= i(3 - a), then only the parameter b survives 
and in fact 

which is invariant under T. The long-range correla
tion here is given by Ix 1-(3-a), which means that the 
standard critical index 11 = 2 - a. 6 

From the point of view of metric convergence in this 
case, it is clear that the metric de (11) is equivalent to 
the norm Ilhll where 

Convergence of de(T"h) is equivalent to convergence of 
II T"hli, which we have essentially computed since 

IIT"hI12-llhI11T)=Ilkl-alh(I?)12dl? 
It is also clear that the completed space VC(T) contains 
elements that did not lie in the original V c. 

As regards the approach to critical behavior as ItO, 
where t= (T- Te)/Te, we observe for u=2 that short
range forces are involved while for 0 < U <: 2 we effec
tively deal with a problem involving long- range forces. 
Typically one assumes7 for l" 0 that 

W(k)=r+ Ikla+o(ikl"), 
and that in natural units r = l (analyticity assumption). 
Since for small k the relevant variable in W(k) is 
l?/r1!a, it follows for large x that the relevant variable 
in W(x) is xr! / a and thus the correlation length ~ - r-! / a 

"" K (T - Te)"1!a. The correlation length critical exponent 
v is thus given by v=1/a. For short range forces 0=2, 
and v = t when suitable long range forces are present 
a <: 2, and v'>}. While Gaussian systems are pedagogi
cally helpful, interesting systems are generally 
non-Gaussian. 

Simple and physically relevant non-Gaussian exam
ples are hard to come by. If for convenience one ac
cepts characteristic functions as "primary" rather than 
Hamiltonians (say) as "primary," one may readily 
propose non-Gaussian examples the physical signi-
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ficance of which unfortunately remains rather obscure. 
As one easily analyzed non-Gaussian example, consider 

C(h) = exp{- b j [k [-3 dk j [1- JO(A [k [d [h(k) [)]p(A) dA}, 

where p(A) ~ O. As presented this example is already 
invariant under the transformation hT(k) = Sih(Sk), and 
[assuming p(A) has a second moment] the long-range 
behavior of the second-order correlation is charac
terized by the Fourier transform of I k 1

211- 3, namely by 
Ix 1-2d

, which leads to a critical index 11 = 2d - 1. How
ever, we can make various proposals away from the 
critical behavior, one such being to replace the term 
Ikl by (r+ Ikla)1/a, 0<a<s2, where r=t, which has 
the consequence, just as in the Gaussian case, that 
~zK(T- Ter1/a. In this simple example we have illu
strated a consistent model with two independently 
specifiable critical indices, IJ and 11. A conventional 
argument indicates that all other standard indices may 
be determined algebraically from these two. 6 

It is interesting to observe that the space of allowed 
test functions is not at all that suggested by the 
quadratic terms but rather is a larger space. To make 
this more evident assume p(A)=exp(- A), A> 0, so that 

C(h) =exp(- b j [k [-3dk{1- [1 + [k [2a[h(k) [2]-1/2}). 

Then it turns out that Singularities as strong as h(k) 
= I k - K I-P, K'* 0, are acceptable for any P> O. On the 
other hand, the quadratic' component requires h(k) 
locally square integrable for k '* 0, and hence p < %. 
Such unusual behavior as exhibited here (and in the 
following example) is suggested by certain model field 
theories. 8 

One further non-Gaussian example is given by 

C(h)=exp[-aj [h(k)[2dk-bj W(k)[h(k)["dk], 

where 1 <S o! < 2. Now 

Ve={h:j [h(k)[2dk<00,j W(k)[h(k)l"dk<oo}, 

which is a normed space but not a Hilbert space. Sup
pose next that W(k) - Ik 1-0, 0 < 1- ta < to! < 1, and 
choose T such that 

hT(k) = Sih(Sk) , 

where d = (3 - a)/ o! < %. Then 

C(Tnh) - C( T)(h) = exp[ - b j [k I"" Ih(k) I" dk] 

and it follows that 

Ve(T)={h:j Ik 1""lh(k) I "dk <oo}. 

From the metric convergence point of view de(h) is 
equivalent to the norm Ilhll, where here 

Ilhl12~j Ih(k)1 2 dk+[j W(k)lh(k)I"dkj2/". 

The sequence of norms II Tnhll converges to yield 

// Tnh //2 -//h 117~l') = [j Ik 1-0 I h(k) I "dkf/", 

which is invariant ul1der T. It is interesting to add that 
when 0 < o! < 1, dc(h) is not equivalent to any norm, but 
nevertheless the general argument still holds. 

As another observation on this example observe that 
if O! = 2(1- tal, a> 0, then d = t and one learns that 

C (T) (h) = exp[ - a j I h (k) 12 dk - b j I k I-a I h (k) I " dk]; 
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namely, both terms survive in this "canonical" scaling 
limit. Clearly, however, Ve(T)'*L2(R3), and the dis
tinction can be easily exhibited by invoking a second 
transformation, say T10 where hT1 (k) "" SS 12h(S(k - K», 
K '* O. In this case one finds that 

C(T1)(h) = exp[ - a j [ii(k) 12 dk], 

independently of the variable b. 

When O! < 2, the normal concept of correlatio~ length 
loses its meaning for essentially any choice of W(k). 
Long-range correlation perSists, say, even if W(k) = 1, 
as can be seen from a lack of clustering of C(h). Choose 
h(x) = h1 (x) + h2(x + a) and study the limit as a - 00 of 
C(h). Since this expression does not ultimately tend to 
C(hl)C(h2), one simply cannot ask for the details of 
such convergence as needed to determine the correla
tion length. 

To exhibit yet another feature more clearly, let 
W(k) = 1 and consider 

C(h)=exp[-aj Ih(k)1 2dk-bj Ih(k)I"dk], 

for which 

Vc={h:j [lh(k)12+ [h(k)I"]dk<oo}. 

Under a scaling limit where hT(k) = S3/ "h(Sk) with 
o < S < 1 (ultraviolet not infrared) one finds that 

C(T)(h) = exp[ - b j I h(k) I "dk] 

and 

which, as generally is the case, contains new elements 
not in Ve. One such element is clearly 

h(k) = I k I-a exp(- k 2), 0!{3 < 3 ~ 2{3, 

which if O! is small means (3 can be relatively large 
determining thereby an unusual but valid element h(x) 
(a generalized function) possessing long- range tails. 

Physically, it is interesting to compare the present 
situation to that when a is discrete. In the latter case, 
the physical system responds to test variables [C (All) 
'* 1 for some A] to which it gave no response previously 
[C(Ah) = 1 for all A], and in this way a revised ordering 
could be determined. In the present case, the physical 
system saturates [C(Ah) = 0 for all A'* 0] for some test 
variables and any potential revised ordering that may 
exist is completely overwhelmed by some other un
interesting interaction. Probing first in the opposite 
extreme (ultraviolet) leads to a system that no longer 
exhibits the same saturation levels (as if the offending 
interaction has been switched off). Afterwards one finds 
the secondary behavior revealed and certain very long
range test variables are allowed that were prohibited 
previously. 

In this note we have attempted to relate some general 
principles of the renormalization group by means of 
various transformations on the characteristic function 
and to emphasize the general change ariSing in the 
space of allowed test variables when a phase boundary 
is reached or crossed. Although our examples have 
been largely Gaussian, the concepts, of course, are 
generally applicableo Moreover, it should be em-
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phasized that the random variable c1> could include a 
multitude of dependent variables, which the measure 
f.1. would properly relate, and which would make fairly 
general correlations as easy to consider in principle 
as the simplest ones. Specifically, for the spin sequence 
example, we could imagine that 

c1> '= ({c1> kl}' {c1> kl c1> k2}' {c1> kl c1>k2 c1>kg}, ••• ), 

h'= ({ h k1 }, {hk1k2 }, {hklk2k)' ••• ), 

and that f.1. ensured that the variable c1>k c1> k2 was always 
the product of the two variables c1> kl and c1> k2' etc., 
simply by appropriate 6 functions. Any pair correla
tion is adequately described by the quadratic terms in 
InC (h), and according to the above description, such 
quadratic terms could in principle contain any desired 
correlation of interest. 

Furthermore, in close analogy to the linearized 
analysis near the critical point used for Hamiltonians, 1 

one can imagine linearization of the effects of (in
finitesimal) renormalization group transformations 
directly on InC (h) in the neighborhood of a fixed point 
InC (T) (11). By comparing the expansion coefficients of 
In[CT(h)/C (Tl(h)] and In[C(h)/C(Tl(h)], when developed in 
Volterra series, one can determine, for an infinitesi
mal transformation T, a linear operator Lc that acts on 
the Volterra coefficients in the manner of a generator, 
at least in principle. This operator, too, has relevant 
and irrelevant eigenvalues, 1 the former leading away 
from critical behavior, the latter representing univer
sality. The discussion presented in this note is, how
ever, not aimed at developing calculational techniques 
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for specific problems, but rather at simply presenting 
a unifying overview of some basic renormalization 
group ideas in the general framework of characteristic 
functions. 

lSee , e.g., K.G. Wilson and J.B. Kogut, Phys. Rep. C 12, 
75 (1974). 

2G. Jona-Lasinio, Nuovo Cimento B 26, 99 (1975). 
3Although not explicitly used, one simple bound on the support 
of J.l often applies. Assume that positive numbers O!k and test 
variables h(kl' k =1 ,2, ... , exist such that (ilL; O!k(h(kl,h)2 2" 0, 
equality holding only if h'=O, and (H)L; Q kJ(h(kPq,)2dJ.l(q,) <00. 
Then J.l is supported on the space of random variables 
{q, :L; O!k(h(kl' q,)2 < oo}. 
4G. C. Hegerfeldt and J,R. Klauder, Commun. Math. Phys. 
16, 329 (1970). The arguments given therein are readily spe
cialized to cover the present case. For simplicity, we as
sume that nonzero nonfunctional test variables for which 
C(7\h) "'1 for all real 7\ are excluded. 

'The idealized expression C (h) = exp (- aL; h~ + 2ibL; hk ) is prob
ably more familiar below the critical temperature than the 
one in the text. But for these two choices of characteristic 
function the metrics are equivalent, and the spaces of allowed 
test variables are identical. 

6E. Brezin, J. C. LeGuillon, and J. Zinn-Justin, "Field The
oretical Approach to Critical Phenomena," in Phase Transi
tions and Critical Phenomena, Vol. 6, edited by C. Domb 
and M. S, Green (Academic, New York, to be published). 

'A. Aharony, "Dependence of Universal Critical Behavior on 
Symmetry and Range of Interaction," in Ref. 6. 

8J.R. Klauder, Acta Physica Austr. Suppl. VITI, 227 (1971); 
in jvlathernatical Methods in Theoretical Physics, Lectures 
in Theoretical Physics, Vol. XIVB, edited by W.E. Britten 
(Colorado Associated U. p. , Boulder, 1974), p. 329. 
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We describe a general method for comparing two theories which are based on Lagrangians which differ 
only by the divergence of a 4-vector term, and we examine how the generators of symmetry 
transformations depend on this 4-divergence term. For a Poincare invariant theory we find that the 
Poincare generators are independent of this term. Corresponding results are obtained for the case of 
internal symmetries and for scale and conformal symmetry. 

I. INTRODUCTION 

It is well known that the Lagrangian of a system of 
fields is not unique since we may add to it a 4-diver
gence term without altering the equations of motion. 
Also any continuous invariance of the action integral 
yields by way of Noether's theorem1 a divergenceless 
current, allowing us to construct a time-independent 
quantity which may be identified as the generator of the 
transformation in question. The question thus arises as 
to whether, for a fixed given invariance of the action in
tegral, changing the Lagrangian in this way alters the 
corresponding generator. 2 We shall see in fact that it 
does. There now immediately arises the disquieting 
prospect that the S Matrix depends on this 4-divergence 
term. But we shall see in fact that it does not. 

The aim of the present paper is to examine in some 
detail the exact dependence of the currents and genera
tors on this 4-divergence term. We shall consider 
Lagrangians which contain in general derivatives of the 
basic fields higher than just the first derivatives. Be
sides the generality that this affords is the important 
fact 3 that the correct Lagrangian for the usual free 
massless scalar field must contain the second deriva
tives of the field if we are to have an action integral 
which is invariant under speCial conformal transforma
tions. We warn the reader at this point that invariance 
here means strict invariance of the action integral and 
not just invariance up to a 4-divergence, although we 
shall comment upon this latter case later on. The oc
currence of higher order derivatives in the Lagrangian 
turns out in fact to bear crucially upon the conformal 
properties of the system of fields. 

Our main result is easily stated: In a Poincare in
variant theory the Poincare generators are independent 
of the 4-divergence term whereas the scale and special 
conformal generators are not, in general. Thus, in 
particular, the S matrix is independent of this term. 
We also examine the exact circumstances under which 
the scale and conformal generators are independent of 
this 4-divergence term. 

The tone of this paper is completely classical and our 
results, in the form presented here, are true only for 
classical fields and, possibly, free quantum fields. We 
particularly wish to emphasize this remark with respect 
to our treatment of scale and conformal symmetry. The 
trouble here arises from the fact that, even though a 
given classical Lagrangian is scale invariant and con
tains no masses or dimensional coupling constants, the 
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corresponding quantized theory does contain a dimen
sional parameter. This parameter must be introduced 
to perform the subtractions necessary to renormalize 
the theory and render it finite. 4 We shall also assume 
throughout that the scale dimensions of the fields are 
just their canonical dimensions as determined by dimen
sional analysis. We do this despite the fact that such 
appears highly unlikely in any interesting theory as 
can be very easily seen using the renormalization group 
equations. 5 

The problems associated with quantizing higher order 
Lagrangian theories have been discussed by many 
authors,6 and more recently by Riewe and Green, 7 where 
many additional references may be found. However, 
there seems to be no completely satisfying solution to 
those problems at the present time. For free 
Lagrangians of the aforementioned type we may also use 
the quantization technique of Takahashi and Umezawa. 8 

An interesting point about this method is that it works 
directly from the field equations and is thus manifestly 
invariant under the addition of a 4-divergence to the cor
responding Lagrangian. We shall not discuss these 
questions further here. 

The organization of the paper is as follows: Sec. 2 
reviews briefly higher order Lagrangians. In Sec. 3 we 
develop a method for comparing theories which are 
based on Lagrangians which are related through the 
addition of a 4-divergence term. We apply this method 
in Secs. 4,5, and 6, to determine how the Poincare, 
scale, and special conformal generators, respectively, 
depend on the Lagrangian used to construct them. Sec
tion 7 contains a summary and conclusions. 

We use the Pauli metric with x4 = ict and units where 
n=c=1. 

2. NONUNIQUENESS OF CURRENTS AND 
LAGRANGIANS 

Consider a system of fields rp~K)(X) (K=1,2, ... ,Z) 
described by a Lagrangian L, which depends on x only 
through the fields rp~K)(X) and their first, say, n de
rivatives. Variation of the action of the system W21 

= r2 L (x) d4x yields the equation of motion in the usual 
wat-. Invariance of W21 under the infinitesimal 
transformation 

x" _x~ =x" + oXIJ,' 
rp~K) (X) - rp~K)'(X'), 

(2.1) 
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where cp~K)'(X)= cp~<>(x) + Ocp!K)(X), provides us with the 
divergenceless current3 

I n-1 

J<C)=~~n(K) Ocp(K) +0 L 
11. 1<=11"=0 a,u(T)tL a,J.L<1') Xu' 

(2.2) 

where 
I n-r 

n~:~(r) =~ ~ (-1)Sous) (OCP(K~L ) • 
K=1 s=O a,u(yH.{s) 

J~cJ (x) calculated in this manner is called the canonical 
current associated with the transformation (2.1) and 
G(a)= faJ~c) dag can be identified with the generator of 
the transformation (2.1) for the fields cp~K)(X). Further
more, if we add to J ~c) the divergence of an antisym
metric tensor, then neither the divergence of the 
current nor its corresponding generator are altered. 

Besides this nonuniqueness of the current there is 
another well-known nonuniqueness, namely, that of the 
~agrangian itself. If we replace L by another Lagrangian 
L = L + 0 "A", where A"(x) depends on x only through the 
fields and their derivatives, then the equations of mo
tion derived from L are the same as those derived from 
L. H2wever, the canonical current (2.2) associated 
with L (x) is in general different from the corresponding 
current associated with L (x) leading possibly to different 
generators for the same transformation-a disquieting 
prospect. In the following sections we shall investigate 
the relationship between these two currents and be
tween their corresponding generators. 

3. AN ASSOCIATED EQUIVALENT CURRENT 

The two types of nonuniqueness discussed in the pre
vious section are of an essentially independent nature. 
The nonuniqueness of the current presents no problems 
and is well understood. In fact it is precisely this non
uniqueness that allows us to construct the many9 sym
metric energy momentum tensors from a given 
Lagrangian. The corresponding nonuniqueness of the 
Lagrangian is not so well understood, and we may ask, 
for example, whether or not the energy-momentum 
tensors are insensitive to this nonuniqueness. Should, 
however, the two currents .til-c) and j~c) differ only by 
the divergence of an antisymmetric tensor, then the 
question of the nonuniqueness of the Lagrangian becomes 
either redundant or trivial. Unfortunately, this is not 
the case. 

For the general infinitesimal transformation (2.1) 
we have; using the usual technique of adding and sub
tracting the same quantity, that 

~L (x) + 0 J-L (ox Jl (x) = 0 g (J~c)(x) + M" (x) + oXll-0",A",(x)), 

(3.1) 

where ~L(x)-=Lf(XF)-L(x) and L'(x)-=L(cp'(x)). From 
(3.1) it follows 3

•
10 that if the action integral W21 

= f:
1
2 L (x) rJ:-x is invariant under the infinitesimal trans

formation (2.1), then the current 

(3.2) 

is divergenceless. Notice that we have written J rather - ~ " 
than J~ cl. The reason for this is that in constructing J Il-
we did not use the "canonical procedure" described in 
the previous section-instead we used the fact 0 (oA ) g _J-L 
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= O( ° gA). We have thus no reason to suspect that j 
is the _same as the canonical current j~C> calculated g 

from L (x) using Eq. (2.2). In fact these two currents 
J g and ~c) are not the same. However, they differ only 
by the divergence of an antisymm'etric tensor. If this 
were not the case, then j" and J~c) could lead to 
different generators for the same transformation. This 
would drastically limit the usefulness of J" in examining 
the relationship between theories based on L and l, 
despite its simple relationship with j~C>, if we wished 
to remain within the so-called "canonical framework". 

The relationship between j" and j~c) is given by 

(3.3) 

where 

(3.4) 

as can be verified by explicitly evaluating 0vrl"v' The 
"rn" which appears in the summation in (3.4) is the 
highest field derivative in ° gA". The condition that the 
two currents j" and J<J-Lc ) are equal can be read off Eq. 
(3.4); it is 

(3.5) 

for all r ~ O. There are two particularly interesting 
forms of All for which Eq. (3. 5) holds automatically. 
These are: 

(A) AJ-L depends only on the fields cp!K) and not their 
der ivatives. 

(B) AIl=oxa"x, where a"v=avll and a"v depends only 
on the fields cp~K) and not their derivatives. 

The proof of these statements is straightforward. Case 
(A) occurs when we restrict our attention to Lagrangians 
which depend only on the fields and their first deriva
tives. This is the most usual case. Case(B) is more or 
less peculiar to Lagrangians which are "nearly con
formally invariant". 11 These are Lagrangians which can 
be made conformally covariant by adding a suitable 4-
divergence term. 

The generator associated with the current :f"el, or 
equivalently JIl , is 

G(a)= J J,,(x)da)x) 
a 

=G(a)+ J (M )+oxllo",A",)dall (3.6) 
c Il 

where G(a) is the generator associated with the current 
J~c), which is derived from the Lagrangian, L (x). 
It follows from Eq. (3.6) that, when a term of the form 
o"A" is added to the Lagrangian, the generator cor
responding to the arbitrary infinitesimal transforma
tion (2.1) picks up the additional contribution 

~G(a)=J (M"+ox"o",A,,,)dall , (3.7) 
c 

It is immediately obvious from this equation that in the 
case of an internal symmetry, L e., when ox" = 0 in the 
transformation (2.1), that G(a) picks up the definite 
contribution 
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~G(a)= J M"dau (3.8) 
• 

when we alter the Lagrangian by adding to it a general 
term of the form o"A",c Thus the generator of internal 
symmetry transformations is independent of the (in
variant) Lagrangian used to construct it if ~G(a)=O for 
every Au which satisfies 0(0 ",A",) = O. For a general 
Lagrangian we do not know if the condition 0(0 uA/J = 0 
is sufficient to guarantee ~G( a) = O. For first order 
Lagrangians, however, we shall now prove that the 
condition ~G(a) = 0 does indeed hold. 

Since the Lagrangian is restricted to depend only on 
the fields and their first derivatives, Au can depend 
only on the fields. Thus the condition o(o",Au)=ou(oA",) 
=0 is simply 

a a;p; (M",)<PI.U=O, 

where, for convenience, we have put all the fields into 
the single vector <p. Differentiating this equation with 
respect to <Pi.", we obtain 

~(M )=0 
d<p i 11. 

so that oA", is just a constant, independent of the fields. 
The assumed Lorentz transformation properties of A", 
now gives 

01\.",=0 

so that ~G( a) = 0, as already stated. 

In the remaining sections we shall examine the cur
rents J" and J~cl and the quantity ~G(a) for the case 
where oX,,*O in (2.2). We shall further limit the ox", to 
general conformal transformations only, which consists 
of POincare, scale, and special conformal transforma
tions respectively. The 15-parameter conformal group 
is the largest group of transformations in Minkowski 
space which preserves the metric relation ds 2 = O. 

4. DEPENDANCE OF THE POINCARE GENERATORS 
ON THE LAGRANGIAN 

Under the infinitesimal Poincare transformation 
defined by 

rl,(K)'(¥') = rl,(K)(X) + -~iw (S(K») rl,(d 
'+'a ~ 'Pa" 2 tl-v LtV ab'+'b , 

where S~K] is the spin tensor of the field <p~K)(X), we 

(4.1) 

shall assume that the Lagrangian transforms according 
to L (x) - L' (X') =L (X) which guarantees the invariance of 
the action integral W2U under the transformation (4.1). 
We can now construct the corresponding conserved quan
tities using equation (2. 3). These are the canonical 
energy momentum tensor 

I n-l 

T~c~ =L 0 "" -6 6 II~K.~(y)u<p~:~(y)" 
K=1 y=O 

and the canonical momentum tensor 

(4.2) 

(4.3) 

The explicit form of the quantity F uaA , which appears in 
Eqs. (4.3)' is irrelevant for our purposes and we omit 
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it. Corresponding to T~cJ and!l1 ~c~A we have the POincare 
generators P", = fa T~~) d aA and M"A = f.!I1~c~A da" . 

Let us now turn our attention to the equivalent 
Poincare invariant Lagrangian l. In accordance with 
our discussion in the previous section, there ar!:) quan
tities T and ;11(c?, which differ from T~c; and !I1~c~,\) 

~" uaft., 
respectively, only by the divergences of two antisym-
metric tensors, and which are related to T~c; and M~c~< 
through Eq. (3.2). After a little algebra we find that 
T and Tic) differ only by the divergence of an antisym-
~v lJ.1I _ • 

metric tensor. Thus P" = P". In a similar way we fmd 
that M'A = j'Vl.A• 

We have thus shown that the Poincar~ generators are 
independent of the (Poincare invariant, of course) 
Lagrangian used to construct them. In view of this re
sult we may take the Poincare currents to be 

(4.4) 

where e,," is a symmetric energy-momentum tensor 
constructed from L (x) or from any equivalent Lagrangian 
I (x) of the form l =L + 0 ",A". It follows from this state
ment that the Hamiltonian, and hence, the S matrix, is 
also independent of the ter m (l '" A" . 

5. DEPENDANCE OF THE SCALE GENERATOR OF 
THE LAGRANGIAN 

In general the Lagrangian will depend on masses m(K) , 

corresponding to the fields <p~K) (K=1,2, . .. ,n, and 
dimensional coupling constants Ii (i = 1,2, ... ,q). The 
scale transformation we shall consider here is con
structed in such a way that scale invariance of the action 
integral corresponds to the vanishing of the masses and 
dimensional coupling constants from the Lagrangian. 
Infinitesimally, this is given by12 

oX", =EX", <p~K)'(X/)= <p~K)(X) +El(d<p:K)(x), (5.1) 

where 1(K) is the length dimension of q:/K) in units where 
Ii = c = 1 and the corresponding current is 

(5.2) 

where 

The current S~c) is divergenceless whenever all masses 
and dimensional coupling constants are absent from the 
Lagrangian. In fact we have 

o"S~c)=~(m,I,L), 

where, if fJ; is the length dimension of 1/ 
(i=1,2, . .. ,q), 

I oL • (JL 
~(m,I,L)=6 m(K)~ -6 Tldi ~f •. 

Kcl unl i=l {} 
(5.5) 

Turning our attention now to the equivalent Lagrangian 
l, we obtain 

I m CIA 
§" = S~c) + 6 6 o<p IK ) " (l(d - r - x"o,,)<P~:~IY) 

K=I.,.=o a,u(y) 

+x"o"A". (5.6) 

Also we have, by dimensional analysis, 
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where t:.(m, j,A,) is given by Eq. (5.5) but with L re
placed by A". Combining Eqs. (5.6) and (5.7), we 
obtain 

5" = S~c) + o",(x"A", - x",A,,) + t:.(m, j, A,,). (5.8) 

The generator corresponding to S" is 

D(a) = I 5" da" 
a 

=D(a)+ I t:.(m, j,A..) da" , (5.9) 

where D(a) is the generator corresponding to S~c). The 
second term on the right-hand side of Eq. (5.9) brings 
out clearly the explicit dependence of the scale genera
tor n( a) on the masses and dimensional coupling con
stant_s occurring in A". Also, as we would expect, D(a) 
and D( a) are different in general for a Poincar~ in
variant theory. In the limit of scale invariance, how
ever, the last term in (5.10) vanishes and the scale 
generator is indeed independent of the Lagrangian used 
to construct it. 

As a further example of the results of Sec. 3 we shall 
consider, briefly, the possibility of writing the scale 
current as a moment of the canonical energy-momen
tum tensor for some Lagrangian. For simplicity we 
shall not consider this question in its complete general
ity. Instead we shall assume that A" satisfies Eq. (3.5). 
ThiS, as we have already noted, guarantees that J" 
= J~c), without too much loss in generality. We begin by 
combining (4.2) and (5.8) to obtain 

S(C)=x i(c)+G -3A +t:.(m jA) 
/.l I) J).II /.L u. , , lJ.' (5.10) 

where G" is given by Eq. (5< 3). Equation (5.10) says 
that if we choose A" in such a way that 

G" - 3A" + t:.(m, j,A,,) = 0, 

then we may write §~c) = x)'~c,; as required. Thus, for 
example, if G" does not depend on any masses or other 
dimensional coupling constants, then by changing to the 
equivalent Lagrangian 

(5.11) 

we can write S~c)=xvT~c,:. Whether or not G" depends_ 
on any dimensional quantities, we may always write S~c) 
= x/j(~~ in the limit of scale invariance by changing to 
the Lagrangian (5.11). 

Let us apply this to the free massless scalar field ¢ 
described by L =-1(o,,¢)(o,,¢). Here G,,=¢o,,¢ so that 
by changing to 

I = - ,Ha,,¢)(a,,¢) + ~a,,(¢a,,¢) (5.12) 

we may write Sic) =X T(c) where T(c) = _la "'0 15 u. V lJ,V' UI! 2 ex.'P 0: j..LV 

+ (J "'il ¢ - 1.(0 (J - 15 0)¢2. Considerations of the 
1l'T II 6 j.1. II u.v 

present kind involving changing the Lagrangian in order 
to reorganize the scale current in terms of the canonical 
energy-momentum tensor have been given by 
Macfarlane13 and Takahashi. 14 

Finally we comment that the scalar field Lagrangian 
(5.12), besides serving as an example in this highly 
contrived situation, has absolutely no physical 
significance. 
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6. DEPENDENCE OF THE SPECIAL CONFORMAL 
GENERATORS ON THE LAGRANGIAN 

The infinitesimal special conformal transformation 
is defined by the relations12 

15x" = C"rl"" , a"" = 2x"x" - 15 ""x
2

, 

¢~K)'(X')= ¢~K)(X) + 2c"(l(K)X,, - iXaS~~»)ab¢~Kl(x), 
(6.1) 

where S~K': and Z(K) are the spin tensor and length dimen
sion respectively, of the field ¢!K). The current here is 
the canonical special conformal tensor 

(6.2) 

Of the quantities G", F"a" , and W"" occurring in (6.2), 
G" and F"a" have already been mentioned, while the 
explicit form of W "" as a function of the fields and their 
derivatives is unimportant for our purposes. 

From Eq. (3.2) we see that J u contains a term 15A,,, 
which is the infinitesimal change induced in this case 
by the transformation (6.1), and which may be written 
asll 

15A,,= c,,{2( - 3x" - iX~"a)"o:A", - aa" aaA" 

+ 2x"t:.(m,j,A,,) + V,,(AJ}, (6.3) 

where Su.v is the spin tensor for a vector field and 
V,,(AJ is a function of the fields and their derivatives, 
and whose explicit form is again not needed here. What 
is important about V" (Au) is that, in a scale invariant 
theory, Au transforms like a vector field under special 
conformal transformations if and only if V,,(AJ 
vanishes. At any rate we find, using (3.2) and (6.3), 
that 

1<"" =K(c) + aa(a""Aa - aa"A,,) + 2x"t:.(m,j,A,,) + V,,(A,,). 

(6.4) 

Thus the generators corresponding to K". are 

K.(a) = K,,(a) + 2 iax"t:.(m,j,A,Jda" + ia V,,(V,Jdau.' (6.5) 

where K.(a) are the special conformal generators cor
responding to K~c;. It follows easily from Eq. (6.5) that 
if we add a general term of the form o"A" to a Lagran
gian, L, whose action integral is invariant under special 
.conformal transformations, then the resulting Lagran
gian's action, W211 will in gener al not be invariant under 
special conformal transformations. We have already 
come across this point in our discussion of the spin-O 
field. 3 It also follows from Eq.J6. 5) that even if both 
of the action integrals W21 and W21 (i. e., corresponding 
to Land L respectively) are invariant under special 
conformal transformations, the special conformal gen
erators K" and K" will in general be different unless the 
last term on the right-hand side of Eq. (6.5) vanishes. 5 

In particular this term will vanish if A" transforms 
covariantly under special conformal transformations so 
that V" (A...) = O. This is a stronger condition than the in
variance condition V" (0 "iI. u) = 0 and we do not know if 
it holds for all A". What we do know is that this condi
tion [V. (A,,) = 01 holds for a large class of Lagrangians 
including all first order Lagrangians. This follows 
easily from the explicit form of V,,(A) which is given 
in Ref. 11. "For this class of Lagrangians it may also 

~ 
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be shown that if anyone of these Lagrangians yields an 
action integral invariant under special conformal trans
formations then all do. Furthermore, all these 
Lagrangians give rise to the same special conformal 
generators as can be easily seen from (6.5). 

7. SUMMARY AND CONCLUSIONS 

We have presented a method for comparing two 
theories which are based on Lagrangians differing only 
by a 4-divergence term. "For internal symmetries we 
found, at least for first order Lagrangians, that the 
generators did not depend on the particular Lagrangian 
we used to construct them, while the Poincare genera
tors were in general independent of the (Poincare 
invariant) Lagrangian used to construct them. This 
latter result has the consequence that the Poincare cur
rents could be taken as moments of a symmetric 
energy-momentum tensor constructed from any of 
these equivalent Lagrangians. 

For scale and special conformal transformations we 
found simple expressions for the change in the genera
tors due to the addition of the 4-divergence term to the 
Lagrangian. It then followed that in the limit of scale 
invariance the scale generator was independent of the 
particular Lagrangian used to construct it. Although for 
a large class of Lagrangians [those related by a A,., for 
which Vx(A,.l is the divergence of an antisymmetric 
tensor 1 the special conformal generators were indepen
dent of the Lagrangian in the limit of full conformal 
symmetry, we were not able to prove this result for 
arbitrary A". For Lagrangians which depend on the 
fields and their first derivatives only, our results 
state that for invariance under internal symmetry 
transformations the generators are independent of the 
particular Lagrangian used to construct them and that 
in the limit of scale invariance all 15 conformal genera-
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tors are independent of the Lagrangian used to construct 
them. 

Finally, let us remark that most of our results may 
be transferred in an obvious way to the case where the 
notion of invariance corresponds to the Lagrangian 
being invariant only up to the addition of an arbitrary 
4-divergence term, i. e., invariance of the integrated 
Lagrangian. Perhaps this notion of invariance will turn 
out to be the more important one in the end. 16 
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Backlund transformations and the equation Zxy= F(x,y,z) 
s. G. Byrnes 

Department of Mathematics. University of Durham, England 
(Received 11 August 1975) 

It will be shown that the only equations of the fonn Zxy = F(x,y,z) which possess Backlund 
transfonnations to take one solution of this equation into another solution of the same equation are either 
hnear or else can be obtained from the sin(h~ordon equation (or Zxy = eZ

) by a simple change of scale 
and/or a displacement of the dependent variable. 

1. INTRODUCTION 

Certain nonlinear equations are known to possess 
solutions which are generally referred to as solitons. I 
What one means by this is roughly as follows: If one 
thinks of the independent variables as labeling position 
then a soliton is a localized disturbance which has the 
property of "retaining its shape" on interaction with 
another soliton. It may occupy a position different to 
what it would have without the interaction. Of the equa
tions which are known to possess solitons only one is 
real and of second order. As most of physics seems to 
be reasonably well described by second-order equations 
one is tempted to ask if this equation-the sin(h)-Goron 
equation-is the only real second-order equation to 
possess solitons. 

McLaughlin and Scott2 have answered this question in 
relation to equations of the form ZXy = F(z). This paper 
extends their result to equations of the form Zxy = F(x, y, 
z). The main problem in this area is how to extend the 
soliton concept to higher dimensions, i. e. , to include 
more independent variables. Is the soliton a two-dimen
sional object or does its counterpart exist in higher 
dimensions? Hirota' has obtained solutions of the sine
Gordon equation in (2 + l)-dimensions which he calls 
solitons. However these are "plane wave" solutions, and 
are not localized at a point. To extend the soliton con
cept to higher than (1 + 1 )-dimensions it seems desirable 
to look for localized solutions. Even so, the question of 
what corresponds to Backlund transformations in higher 
dimensions remains to be answered. 

Recently the theory of solitons has created a great 
deal of interest within elementary particle theory. The 
field satisfying the sine-Gordon equation in (1 + 1) 
dimensions, i. e. , 

(12¢ (!2¢ 112 . 
(lx2 -71j2 + IT sm(i:J¢) = 0, 

where 112 and p are constants, t is the time and x the 
position, has been successfully quantized. 4 The result is 
that in addition to the "usual particles" obtained in such 
theories there are particles which correspond to 
"quantized solitons. " The usual particles are obtained 
from the free field equation ¢xx - ¢tt + 112¢ = ° by 
perturbation, treating the "interaction potential" 
_(1/4!)112p2¢4+(1/6!)112 p4¢"+ ••• as small. These 
particles satisfy Bose statistics whereas the quantized 
soliton satisfy Fermi statistics. So one has found that 
solitons do, in this theory, correspond to particles 
when quantized. They give a richer spectrum (i. e. , 
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more particles) than one would expect from an analogy 
with the simple harmonic oscillator. 

Throughout this paper the name "sin(h)-Gordon equa
tion" will be used to refer to all real equations of the 
form ¢Xy = F(cp) where F is a function of a single variable 
and satisfies F"(z)=KF(z) for some constant K*O. So 
for real constants A, k and E, F(z) must have one of the 
following forms: Asin(kZ+E), Asinh(kz+E), Acosh(kz 
+E), or Aexp(kz). Here as elsewhere in this paper 
primes denote derivatives with respect to the variable 
displayed; hence F"(z) means the second derivative of 
the function F(z) with respect to z. Also the x and V 

subscripts denote derivatives with respect to the . 
variables, so Cpxy=2 2 CP/ilxily. 

The concept of a soliton given above is rather vague 
and one would like a more rigorous definition. The con
cept of a Backlund transformation seems to provide this. 
Recently it has been shown by Lamb5 that every equa
tion' which is known to have soliton solutions also 
possesses a Backlund transformation which takes every 
solution of the given equation into another solution of the 
same equation. So it seems reasonable to define an 
equation to have the soliton property if it possesses a 
Backlund transformation of this type. G 

An equation of the for m 

iJ2z ( az ilz (J2 Z iJ
2z) 

ilxay = F x,y,z, ax ' oy , ax2 'ily2 , (1.1) 

where the function F is analytic in each of its variables, 
will be said to possess a Backlund transformation if 
there exist functions P(x,y,z,w,p,q) and Q(x,y,z,u',p,q) 
which are analytic in each variable and which satisfy 
the following condition for all solutions z(x, y) of the 
Eq. (1.1). 

If w(x, y) is any solution of the coupled set of equations 

wx= p(x,y, z, w, zx' z), 

Wy = Q(x,y, z, w, zx,z,l, 
(1. 2) 

for the given solution z(x, y) of (1. 1), then w(x, y) satis
fies the or iginal equation, i. e. , W xy = F(x, y, u', lI'x ' 1/'y' 

11) xx' ZOyy)' 

Note that (1. 2) assumes a particular form for the 
Backlund transformation. In principle the functions P 
and Q could depend on higher derivatives of z and 1C 

and also on integrals of them. For example, P and Q 

in (1. 2) could depend on zxx' Zyyy' f zx' dy as well as the 
variables considered there. An objection to the use of 
integrals in the Backlund transformation is the observa-
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tion that the equation zXy=F(x,y,z), for any function F, 
possesses the "Backlund transformation," i. e. , 

wx= J [F(x,y, w) - O' of(x,y,z)] ody + O' 0 zx' 

wy= J[F(x ,y, w) - po F(x ,y, z)] 0 dx + {:J 0 Zy' 

where O' and p are arbitrary nonzero constants. 

Now consider the case of F linear in the dependent 
variables, i. e., in (1.1) take 

F=Al + A2 0 Z + A3 0 Zx + A4 0 Zy + As 0 zxx + A6 0 Zyy' 

where the Ai (i = 1, ... ,6) may be functions of x and y 
but not of z or its derivatives. With this F, Eq. (1.1) 
trivially has a Backlund transformation of the type (1. 2) 
which may be found as follows. If O'(x, y) is any solution 
of the homogeneous equation 

ZXy=A2 0 Z +A3 0 ZX +A4 0 Zy +As 0 zxx + A6 0 Zyy' 

then for all solutions z(x,y) of (1.1) and for all constants 
K, one has that w(x, y) = z(x,.'v) + K 0 O'(x, y) is also a 
solution of (1.1), since F is linear. Dividing by O'(x,y) 

and differentiation gives the Backlund transformation 

ow (Jz 1 oO' 
-=-+_o_o(w-z) 
(Ix ax O' ax ' 

ow dZ 1 oO' 
- =- +- 0_0 (w - zl. 
oy oy O' oy 

For the sin(h)-Gordon equation 

zxy=A exp(kz) + B exp(- kz), 

(1. 3) 

(1. 4) 

where k*O, A and B are (possibly complex) constants, 
the Backlund transformation is 

ow OZ c ax- = ox + (2a/k)(A exp[k(w + z)/2] + B expL - k(w + z)/2]), 

(1. 5) 

ow oz ay = - oy + (1/ a)(exp[k(w + z)/2] - exp[ - k(w - z)/2]), 

(1.6) 

where a is a constant. Note that (1. 5) and (1. 6) are non
trivial in the sense that one cannot set ¢ = IV - z and 
obtain two equations for ¢ independent of z and w; 

whereas the linear case (1.3) is trivial. 

One sees immediately from (1. 4), (1. 5), and (1. 6) 
that if one changes scale, i. e. , replaces x everywhere 
by some function of x, i. e. , x = x(x') say, and y by some 
function of y, i. e. , y = y(y') say (and uses the new 
variables x' and y') then one obtains another equation 
which possesses a Backlund transformation. More gen
erally one may replace x and y by new independent 
variables u and v where x = x(u, v) and y = Y(Il, v) for 
arbitrary functions; however the equation which then 
possesses the Backlund transformations will not be of 
the for m ZXy = F(x, y, z). Further, one sees from (1.4)
(1. 6) that if one displaces the dependent variable, i. e. , 
if one replaces z and 7(.' everywhere by z + O' and IV + O' 

respectively for some function O'(x, y) then one obtains 
another equation which possesses a Backlund transfor
mation. More generally if f(x, y, ¢) is any function of 
three variables then one may replace z and w every
where by f(x, y, z) and f(x, y, w) respectively to obtain 
other equations which possess Backlund transformations. 
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It seems worth recording that there are nonlinear 
equations which possess trivial Backlund transformations 
as discussed above. Let A a, Au A 3, A 4 , As, A 6 , and K 

be functions of x and y and let g be any function of y 
only. Suppose that Aj (i = 0,1,3, ... ,6) and K satisfy 
the following conditions: 

A 4 (x ,y) 0 {g"(y) + [g'(y)]2} + A1(x ,y) + A 3(x ,y)g'(y) = 0, 

(1.7) 

(1. 8) 

(1. 9) 

Then the equation 

02 Z oz GZ 
axoy =Ao+AlZ+g'(y)ox +A3(Jy 

(J2 Z 02Z (02Z) 
+A4 ox2 +·4.s a):T + G (lx2 (1. 10) 

possess a Backlund transformation if G(r) is any function 
of period a2K/ox2, e.g., G(r)=sin(21Tr!Kx)' Letj(z) be 
an arbitrary function of a single variable and define a 
function O'(z,x) of two variables, by the equation 

Z=x 0 O'(z,x) + j[O'(z,x)). (1.11) 

The Backlund transformation for (1. 10) is then 

aw [ oK (Jz 
;-=exp[g(Y))QI exp(-g(y))(w-z-K),x)+-. +;-, 
(IX ax (IX 

(1. 12) 

ow oK oz 
-=R-'(y)(w-z -K)+- +-. 
oy oy oy 

(1.13) 

Note that for a given z(x,y) the general solution of (1.12) 
and (1.13) is 

U! = z + K + [ax + f(a)] exp[g(y)], 

where a is an arbitrary constant. 

The rest of this paper is concerned with showing that 
if the equation Zxy = F(x, y, z) possesses a Backlund 
transformation then it is the sin(h)-Gordon equation up 
to a change of scale and a displacement of the dependent 
variable. 7 For a physically interesting theory it is rea
sonable to impose Lorentz invariance. In the coordinates 
chosen this means that the equation ¢ xy = F should be 
invariant under the replacement of x and y by Ax and 
(l/?c)y respectively for some constant ?c * 0, However, 
the imposition of Lorentz invariance does not seem to 
simplify the problem and so will not be considered 
further. 

2. THE BASIC EQUATIONS 

Consider the equation 

()2 Z 
~=F(x,y,z). 
ux"y 

(2.1) 

Suppose this equation possesses a Backlund transforma
tion of the type discussed in the introduction. Differen-
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tiating the first equation in (1. 2) with respect to y and 
the second with respect to x and demanding that both 
z and w satisfy (2.1) gives 

oP op ap oP oP 
F(x,y,w)=-~- +-;- z+-;- Q+ -~-F(x,y,z) +-t, (2.2) 

(y uZ uW up oq 

F(x ,y, w) = aO 
Q + ~ Q p + ~ Q P + : Q r + ~ Q F(x, y , z), (2. 3) 
x uZ uW up up 

where p = zx' q = Zy' r= zxx' s = zxY' and t= Zyy' Since 
z(x,y) is any solution of (2.1) one may treat x,y,z,p,q, 
r, and t in (2.2) and (2.3) as independent variables. 
Further since w(x, y) is any solution of (2. 2) and (2" 3) 
one may take w in (2.2) and (2.3) as an extra indepen
dent variable. One now treats (2.2) and (2.3) as two 
partial differential equations for p(x, y, z, w, p, q) and 
Q(x,y,z,w,p,q) where x,y,z,w,p,q,r, and t are all 
independent variables. 

The case of F(x,y, z) linear in z has already been 
treated in the introduction so in all of what follows it 
will be as sumed that F(x, y , z) is not linear in z. In the 
following the linear case arises when one derives an 
equation of the form 

(IF of 
-=k '-+k a z I OW 2, 

(2.4) 

where ki and k2 are functions of x and y (but not Z or w) 
and of/az= (%z) {F(x,y, z)}. Now the right hand side 
of (2.4) is independent of z and the left hand side is in
dependent of w so both must equal some function, k3 say, 
of x and y only. Integrating aF/az=k3 then gives F(x,y, 
z)=k3 (x,y)Z+1<4(X,y) for some function 1<4 of x and y. 
But this F is then linear in the" dependent" variable. 
This argument will not be repeated. 

Now differentiate (2.2)w.r.t. tand(2.3)w.r.t. r, 

ilP =0 and ilQ =0 
ilq ilp' 

.'. p=p(x,y,z,w,p), 

Q= Q(x,y,z,w,q). 

(2.5) 

Differentiate (2. 2) twice w. r. t. q and use the fact that 
P is independent of q to obtain 

(2.6) 

If (Jp/aw=o then one may differentiate (2.2) with respect 
to It: to obtain of/2w= 0, which is a contradiction since 
F is assumed to be nonlinear. Hence (2.6) implies a2 Q/ 
(jq2 = O. 

(2.7) 

on integrating where Qo and QI are functions of x, y, z, 
and 1(' which are to be determined. Similarly on differen
tiating (2.3) twice w.r.t. p, one obtains for some func
tions Po and PI that 

(2.8) 

Substituting (2.7) and (2.8) into (2.2) and (2.3) and 
equating coefficients of pq, p, q and terms independent 
of p and q gives the following eight equations: 
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(2.9) 

(2.10) 

~Q +~-O ow 1 (lz - , (2.11) 

(I Po +~ ( ) ( -~-Qo ~ +PI,Fx,y,z=Fx,y,w), uw uy . (2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

N ate that throughout this paper, equality of functions 
will be used in the sense of "identically equal to. " So, 
for example PI * 0 means that PI (x, y, z, w) is not zero 
everywhere, although it may be zero at a point; or 
points. 

The rest of this section is devoted to proving that 

(2.17) 

Now one must demand that the Backlund transformation 
must transform from one solution to another; i. e. , 
that it must "depend on z." So the transformation from 
z to w, 

aw aw 
-~ - = p(x, y , w) , -;- = Q(x, '\! J w), 
(Ox uy' 

(2.18) 

for some functions P and Q is not allowed since it is 
independent of z and its derivatives (i. e. , p and q). 

The proof of (2.17) proceeds by contradiction so sup
suppose that 

PI=o. (2.19) 

Equations (2.13) and (2.14) then give 

ilQI=O=(JQo 
OZ GZ . 

(2.20) 

Differentiate (2.15) and (2.16) w. r. t. z and use (2.20) 

~.~-o aw az - , (2.21) 

(2.22) 

Now if iJPr!iJz=O then (2.22) gives QI=O since F is not 
linear. But then the Backlund transformation is of the 
form (2.18). Hence (2.21) implies 

Equations (2.15), (2.20), and (2.23) then give 

QI=Ql(y)· 

(2.23) 

(2.24) 

Take QIo/aw + a/az of (2.12) and use (2.11) and (2.20): 
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(oQ :\ OP of 
,QI~ -Qf(Y)j Tz};=Ql° ow

o 

Use (2.11) to replace opJoz by opolow in (2.22), 

,~o~-Q ooF 
Q1 ow. ow - 1 oz' 

Subtract (2.26) from (2.25), 

I )~_ of _ aF 
-Ql(Y aw - Q1 i'l7,v Q1az' 

Take Qlo/aW + a/az of (2.27) and use (2.11), L e., 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

Note that if both P1=0 and Ql=O then (2.11) and (2.14) 
show that both Po and Qo are independent of z. But then 
the Backlund transformation is of the form (2.18) which 
is not allowed. Hence Q1 * 0 and (2.28) gives 

then in a similar way one may apply the operator PI a/ow 
+ a/oz to (2.15) and (2.16) obtaining 

aF aF 
Q1az=P1 aw . (3.6) 

Now from Eqs. (3.4) and (3.6) 

Q1 e: r = (Ql ~:) ~: = ~1 ~~) ~: 

~~ (Pl~:) =~~ (Ql~~) =QIG~r. (3.7) 

But from (2.17), Q1 *0, so (3.7) implies that 

(~:r = (~~) 2. (3.8) 

But (3.8) gives F z =± F w' i. e. , F is linear which is a 
contradiction. 

Now the basic Eqs. (2.9) to (2.16) are symmetric 
(2.29) under the substitution P j ~ Q; (i = 0, 1) and x ~ y. So it 

is sufficient to suppose that (3.1) is true but (3.5) is not. 
since the lhs of (2.28) is independent of z and the rhs is 
independent of w. 

Now A * 0 since F is not linear. Hence (2.29) implies 
Q1 = 1. But then (2.27) implies that aF/aw= aF/az 
which is a contradiction since F is not linear. 

Hence the result (2. 17) is established. 

3. THAT PI AND Q I ARE CONSTANTS AND 
PI + Q 1 = 0 

Suppose that 

aPI *0 ow . 

Apply the operator QI0/aW+ a/oz to (2.10): 

( 
ilQo aQo OQl O(1) ~ 

Ql~+h -Qo~ -Ty oy 

(3.1) 

But because of (2.9) the second term in this equation is 
zero and from (3.1) one may write 

Q aQo+aQo_Q~_aQl_0 
1 ow az 0 aw oy - . (3.2) 

(3.3) 

The first term here is zero by (3.2) and the second by 
(2.11). Hence 

aF (iF 
PI i3z = Q1 a;. . (3.4) 

Now if also 

(3.5) 
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That is, suppose 

Equations (3.9), (2.13) and (2.15) imply 

Ql=Ql(Y)' (3.10) 

Take Qla/OW + a/az of (2.16) and use (2.11), (3.2) and 
(3.10), i.e., 

QloF/az= QloF/aw. (3.11) 

But Q1 *0 by (2.17) so (3.11) implies that F is linear 
which is a contradiction. Hence (3.9) cannot hold. 
Similarly the case ap/aw= 0, aQ/aw* 0 cannot hold. 
So it has been shown that 

aP1 =Oand aQl=O. 
aw aw (3.12) 

Equations (3.12), (2. 9), (2.10)~ (2.13) and (2.15) imply 

(3.13) 

The rest of this section is concerned with proving 
that PI + Q1 = O. The proof is by contradiction, so 
suppose that 

(3.14) 

Note that expressions like PI (x) + Q1 (y) = 0 or PI (x) 0 Ql(Y) 
= 1 imply that both PI and Q1 are constants since x and 
yare independent variables. 

Use (2.11) and (3.13) in (3.3) and eliminate (lPoiaz 
in favor of (JPoiow. 

(3.15) 

Similarly taking Plotaw + a/az of (2.16) and using (2.14), 

(p _Q)apooQo_p'(x)(lQo=p (IF _Q (IF 
1 I aw aw 1 aU! 1 aU! 1 ilz . (3.16) 

Add (3.15) to (3.16), Le., 

p~(x) °aQo + Q~(y) o~Po + (PI + QI) :F _ ~F = O. 
10 ('U' ('U' (}1O 

(3.17) 
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Now if PI and QI are both constants then (3.17) implies 
that PI + QI = ° since F is not linear, i. e., F w'" Fz • So 
from (3.17) one deduces 

[Pf(x)=O and Q~(y)=OJimplYPI+QI=O. (3.18) 

Take (Pla/aw + a/Ox)(Qla/ow+ a/az) of (3.15) and (3.16) 
and use (2.11) and (2.14), 

(P _Q )3 02PO 02Qo ~Q2p a3
F _p a

3
F 

1 I (lw 2 011' ~ 1 I ilw' 1 az3 

Add (3.19) to (3.20) and use (3.14), 

a3 F 03 F 
PIQIaw=az3' 

(3.19) 

(3.20) 

(3.21) 

Now (3.21) implies that Fzzz is independent of z, so Fzzz 
=Fwww ' If Fzzz"'O then (3.21) implies that PI(X)QI(Y) = 1, 
which implies that both PI and QI are constants; (3.18) 
then gives PI + QI = ° in contradiction to (3.14), so 

o3F 
(lz3 = 0. (3 0 22) 

Then (3.19) implies 

02PO a
2
Qo ~ ° 

'(ht,2 aw2 ~ , 
(3.23) 

since Pl(x) - QI(Y)=O again, it says that PI and QI are 
constants which is, via (3.18), a contradiction to (3.14). 
Because of the symmetry between the P's and Q's one 
may, from (3.23) take 

(3.24) 

Take PIO/aU' + a/oz of (3.16) and use (2.14) and (3.24), 

(3.25) 

Now (3.25) implies that F zz is independent of z. If F zz 
= ° then F is linear which is a contradiction. Hence F ww 

=Fzz"'O. So (3.25) implies that [PI(X)]2=QI(Y)' But then 
PI and Q

I 
are constants in contradiction to (3.14) upon 

using (3.18). 

Hence the result is established, i. e. , PI and QI are 
constants and 

4. THAT Fzzz = K' Fz ANDP?= 1 

From the previous section one may write 

PI=-QI=C, 

(3.26) 

(4.1) 

where c is a constant. From (2.17), c",O. Take -ca/aw 
+ a/az of (2.12), 

2 aPo ClQo = flF + of. (4.2) 
fl7i' au> (lz aw 

Take c(l/ow + il/(lz of (4.2) and use (2.11) and (2.14), 

(4.3) 
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Take c a/ow + %z of (2.12) and use (2.11) and (2.14), 
i. e. , 

a2pO + 02po + of ~ ~ 
2c a 2 Qo 2c 0 0 c 0 ~ co' w uwuy uz u1l' 

(4.4) 

If (l2pJOW2=0 then take a/ow of (4.4) to obtain ca2F/aw2 

= ° which is a contradiction since F is not linear. 

2
2

P O 
'" ° 

AUJ2 

Similarly 

a
2

Qo '" ° aw2 

Eliminate (lQJow from (4.2) and (4.3), 

(4.5) 

(4.6) 

2c il
2
p o (OF+ aF) = apo rc o2F + a

2
F] (4

0

7) 
aw2 oz aw ow L ow2 OZ2 . 

Take - ca/Aw + a/oz of (4.7) and use (2.11), L e. , 

2c 02pO r_c o2F +o2F] ~apo [_C 2C3F +?3 F ] (4 8) 
011,2 L aw2 OZ2 ~ (lw (111,3 (lZ3 . . 

Take - cA/aw + a/az of (4.8) and use (2.11), 

2c~ c2 _+_ ~_o c3 _+-a2p ( a3 F 03 F ) op ( a4 F A4F) 
(lw 2 auP az3 ~ ow a 1('4 ilz4 • 

(4.9) 

Take - ca/aw+ a/az of (4.2) and use (2,11) and (2.14), 

(4.10) 

Now if a4F/az4 = ° then (4.9) implies c 2 a3 F/(lw3 = - a3 F/ 
OZ3 since by (4.5), o2PoIaw2", O. If c2* 1, then the equa
tion c 2 (13 F/au? = - a3 F/az3 must imply that a'F/oz' = O. 
But then (4.8) implies that - c(a2 F/ow2) + ((12 F/?Z2) = ° 
since (l2poIaw2",0. Then (4.10) implies -4c((lpoIow)/ 
(a 2 Q/aw)=0 which contradicts (4.5), (4.6), or c"'O. 

a
4
F 0' l' 

" ;-4"" '" imp leS 
"z 

(4.11) 

Now from Eqs. (4.7) and (4.8) 

a2po apo (OF OF) ( 203F a
3
F) 2c--o - -+- -c --+-3 aW" aw az OW ow3 ilz 

But from (4.5), a2Po/cw "'0. So apolaw '" 0, and 

(
2C3F (l3F) (oF OF) 

c ow' - cz3 az + a;;;- (4.12) 

Take a2/owilz of (4.12), 

a4 F (i2F (l2F a4F C2 __ ~_-
aw' az2~(1w2 (lz4' 

(4.13) 

Because of (4. 11) one then has 

a4 F a2 F 
-;4"' =K(x,y)~ , 
uZ (1Z 

(4.14) 

where K"'O. But then (4.13) implies that 

(4.15) 

Integrate (4.14), 

(4.16) 
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Multiply (4.16) by 202F/az2 and integrate, Le., 

(~:fr =K [(~:r + 2KI ~:] + K 2· (4.17) 

Substitute (4.16) and (4.17) into (4.12), 

[
oF OF] 

2KKI ow --az =0. 

But F is not linear, 

.'. KI=O. 

(4.16) and (4.18) then give the result 

o3F _K oF 
GZ 3 - oz' 

5. CONCLUSION 

Equation (4. 15) gives c = ± 1, so suppose 

c=+ 1. 

Define a function p(x, y) by 

[p(x ,y )]2 =K(x, y). 

(4.18) 

(4.19) 

(5.1) 

(5.2) 

Note that p is either real or pure imaginary. So for this 
section all constants of integration may be complex. At 
the end, one will demand that F,Po and Qo are real. 

The general solution of (4.19) is 

of =A1(x, v) exp(pz) + A 2(x,y) exp(- pz). 
ilz -

(5.3) 

Substitute (5.3) into (4.2), 

2° Po 0(,10= (A1exp[p(1l'+z)/2]+A2exp[-p(w+z)/2]) 
011' (Ill' 

x (exp[p(w - z)/2] + exp[p(w - z)/2]). (5.4) 

Now (2.11) is 2Po!ow= op/oz, so Po is a function of w 
+ z only and similarly, from (2.14), Qo is a function of 
11' - z only. 

Hence (5.4) implies for some function ,\(x,y)*O: 

oPo = '\(x, y)[AI exp{p(1O + z)/2) + A2 exp(- p(1O + z)/2)], 
010 

(5.5) 

0(,10=_2
1 

[exp(w-z)/2)+exp(-p(w-z)/2)]. (5,6) ow ,\ 
Integrating (5.3), (5.5), and (5.6) and using the fact that 
Po and Qo are functions of w + z and 11' - z respectively 
one obtains 

A A 
F(x,y, Z)=_I exp(pz) -~ exp(- pz) + KI(x,y), 

p p 

Po(x ,y, z, 10) = (2M/ p) exp[p(1O + z)/2] 

- (2M/p}exp[ - p(w+ z)j2] + K 2(x,y) 

(,10 (x ,y, z, 10) = (1/ ,\p) exp[p(1O - z)/2] 

- (l/,\p) exp[ - p(w - z)/2] + K 3 (x ,y). 

(5.7) 

(5.8) 

(5.9) 

Substitute (5.7), (5.8), and (5.9) into (2.12) and (2.16) 
and equate coefficients of exp[±(1/2)pz] and terms 
independent of exp[±(1/2)pz]. 
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M K +- ~ +.:.:::.:!.(w+z)-;- =0, o (2M) M op 
I 3 oy P P uy 

(5.10) 

M K -~ (2M2) + M2 (w+ z) °aP = 0, 
2 3 oy P P Y 

(5,11) 

oK2 -0 
oy - , (5.12) 

~+- - +--(w-z)=O, K il (1) 1 ilp 
2,\ ox'\p 2,\p ox ' 

(5.13) 

K2 _~ (l..) +_1_ op (w-z)=O, 
2,\ ilx Xp 2,\p ax 

(5.14) 

ilK3 _ 2KI = O. 
ax 

(5.15) 

The coefficient of (w + z) in (5.10) and (5.11) must be 
zero and one cannot have both Al = 0 and A2 = O. Hence 
op/oy=O. The coefficient of (w-z) in (5,13) is zero 
so op/ax= 0 

• • . p is a constant. (5.16) 

Add and subtract (5.13) and (5.14) and use (5.16), L e , 

il'\ =0. 
ax 

(5.17) 

(5.18) 

Let Ci(X, y) be any function such that 

OCi 
K 3 =2i' (5.19) 

Using (5.16) and (5.19), Eqs. (5.10) and (5.11) are 

-an (ilA l ) + M I -a
il (~pCi) = 0, 

y y 

a 0 l ) 
ay (AA2) - M2 ily ("2PO' = O. 

Integrating (5.20) and (5.21) gives 

AAI = j3(x} exp( - pO'/2), 

AA2 = y(x) exp(pCi/2). 

Equation (5.15) gives 

K _.!. OK3 _.!. (j2K 
1 - 2 (Ix - 2 oXCly • 

(5.20) 

(5.22) 

(5.23) 

(5.24) 

From Eqs. (5.7)-(5.9), (5.16)-(5.19), and (5.22)
(5.24) one has, for c = + 1, the following result: The 
equation zXy=F(x,yz) possesses a Backlund transforma
tion if and only if 

F(x, y, z) = (l/,\(y )p)[{3(x) exp[p(z - 0'/2)] 

1 32 0' 
- Y(x) exp[ - p(z - Ci/2)]] +"2 (!xoy . 

The Backlund transformation is then 

aw = [2{3(x)/ p] exp[p(w + z - a)/2] 
ax 

(lz 
- [2y(x)/ p] exp[p(w + z - a)/2] + (Ix ' 

S.G. Byrnes 

(5.25) 

(5.26) 
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ow [ ~= 1/pA(y)]exp[p(w - z)/2] - [1/pA(Y)] 

il Ci ilz 
xexp[ - p(w - z)/2] + ay - ily . 

The result for c = - 1 is easily obtained by making the 
substitutions c~ - c, Po <:7 Qo, x <:7y for then with P l 

= - Ql =c, the Eqs. (2.9)-(2.16) transform into 
themselves. 

Now it is always possible to find a real function, H(z), 
of a single variable which satisfies H"(z)=p2H(z) where 
p2 is real and satisfies for some functions R(x) and dx) 

R(x) 1 1 a2 Ci 
F(x ,y, z) = A(X) H[z - 2 Ci (X,y) + E(X)] +"2 axoy' 

where F is given by Eq. (5.25). But clearly if one dis
places z by an amount i Ci - E and also changes the scale, 
then the equation ZXy = F(x, y, z) becomes ZXy = H(z). 

So it has been proved that if the equation ZXy = F(x, y, z) 
possesses a Backlund transformation which takes solu
tions into other solutions of the same equation then the 
equation must be Zxy= F(z) where F(z) satisfies F"(z) 
= KF(z) for a real constant K *- 0 (up to a scale change 
and a displacement in z). 
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Series of Stieltjes, Pade approximants and continued 
fractions* 
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Nested sequences of lens-shaped regions which contain Pade and continued fraction approximants to series 
of Stieltjes are investigated. It is shown by continued fraction methods that the recent results on Pade 
approximants by Baker and results on continued fractions by Gragg yield identical sequences. 

Considerable attention has recently been given to Pade 
and continued fraction approximants. 1-7 Of particular 
interest are the results of Baker7 and Gragg8 who have 
defined apparently different nested sequences of lens
shaped regions which contain Pade and continued frac
tion approximants of series of Stieltjes. We will show 
via continued fraction methods that the sequences are 
identical and hence the criteria defining these sequences 
are equivalent. 

Baker investigated series of Stieltjes, f(z), 

with radius of convergence R > 0 and with continued 
fraction representations of the form 

f (z) =!!JL atz a,?- ••• 
. 1+1+1+ ' 

where an> n ~ 0, is positive and is defined by the 
relations 

Gragg examined analytic functions, holomorphic for 
I arg(1 + z) I < 1f, satisfying Re{[1 + Zf(Z)]l /2} > 0, the 
principal branch of the square root being assumed in 
this domain, and which have continued fraction rep
resentations of the form 

(1) 

(2) 

f(z)=go KtZ (1-Kt)g,?- (1-g2)K3z (3) 
. 1+1+ 1+ 1+ 

where 

larg(1+z)1 <1f, Ko>OandO<gn<1, n?I. 

That Baker and Gragg are considering the same analytic 
functions can be seen as follows. 

f(z) is a series of Stieltjes with radius of convergence 
R if and only if there exists a bounded nondecreasing 
function a with infinitely many points of increase on 
[0, 1/R] such that 

1/R 

f(z)= f da(t) , larg(R+z)1 <1f. (4) 
1 + tz o 

Since changes in variables !;=z/R and T=Rt normalize 
(4), we can assume that R = 1. Walls proved thatf(z) is 
a series of Stieltjes with radius of convergence R = 1 if 
and only iff (z) has a continued fraction representation 
of the form (3). Furthermore, it can be shown with a 
proof analogous to Leighton and Scott's theorem1o that 
the continued fractions in (2) and (3) are identical. 
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It will be essential for us to consider continued frac
tions in terms of linear fractional transformations. If 
sn denotes the linear fractional transformation 

(5) 

(6) 

then the nth approximant of the continued fraction (3) is 

S (0) - An(z) _!!JL atz ~ 000 an_tz , 
n - Bn(z) - 1 + 1 + 1 + 1 

where An and Bn satisfy the relations 

An(z) = an_t z A n_2 (z) + A n_t (z), 

Ao(z)=O, At(z)=ao, n?2, 

and 

Bn (z) = an_t z Bn_2 (z) + B n_t (z), 

B t (z)=Bo(z)=1, n?2. 

We state our main theorem. 

(7) 

(8) 

(9) 

Theorem: Uf(z) is a series of Stieltjes with radius of 
convergence R > 0 with power series and continued 
fraction representations (1) and (3), then 
{H (ao,'" ,an_t;z)}, n? 1, a nested sequence of regions 
each containing f (z), can be defined in four equivalent 
ways. 

HI. For each WE Hn(ao, ... ,an-t; z) there exists a 
series of Stieltjes f*(z) with radius of convergence R 
whose first n terms agree withf(z) andf*(z)=UJ . 

H2. Hn(a o, ... ,an_t;z), n ~ 1 is the interior of a region 
whose boundary consists of two circular arcs Yn(z) and 
r n(z) defined by 

Yn(z) ={Sn(cnZw ): 0 ";u'''; I/R} (10) 

rn(z) = {Sn(cnZ W ): w = R\~ ~z) , O,,;u,,; I/R} (11) 

where 

H3. Hn(a o,'" ,an_1;z) -Hn+t(ao,'" ,an_j, an; z), n? 1 
consists of two components Ln(z) and L~(z). Ln(z) [L~(z)] 
is a circular triangle with vertices wn_1(z), wn(z), w~(z), 
[w~_t(z), w~(z), wn(z)] and respective interior angles e 
= larg(1+z)l, ¢= larg[z/(1+z)]I, 1/J= larg(-I/z)1 
where w6(z), wo(z)=St(O), wf{z); Ul t (Z)=S2(0), w~(z), ... 
are the successive approximants of the continued frac
tion 
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FIG. 1 

7fo -Z ~ -Z 

l+z+ 1+ l+z+ 1+ 
7fo=go, 7fn=g,,!(l-gn), n?1. (12) 

H4. The open convex region Hn(ao,'" ,an_l;z), n? 1, 
is defined by 

Hn(ao, ... ,an_I; z) = {1' : V = w~.2(Z) or v =Wn.2 (z)}, 

where w~(z), wn(z) are defined in H3. Furthermore, the 
diameter of Hn(ao, ••• , an_1 ; z) is at most 

(13) 

Proof: We begin our proof with a few important ob
servations. The interior angles of the circular triangles 
Ln(z) and L~(z) imply that the points 10n_I(Z), wn(z), 
lI'~_1 (z) and the points 1{'~_1 (z), 1I'~(z), 1{'n_1 (z) define cir
cular arcs Kn(Z) and K~(Z), respectively. Graggll ob
served that Kn(Z) and its circular extension pass through 
1I.'n(Z) , 1I'n_l(z), and 1I'n_2(Z) which are 5 n•I(0), 5n(0), and 
5 n_1 (0) respectively. Finally, since Gragg utilized Wall's 
result and the normalization of (4), we will assume 
R=1. 

Bakerl2 proved the equivalence of H1 and H2 while 
the equivalence of H3 and H4 is stated in Gragg's 
Theorem 3. 13 We will prove the equivalence of H2 and 
H3 by proving that Yn(z) = Kn(Z) and rn(z)=K~(Z). 

To prove Yn(z) = Kn(Z) it suffices to demonstrate that 
the circular arcs Yn(z) and Kn(Z) and their respective 
circular extensions have three common points. Yn(z) and 
its circular extension is defined by the set {Ui : 11' 

=5 n(cnZ lI ), - co .,; It ,,; co} which contains the points 5n(0), 
5 n_1 (0), and 5n+1 (0) for the values u = 0, co, and a,,! cn 
respectively. Since K n(z) and its circular extension 
passes through 5n(0), 5n_I(0) and 5n+I(0), we have Yn(z) 
=Kn(Z). 

To prove rn(Z)=K~(Z), we begin with the fact that 
5n(ll') is a conformal mapping and 1 arg(l + z) 1 is the in
terior angle between the curves 

Y={Il':O";W~l} and r={/I':U'=ll-U , o,,;u";ll. 
+UZ ) 

Thus the angle between the curves Yn(z) and r n(z) and 
the curves Kn(Z) and K~(Z) is larg(l +z) I. Furthermore, 
r n(z) with its circular extension is the unique circle 
intersecting Yn(z) at 5 n(0) with angle larg(l +z) 1 and 
passing through 5n(crrZ) , and K~(Z) with its circular ex
tension is the unique circle which intersects Yn(z) at 
5n(0) with angle larg(l +z) 1 and passing through w~(z). 
Hence to show K~(Z) = r n(z), it will be sufficient to prove 
via induction 
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(14) 

First, we show an+ l < cn from which we conclude that 
5 n+ l (c n+IZ) lies on rn(z) between5n(0)=5n(crrZ). Stieltjes l4 

proved that the roots of Bn(z) lie on the interval (_ co, 
- R). Furthermore it is an immediate consequence from 
(9) that the leading coefficient of Bn(z) is positive. Thus 
our assumption that R = 1 and division of (9) by Bn(- 1) 
yields 

O<cn=l-a,,!cn_1 or cn_l >an forn>2. (15) 

We now assert the existence of u', 0,,; u'''; 1 such that 

5 (CrrZ(l- U')) =5 ~ . 
n l+u~ n1+u~ 

(16) 

Since the above equation equates two values of a linear 
fractional transformation which is a one-to-one function 
we solve this equation for u' to obtain u' = Cn+I' Con
sequently, from (6), 5n(Sn+l(cn+IZ))=5n+l(cn+lz) and 
5n+l(cn+lz) lies on rn(z) between 5n(0) and 5n(cnz). 

Our induction begins with the fact that (2) and (3) are 
identical continued fraction representations so that in 
(12), 7f1 =a/(l- al)' It is then easily verified using 
Eqs. (6), (8) and (9) that 

10f(Z) = a/ (1 + z) = 51 (C1 Z) 

and 

U"(Z)=_a_o_ ~~ 
2 l+z+ 1+ l+z 

ao + aoc IZ _ 5 ( ) 
1 - 2 C2Z • 

+CIZ +alz 

Therefore rl(z)=Kf(z) and r 2(Z)=Kf(Z) and we assume 
the induction hypotheSiS, rn(Z)=K~(Z). Since 5n+l(cn+lz) 
also lies on Kn(Z)=rn(z), and since rn(z) and Yn+I(Z) and 
their circular extensions can have only two points in 
common one of which is 5 n(0), we have 5n+1 (cn+lz) = 1C~+dz) 
and therefore rn+l(z)=K~+I(z), 

An elementary geometric argument shows that the 
diameter of Hn(ao, 0 •• ,an; z) is at most equal to the ex
preSSion in (13) and our theorem is provedo 
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The smooth-path topology for curved space-time which 
incorporates the conformal structure and analytic Feynman 
tracks 
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It is obvious that the usual (Riemannian) topology on a space-time has no natural relation with the 
(pseudo-Riemannian) metric of general (or special) relativity. Therefore. several new topologies on a space-time 
were proposed in recent years in order to overcome this "classical" disharmony. In this paper an infinite 
variety of more physical topologies is investigated (including the most interesting known topologies). It 
turns out that one of the candidates "1.13 ... " has all desired physical advantages: (I) It is defined in a very 
physical way by tests with particles of mass > O. (2) It carries intrinsically all information about the 
smooth conformal structure of space-time: Its homeomorphism group is the conformal group. (3) The 
(only) I-I continuous curves are the analytic Peynman tracks. It turns out that this topology 1.13 ... is 
strictly finer than the topology suggested by S. W. Hawking, A. R. King, and P. J. McCarthy. During this 
investigation a conjecture of E. C. Zeeman (1967; for Minkowski space) will be proved for all strongly 
causal space-titnes (including Minkowski space). 

1. INTRODUCTION 

In 1967 Zeeman! published his paper suggesting a new 
topology (here denoted by) .8,. on Minkowski space which 
is defined more phYSically than the ordinary (Euclidian) 
topology~. He suggested generalizing this topology.8,. 
to general relativity and deriving the corresponding re
sults for curved space-times. This was worked out by 
R. Gobel. 2 It turns out that on a curved space-time 
.Be has many physical properties, for instance (A), (B), 
and (C). 

(A) It can be "tested" partly [= condition (*)] by parti
cles in the sense of thought experiments: 

A subset X of the space-time M belongs to.B I if 
and only if 

(*) xn g is open in g (in the sense of the usual 
topology induced by the eigentime of an ob
server on g) for all world lines g of freely 
falling test particles of mass> 0; 

(**) xn Y carries the Euclidian topology for all 
spacelike hypersurfaces Yof M, 

A map f: [0, 1] - M which is 1-1 and continuous with 
respect to the underlying topology is called a path and 
its imagef=f[0,1] the corresponding curve. Thenfis 
a cn- (smooth)curve if f is an at least n-times (continu
ously) differentiable map. f will be called broken (C"
path/curve) if there are finitely many exceptional points 
only, where f may have two tangents. it is common to 
call f a world line2 [called timelike path in Hawking, 
King, and McCarthy3 (HKM)] if f is a (~-) continuous 
path which is order preserving, i. e. , 

if aE [0, 1], there is a neighborhood U of a in [0,1] 
and a causal (simple convex) neighborhood V of 
f(a) (cf. Ref. 4, p. 5) such that from b < c in U 
follows f(b) «f(c). Here x «y means that x be
longs to the interior of the past light cone of y 
within V; cf. Ref. 4, p. 11. 

(B) Continuous world lines with respect to.B e are now no 
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longer mathematical (pathological) curves: They are 
broken timelike, future directed geodesics, i. e. , 
tracks of freely falling test particles within the 
gravitational field with finitely many bounces (as 
used in kinetic theory); cf. Gobel2 (Corollary 3.6). 

(C) The group of homeomorphisms of an arbitrary 
space-time M with respect to.B e (is no longer a vast 
set and) turns out to coincide with the groups of all 
homothetic transformations of M (they equal 
isometries up to a universal constant); cf. Ref. 2 
(Corollary 5.11). In the case of Minkowski space 
this is the group generated by Lorentz transforma
tions and (constant) dilatations; cf. Zeeman1 (p. 168, 
Theorem 3). 

Besides these attractive features, .8, has some physical 
disadvantages, as pointed out in HKM, 3 i. e. , 

(1 *) The property (A) is only partly physical; condition 
(**) should be removed. 

(2*) The group of homothetic transformations seems to 
be physically less important than the conformal 
group. Therefore it would be more satisfactory to 
obtain the conformal group or the isometry group 
as the invariant group of the topology. [However 
for positive remarks about the physical importance 
of homothetic transformations we refer you to 
Einstein5 and for further discussions and ref
erences to Winicour. 6] 

(3*) World lines of particles which are accelerated 
under forces different from the gravitational forces 
are no longer continuous. 

(4*) .Be is technically complicated. 

Criticism (3*) was removed in Ref. 2 at least for 
charged particles within an external electromagnetic 
field, considering all "e/m-orbits". Because of (1 *), 
(2*), and partly (3*) and (4*), a new topology 1.13 (here 
called 1.13 0) was introduced in HKM. 3 1.13 0 has many 
physically attractive properties. As a result of this 
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the objections (1 *), (2*), (3*), and (partly) (4*) do no 
longer exist. 

The topology \13 0 [derived as a result of criticisms 
(1 *)-(4*)]' however, is liable to the following 
obj ections: 

(1 **) The topology \13 0 is defined by (A) (*) for all time
like CO-paths g. Therefore it is difficult to think 
of a "test" for \13 0 (in the sense of a thought experi
ment) by particles, since there are many timelike 
CO-paths which have no physical meaning as 
tracks of certain particles, e. g., "bad trips" in 
in the sense of Penrose4 (P. 11). 

(3*") Among the possible 1lJ0-continuous curves and 
world lines there are many unphysical ones with 
a high degree of indifferentiability; cf. HKM3 
(Theorem 2). It would be nice to be able to single 
them out by the continuity requirement only! 

Therefore we ask, whether it is possible to refine 
this topology \130, suggested by Hawking (cf. Ref. 2, 
p. 297) in the topological and the real sense- and to 
balance a new topology ~ in such a way that l has all 
additional nice physical properties of \130' and that the 
criticisms (1**) and (3**) can be overcome. 

In order to have the freedom of choice for such a 
topology we will introduce four infinite sequences (!) 
of topologies and will pick our best candidate IlJ ~ later 
on, i. e. , 

.8 0 =.81 < .. c <.8 n <.8n+l < 0 •• <.8 w <.8 w <.8 p 
/, II /' /\ 1\ 1\ II 

.86' =.8i < ... <.B~ < .8~+1 < ... <.B! <.8~ <.8; =.8 g • 

The topologies .8g and IlJg investigated in Gobe12 are 
on the very right, and the topology llJ o suggested in 
HKM3 is on the very left of the diagram (+). The rea
son for the introduction of the last two sequences in (+) 
and IlJg is to answer a further question oj Zeeman1 (the 
conjecture on p. 169 in Ref. 1 for Minkowski space, 
which will be proved for all strongly causal space
times); cf. Corollary 6.3. Furthermore the ,8-types 
of topologies might be more useful in connection with 
initial data problems, since space like hypersurfaces 
are still endowed with the common Euclidean topology. 

The phYSically most attractive topology seems to be 
one of the llJi:opologies. In order to define IlJ t, we need 
the following notation: We call a world line f strictly 
timelil.'c al P Ej, if no sequence of geodesics px (through 
1) and x within a simple neighborhood of p) converges to 
the null cone if x eej and x - p with respect to 1:, The 
topology on a timelike path can be found in two equiv
alent ways, either as the topology induced by 1: or in
duced by the metric of the space-time. With this 
topology on the timelike paths we define for a subset X 
of the space-time M, 

(++) Xc:\13 n (XEIl3~) if and only if Xrlg is open in g for 
all (strictly timelike) en-world lines g of M. 
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It is always assumed that the degree of differentiabil
ity of the manifold M is at least n. If n = cO this means 
that M and the world-lines gin (++) are arbitrarily 
many times differentiable, and if 11 = w, M and gin 
(++) are analytic. If Jl=g, the world linesg in (++) are 
timelike geodesics, M is at least three-times differen
tiable and the metric is C 2• 

(+++) If condition (A) (**) is fulfilled in conjunction with 
(++) for C"-world lines, we obtain XE.8 n or 
XE.8~. 

It can be seen from the very definition, that objection 
(1 **) is removed in the case (++) if n is sufficiently 
large. Surprisingly \130 = \131 and 1l36' = 1l3! as well as.8 0 
=.81 and.8 6' =.8 r coincide, which means that the topology 
'llo in HKM3 can be defined by the (less wild) C1-paths. 
It can be shown that all other topologies of our diagram 
(+) do not collapse; cf. Lemma 3.2. Therefore it might 
be possible to find criteria to select between, for in
stance Il3n and Il3n+l' The essential difference between the 
*-topologies and the topologies without a "*" is that in 
the latter case world lines (i. e., with respect to the 
non-"*"-topology) may converge to light directions, 
which is excluded in the *-type. 

Criticism (4*) is a question of tradition. In particular 
I believe that it is simpler to calculate in topology if 
there are very lIIanv or very jew open scts. The first 
case arises at the right- end of the sequences of our 
diagram (+). 

In addition it can be shown that the homeomorphism 
groups in all cases not equal to \13g nor .Bg are the 
conformal groups; cf. Theorems 6.2 and 6.4, For the 
.8-type topologies this is true even without the restric
tion "strongly causal" on M. We conjeclu1'c that this 
restriction is not necessary in the other cases either. 
In the case IlJg , the homeomorphisms are the homo
thetic transformations as in the case .Be'; cf. Corollary 
6.3. This finally anszeers the question b)' ZeelJlal1, 
mentioned above; cL Nanda7 and Geroch. 8 

Next we concentrate on the "analytic iOj)ologics" with 
It = w, The criticism (3*) and the corresponding 
criticism (3**) are removed! We call a broken analytic 
timelike path which is piecewise past or future directed 
an analytic Feynmml l1"ack. These are special Feynman 
tracks as defined in HKM. 0 Then Il3w-continuous paths 
are allah,tic Feynman tracks and 1l3~-continuous paths 
are in addition strictly time like. Therefore world-lines 
with respect to ~ w (or \13 t) are broken analytic (strictly) 
timelike and future directed paths. The same holds for 
world lines with respect to.8w and.B~; cf. Secs. 4 and 
5. Due to the natural definition and the physical prop
erties lI'e ].I·ould like to reco)JIJJlend (like S. W. Hawking, 
A, R. King, and p, J. McCarthy) one of the ~-type 
topologies, but in particular ~w or Il3 ~! As long as we 
allow analytic or broken analytic curves of particles of 
rest mass' 0 for tests of the topology of space-time, 
we obtain 1lJ~ as the natural topology. It might, however, 
be interesting for mathematical reasons and for a better 
understanding of IlJ ~ to look at the world lines with 
respect to Il3 n (1/'* 0, 1, w, g), too, The results expected 
are somehow "between Il3 0 and \13w- " 
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The results in this paper are derived by application 
of the beautiful ideas and results in HKM3 and by some 
results in Gobel. 2 We will use the notation in Refs. 2 
and 3 0 

2. MATHEMATICAL TOOLS 

In order to investigate Zeeman topologies on a curved 
space-time we need the following propositions. In 
particular, Proposition 2.1 will be necessary for re
defining the topology III ° suggested by Hawking, cf. Ref. 
2 and HKM, 3 with the help of C1-world-lines. Proposi
tion 2.4 is used to derive physical properties of the 
Zeeman topology Ill~ suggested in Sec. 1. 

Proposition 2 0 1: Let M be the Minkowski space and S 
a sequence of pOints Pn EO M labelled by the natural num
bers with the following properties: 

(1) S - p, i. eo, there is a point p EO M such that S con
verges to p with respect to the ordinary (Euclidian) 
topology 1: on M. 

(2) If xc: S, then p *-x are timelike related in M. 

There is a Cl -world-line passing through p and in
finitely many points of S. This world line is timelike at 
each point *- P and timelike or lightlike at p. 

Remark: C1 is "best possible" as follows from Prop
osition 2.3. Construction of the required C1-world-line: 
Because of condition (2) w~ get scI-(p) u r(p). There
fore SnI-(p) or Snr(p) is infinite. Let us assume, 
without loss of generality, SI = Sn rep) to be infinite. 
Since Pn - p, we can find an element P j E S10 now called 
Y2' such that fJ1 = Yl E I+(Y2)' Repeating this argument al
ways for the next element, we can find a subsequence 
S2 = {y 1, Y2, ••• } of SI such that (a) holds: 

(a) Yi E r (y i+l) for all natural numbers i. 

Using ordinary Minkowski coordinates with origin 
p = ° = (0, 0, 0, 0), the standard Minkowski metric gik 

= Qik' (- 1)6iO, and the corresponding Euclidian metric 
Qik for i,k=0,1,2,3, we can draw a 3-sphere 53 
centered at p with radius 1 with respect to Qik' If JiYi 

is the ray from p through Yi' we consider the point set 
T2 = {t j = fJYj 1153; YI E S2} on the sphere. Since 53 is 
compact, T2 has an accumulation point q on 53 and there 
is a subsequence S3 of S2 such that T3={tl =fJYln 53; 
Yi EO S3} converges to q, The ray pq is timelike or light
like because of (2). 

Now we select our final subsequence S4={ZhZ2,"'} 
of S: Let Ixy I be the distance between x and y with re
spect to Qlk' We choose Z 1 = Y i such that I tiq I < e-1 and 
I PZ 11 < e-1

• We assume Z 1, ... ,Z m-l to be constructed 
such that 

(b) I (PZ j n5 3)q I < e-i, 
(c) I (Z--;ZI_1 n 53)q I < e-i

+1 , 

(d) !Pzi!<e-i, foralli<l1I. 

Since S3 - P and T3 - q, we can find a point zm =Y j 
which satisfies (b)-(d) for i=m. 

Now we draw the curve ~(S4) consisting of all pieces 
of straight lines Z jZ 1+1 including the limit point p. Be
cause of (a) we can use the time coordinate as par am-
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eter along i'¥(S4)' We obtain, that the path ~(t) with 
image i'¥(S4) is C~ at all points except possibly at p or 
S4' Because of (b) and (c) the path crt) is at least C1 

at t = 0. The "pathology" at S4 can be removed by the 
well-known Cro-smoothing procedure; cf. Penrose, 4 

p. 16. We perform the Cro-smoothin~at zn=~(tn) such 
that the new path crt) coincides with crt) except at a 
sufficiently small neighborhood V n of Zn. This can be 
done such that 

(e) crt) is Cro and timelike in V no 

(f) I (pc (f) n 5 3)q I < e-n
+1 for all points crt) E Vno 

(g) i'¥(tn) = c(tn)' 

The resulting path crt) is timelike and future directed 
Coo at all points c(t) '" ° and Cl timelike or lightlike and 
future directed at p = 0. 

PropOSition 2.1 *: Under the assumptions of Proposi
tion 2.1 and condition 

(3*) if s' c S, the sequence of rays PPn (PnE S') is 
not converging to a null line, 

there is a C1-world-line passing through p and infinitely 
many points of S. This world line is timelike everywhere. 

Proof: Apply PropOSition 2. 1; Proposition 2. 1 * then 
follows directly from condition (3*). 

Corollary 2.2; Let M be a space-time and g be a 
world line through p. Any sequence S of pOints on g 
with S - P contains a subsequence S' of points Pn (n EO IN) 
such that 
(1) s' cg and Pn - P with respect to the ordinary 

topology 1:, 

(2) There is a C1-path f on M passing through p and S', 

(3) This path is timelike everywhere except possibly at 
p where it is nonspacelike. 

Proof: Take a convex normal neighborhood U of p and 
apply exp-l. Since g is a timelike CO-path through p, the 
set exp-l(S n U) contains a sequence S" of points satis
fying Proposition 2.1 for the Minkowski tangent space 
Tp at p. By Proposition 2.1 there is an (infinite) sub
sequence S* of S" on a C1-world-line h in the tangent 
space Tp. Since exp is a Ck-map (if k? 1 is the degree 
of differentiability of M), we obtain the required C 1_ 

world· line exp 0 h if we restrict ourselves to a suffi
ciently small neighborhood of ° in Tpo This world line 
passes through p and S' = exp(S*). 

Corollary 2.2*: Let M be a space-time and g be a 
strictly timelike world line through P. Then the world 
line f constructed in Corollary 2. 2 is timelike 
everywhere. 

Proof: Apply Corollary 2.2 and PropOSition 2. 1 *. 

Proposition 2. 3: Let M be the Minkowski space, For 
each n'- 1 there is a sequence S = Sn on M with the fol
lowing properties: 

(1) S - p, 

(2) there is a Cn-I-path f passing through p and S, and 
f is strictly timelike, 

(3) if g is a path which contains infinitely many points 
of S, then g is not C n

• 
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Proof: Using Minkowski coordinates we can restrict 
ourselves to the two-dimensional case of a t - x
Minkowski plane with Minkowski coordinates t (for 
time) and x (for space) at the origin O==P. If n> 1, we 
choose the time like path f(t) == (t, t(2 ... 1) 12) for 0<:; t <:; i 
and select the point set S == Sn = {(tlk, (11k) (2n-1> /2) 

= f(l/k); kEN} of f and assume that there is a en-path 
g=g(s) which passes through infinitely many points S' 
of S. Since f is timelike, we may assume g to be time
like (within a sufficiently small neighborhood of Pl. 
Therefore we can choose the time coordinate t as a 
en-parameter of g, i. e. , g=-g(t). Next we calculate 
the mth derivative of g(t) at t=-O for all m <:; n under the 
assumption g(t) E en. This can be done by selecting one 
particular sequence of differences of the mth order at ° for 111 = 1, ... ,n. By induction we have g(m-il (0) =-° 
and therefore we obtain for the specially chosen 
sequence of the mth order, 

t(2n-1> /2 --7n- = t~-m-1 /2 = k m- n+1 /2 for [tk = 11k, g(tk )] E S'. 
k 

Since k - 00, we get g(m)(o) == ° if m <n and g(n)(O) =co, 
L e" g¢ en. 

In order to formulate our next propOSition, we need 
certain (pairs of) subsets of a CW-manifold, which we 
call "analytically exact". 

Let M be a eW-manifold. The pair (X,P) will be called 
analytically exact if it satisfies the following conditions: 

(1) Xc M, XE:-t and P EM, 

(2) P EX =1:-closure of X in M, 

(3) there is one and only one analytic curve f c X 
containing p. This curve f will be called the 
(analytic) axis of (X,P). 

Of course there are infinitely many paths g with the 
same curve f=g. 

Proposition 2.4; If f: [0, 1]- M is an analytiC path of 
an analytic manifold M (of dimension four), there is a 
standard analytically exact pair (XI' p) with axis f. 

Proof: We choose local eW-coordinates at p. There
fore it is sufficient to prove the proposition in the case 

(a) M=1R4, andP=0=(0,0,0,0)E1R4, 

We choose one of the coordinate axes to be the analytic 
path f. Therefore we may assume, without loss of 
generality, 

(b) f(x) = (x, 0, 0, 0) for 0 -"'x -'" 1, 

and we put 

~={(XJ,X2,X3,X4); ° <Xj <1, 

Then the curve f is contained in Xi and Xi E:-t. Therefore 
it is sufficient to check (3) of the "exactness" definition: 
Let h : [0, 1] - X, be analytic~ and P E h. We calculate 
its kth derivative: Since p E XI' there is a sequence 
s(n)EX,nh of points such that s(n)-p. We have sin) 
= (x(n)j,x(nlz,x(nh,x(n)4) with respect to the coordinate 
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system. Since s(n) E h, we have in case k = 1, 

I (a!J h) (0) I = I!~~ ;~:?: I ~ !~~ I ;i:~ I 
for j=2,3,4. Since s(n)EX/ , we get Ix(n)jl 
~exp[ - l/x(n)iJ and therefore 

I (-.Lh)(O)i ~lim lexP[-l/X(nln 1=0. 
ax, n-~ x(n)j 

An analogous argument gives (for k> 1) 

for some polynomial Pk(x) and j i * 1 for all i. Since h 
is analytiC at p = 0, . the curve h coincides with the axis 
f. 

3. RELATIONS BETWEEN ZEEMAN TOPOLOGIES ON 
A CURVED SPACE-TIME 

The results of this section may be summarized as 
follows: The Zeeman topologies, introduced in Sec, 1 
are related as shown in the diagram (+) of the Introduc
tion. All inequalities are strict. 

Theorem 3.1: 

(a) $0 = III 1 ~llln~llln+l ~ Ill~ <:; Illw <:;$g, 

(a *) III t = $ t <:; $ ~ <:; III ~+1 ~ Ill! ~ III ~ ~ $ : , 

(b) .8 0 =.8 1 ~ B n -'" B n+1 ~.8 ~ ~ B W ~ B g, 

(b*).8 ti =B t <:; B~ <;.8~+1 <:; B! ~.8 ~ ~.8i 

for all natural numbers n, 

(c) $n~$~, $g=Ill:, 

(c*).8n<:;.8~, .8,.=B:, .8n-"'$m forn=1,2, ... ,oo,w. 

Proof: By definition we get 

$0 -"'$1 <:; ... -"'$n~ $n+1'" <:; ~~ <:;~w. 

Let be XE~1 and let us assume xi~o. There is a time
like CO-path g such that gn X is not open in g. There
fore, g \(gn X) is not closed, i. e., there is a sequence 
S={PJ,Pz,"'} of points ong\(gnX) which converges to 
a point p E gn X. Because of Corollary 2. 2 there is a 
subsequence S' of S which converges to p and is con
tained in a e1_ curve h which is timelike at all pOints 
x * p and timelike or possibly lightlike at P. Since X 
E $1 we get Xn h = Tn h for some TE1:. Since S' c S 
n g and S nX=0 by construction, we get S' nX=0. If 
we assumexES'n T*0, we getxEg (sincexES') and 
x E hn T=hn X, i. e., x E Xn S' *0 which is a con
tradiction. Therefore S' c M\ T which is 1: closed. 
Since S' - P with respect to 1:, it follows that P E M \ T, 
i.e" p¢TorP¢Tnh=Xnh. SincePEh, we get 
pix, which contradicts P E: gn Xc X. Therefore, X 
E$o, and (a) is shown. 

(a*) follows as (a): Since the CO-curve g (as above) is 
strictly timelike at p, the corresponding sequence S' 
satisfies assumption (3*) of Proposition 2.1*. There
fore, h is timelike at p, and we can apply the arguments 
in (a). 

Rudiger Gobel 848 



                                                                                                                                    

(b) and (b*) follow as in (a) and (a*) by always adding 
the "hypersurface-condition (+++)." 

Since the sets of test curves are ordered by inclusion 
in oposite directions, the ordering of (c) holds automa
tically. Since geodesics are either null or timelike or 
spacelike, the sets of test curves for $, and $: co
incide. Therefore $, =1lJ: and (c) are shown. 

(c*) follows as (c). 

All inclusions of Theorem 3.1 are strict, i. e. , 

Lemma 3,2: 

(a) $n*$n+1> $00 *$w *llJ g , 

(a*)IlJ~*IlJ~+I' 1lJ!*IlJ~*IlJ" 

(b) .8 n * .8 n+1> .8 ro *.8 w * .8" 
(b*) .8~ *.8~+1> .8! *.8~ *.8 g' 

for all natural numbers n, 

(c) IlJn*IlJ~, 

(c*)llJn*IlJ~, .8n*$., forn=1,2, ... ,00,w. 

Proof; Let U be a simple convex (normal) neighbor
hood at p E M and exp the exponential map of a region 
V of the tangent space Tp onto U. (a), (a*), (b), (b*): 

Case n * 00, * w: In T p we can find a sequence S = Sn+l 
of points satisfying Proposition 2.3 for p = 0. There
fore, S* = exp(S n V) satisfies the same conditions with
in the manifold (if M is sufficiently smooth, as always 
assumed; cf. Sec. 1). Therefore, I S* n gl < 00 for all 
timelike Cn

+
1 paths g of M. Hence U* = U\S* E$ ~+1 and, 

since f is chosen to be strictly timelike in Proposition 
2.3, U* E.8 n+1 «.8~+1> <llJ n+1> <1lJ~+I)' However, U* 
ci$ ~ (and therefore not in.8 ~, .8 n, $ n) since there is a 
strictly timelike Cn-path f with infinite S* nf which 
follows from Proposition 2.3 (2). 

Case $ 00 *$ w: Choose a strictly timelike analytic path 
f through p. There is a standard analytically exact pair 
(X"P); cf. Proposition 2.4. Choose a sequence S of 
points in XI on a COO-path g (which can be arranged 
easily) converging to p such that IJn S I < 00. If c is any 
analytic curve with I c n S I = co then p E C and c = f by the 
definition of "analytical exactness". Therefore 00 
= I c n S I = IJn S I < 00 is a contradiction. We get from 
the definition of Zeeman topology: U* = U\s E.8 w 

«l13 w, <113~, <.8~). Since SCgEC ro
, we obtain on the 

other hand U* i $! (>113 00, > .8ro, >.8 !). 

Case I13 w*l13 g : Choose an analytic pathfwhich is strict
ly timelike at p and which is not a piece of a geodesic 
at p. Then it is possible to find a sequence S of points on 
f such that each geodesic contains only finitely many of 
them; cf. R. Gobel. 2 Hence the set U*=U\S belongs to 
l13,n.8 g but not to I13w or .8w , or.8 ~ orl13~. 

Case (c) and (c*): Take any Cn-world-line which is 
lightlike at p and timelike at all other points. Choose a 
sequence S on this line which converges to p. Then U* 
=U\SE.8~ (E~~) but U* cilJ3 n (ci.8 n) for all n 
=1,2, ... ,co,w. 

The next proposition is an analog of Theorem 1 in 
HKM.3 It has the advantage of being "friviai" and lead-
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ing to the main results (in particular to Theorem 4) in 
HKM3; it can be used as a substitute of Theorem 1 in 
that paper. It follows immediately from Proposition 3.3 
that ~-topologies, restricted to the light cones are 
discrete. From the topological point of view, the struc
ture of the Zeeman topologies does not become clearer 
under Proposition 3.3 (in spite of HKM Theorem 1) 
which is its disadvantage. 

Let K(P,E) be defined as in HKM,3 i. e., K(P,E) con
sists of the interior of the light cone at p within an 
"E-neighborhood" of p, and again we include the point p. 
Then let sa k consist of all 113 k-open sets K(p, E, S) con
tained in arbitrary sets K(P, E). The "index" S in 
K(p, E, S) can be thought of as a 113 k-closed subset of 
K(P,E). 

Proposition 3.3: The set sak is a basis for the topology 

$k' 

Proof: If XEsak, then XE IJ3k by definition. Therefore 
let p E XE \13k' Since p E K(P, E) E I13 k, we get P E K(p, E) 
n X=BE\I3k and therefore BESB k. HenceSB k generates 

I13k' 

From the topological point of view we would like to 
remark (without proofs) that: 

(a) all topologies in consideration are Hausdorff, 
locally and globally path connected (cf. HKM, 3 

Sec. 4); 

(b) \13 k is countable if and only if k = ° and k = 1; cf. 
HKM3; 

(c) none of the topologies is regular or normal or 
locally compact or paracompact (since 113 0 is not; 
cf. HKM,3 Theorem 3, and.8 o is not either). 

4. WORLD LINES WITH RESPECT TO ZEEMAN 
TOPOLOGIES 

First we will consider world lines (cf. Sec. 1) with 
respect to the different Zeeman topologies. Without 
loss of generality we assume world lines to be 1-1 
maps from [0,11 into the space-time M which are 
order preserving, cf. Sec. 1. This could easily be 
generalized to locally 1-1 maps from open connected 
subsets of lR into M; cf. HKM.3 We will restrict our
selves (cf. Sec. 1) to the following groups of 
topologies only: 

(a) 1J3 0 =1131> 1136=113[, .8 0 =.81> .8t=.8{, 

(b) \l3w, 113~, .8w, .8~, 

(c) 113" .8 g' 

The last case (c) was solved by Gobe12 (Corollary 3.4): 
World lines are broken timelike future directed 
geodesics. The case 1J3 0 has been investigated in HKM.3 
Using the same techniques (apply Proposition 3.3 and 
Theorem 2 or Proposition 4. 1 in HKM3) we derive the 
same result for.8 0 as for \130' 

Theorem 4.1: For a 1-1 map f: [0, 1] - Mare 
equivalent: 

(1) f is a world line with respect to 113 0 or.8 0, 
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(2) I is a world line with respect to ~ (not necessarily 
strictly timelike). 

There is no difference between 1J3 0, .8 0, and ~ for world 
lines! Next we consider 1J3 6 and.86. 

Theorem 4.2: For a 1-1 map I: [0, 1] - Mare 
equivalent: 

(1) I is a world line with respect to IJ3 6 or.8 6, 

(2) I is a world line with respect to ~ but in addition 
strictly timelike. 

Therefore world lines continuously reaching the light 
velocity are singled out. 

Prool: (2) - (1): W [.86]-continuity of world lines I 
which are strictly time like everywhere follows directly 
from the definition of IJ3 6 [.8tl. 

(1) - (2): Since 1J3 0 <.86 (Theorem 3. 1) we may apply 
Theorem 4. 1 and I is a world line with respect to ~. If 
I were not strictly timelike at p = l(to) E/, we could find 
a sequence S of points Pn 1= P within a simple neighbor
hood V of P such that the geodesics PP n with Pn E S are 
approaching the light cone. Therefore V* =V \S ~ 1lJ6 
but V* ilJ3 0 [cf. Proof of Lemma 3. 2(c)]. In addition 
V* E.8 6\ .8 0, Since P E V* and r 1(Pn) - to we derive the 
contradiction to the IJ3 6-continuity (or the .8 6-continuity) 
of I at P. 

Next we consider the cases IlJw/.8 w • The restriction to 
analytic manifolds is no real restriction as it follows 
from the famous embedding theorem by Hassler and 
Whitney, cf. Hawking and Ellis, 9 p. 58! We derive the 
somewhat surprising 

Theorem 4.3: For a 1-1 map I: [0, 1] - Mare 
equivalent: 

(1) I is a world line with respect to IlJ w or .8 w , 

(2) I is a broken analytic curve, which is timelike al
most everywhere (except for possibly finitely many 
null tangents) and future directed o 

Prool: (2) - (1) follows immediately from the defini
tions. (1) - (2): Let be P =/(0) EI and assume I not to be 
analytic at p. There are two possibilities which may 
occur: 

(i) There is no analytic curve g which contains a 
sequence S of points 1= P such that S cgri I and 
S-P. 

(ii) There is an analytic curve g suc h that g n 1\ {p} 
contains a sequence S - p. 

In the first case we choose an arbitrary sequence 
Sci such that S - P. It follows from (i) that IS n gl < 00 
for all analytic curves g. Therefore U* = U \S E IJ3w 
[E.8 w] if U is a simple neighborhood of p. Since P E U* 
and S - p, this contradicts IJ3w-continuity (or .8 w-con
tinuity) of I at p. 

In the second case we choose the standard exact 
analytic pair (Xl"P) with axis g; cf. Proposition 2.4. 
We have S cgn I and S - P from (ii) and Xl' E ~ and I is 
connected. Therefore I must have pOints in common 
with Xg\. g arbitrarily close to p since g is analytic 
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at p but I is not. We obtain a sequence S* c/n Xl' \ g 
and S* - P. From condition (3) of "exactness" we know 
that IS*nhl <00 for all analytic curves h. Therefore, 
U*=U\S* is a IJ3 w-neighborhood (and a.8 w-neighbor
hood) of p, contradicting IJ3w-continuity (.8w-continuity) 
of I at P. Therefore case (ii) cannot occur either and I 
is piecewise analytic at p. This argument can be re
peated for any point p on f. Using the fact that I is a 
compact set, (2) follows immediately; cf. Gobel2 (for 
the explicit argument). 

Corollary 4.4: For a 1-1 map I: [0, 1] - Mare 
equivalent: 

(1) I is a world line with respect to IJJ t or.8 t, 
(2) I is a broken analytic curve which is timelike and 

future directed everywhere. 

Prool: (2) - (1) follows from the definitions. 
(1) - (2): Since IJJ w <lJ3t we obtain from Theorem 4.3 
that I is piecewise analytic. That null tangents do not 
occur follows from Theorem 4.2 since IJ3 t < IJJt. The 
same argument holds for.8 t. 

5. FEYNMAN TRACKS FOR" IJJ-TYPE" TOPOLOGIES 

First we remark, that there are "arbitrarily wild" 
.8-continuous maps I: [0, 1]- M if we drop the order 
preserving for all ".8-type" topologies. Therefore, in 
the following we restrict ourselves to the IJJ-type. We 
shall characterize all IJJ-continuous maps I: [0, 11- M 
with respect tolJJ6, IJJ w, \13 t, IJJ g' This has been done for 
llJo in HKM3 (Theorem 2) and in order to avoid over
lappings, we will make use of this result continuously. 

We call a curve I an analytic Feynman tracl? if I is 
connected and consists of finitely many pieces of future 
directed or past directed analytic world-lines. The 
track will be called strict if no null tangents occur. We 
mention without proof, that 1JJ6-continuous curves are 
Feynman tracks in the (more general) sense of HKM, 3 
which are in addition strict; cf. HKM.3 

Theorem 5.1: Let M be an analytic space-time and 
I: [0, 1] - M a 1-1 map. Then I is IJ3 w-continuous if and 
only if I is an analytic Feynman track. 

Prool: "~" follows by the definitions. "~": Since 
lJJo <\I3w, we already know from Theorem 2 in HKM3 
that I is a Feynman track in the sense of HKM.3 There
fore four possibilities arise: Either I is order preserv
ing or reversing in a neighborhood U of 10 E [0,1] or 
I(U) C I+(P) U {p}, or I(U) c I-(P) u {p}. In the first two 
cases we apply Theorem 4.3 to obtain that I(U) is 
piecewise analytic at p = IUo). In the third case (and 
similarly in the fourth case) we restrict ourselves to 
U'" = {t E U, t c; to} and obtain that I is order preserving 
at to, L e., P «f(t) for all t E U + sufficiently close to 
1o• Using the argument in the proof" (1) - (2)" of The
orem 4.3, we derive that there is a t' E U+\ to such that 
jUo, tIl is an analytic curve. After this is shown for all 
points P E/we apply that 1=/[0, 1] is compact. There
fore I is a (broken) analytic Feynman track. 

If we combine Theorem 5.1, Corollary 4.4, and The
orem 3.1 (c) (for 11 = w), we derive Corollary 5. 2 (a). 
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FUTURE 

FIG. 1. 

Using Theorem 5. 1, Theorem 3 0 1 (a), and Corollary 
3.4 in Gobel, 2 we obtain Corollary 5.2(b). 

Corollary 5.2: Letf[O, 1] - M be a 1-1 map into the 
space-time M, 

(a) If M is analytic, thenf is ~~-continuous if and only 
if f is a strictly timelike analytic Feynman track. 

(b) f is ~ .. -continuous if and only if f is a piecewise 
future and past directed geodesic Feynman track 
which is timelike everywhere. 

6. THE GROUP OF HOMEOMORPHISMS 

From now on we will assume that the Lorentz metric 
on our space-time M is C~ or CW if M is C~ or C W 

respectively. The following proposition will be used to 
prove Theorem 6. 2. 

Proposition 6. 1: A 1: - homeomorphism h : M - M' of 
an analytic space-time (M,g) onto an analytic space
time (M', g'), which takes null geodesic curves to null 
geodesic curves (as point sets), is an analytic 
diffeomorphism. 

Remark: (M,g), (M' ,g') are analytic manifolds with 
analytic metric fields g and g' respectively. Proposi
tion 6.1 is the "analytic analog" of Hawking's Theorem 
5 in HKM. a We apply the method given there and refer 
for notations to HKMa (Proof of Theorem 5) and Fig. 1 
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which illustrates the idea of the construction. The 
analytic diffeomorphism is in addition conformal. The 
definition of conformal maps used below-known in 
mathematics at least since 1847 (Liouville1U)-may be 
found in Hawking and Ellis9 (p. 42) or Gobel2 (Sec. 2). 
Conformal maps are (differentiable and) angle preserv
ing within the tangent spaces of the space-time. 

Proof: We already know from HKMa (proof of Theorem 
5) that the maps hi : F; - Fi are C~ for i == 1,2,3,4. 
Parametrizing points q on Y2 by parameters tl and fa 
of YI and Ya, the functional equation h4(1/I2(f j , ta» 
==;P2(hl (t l),1ia(ta» is derived in HKMa (we put I/I==I/Iz), cf. 
Fig. 1. Permuting the suffix (and parametrizing suc
cessively Yi for i == 1,2,3,4) we obtain four functional 
equations, which have been used implicitly in HKMa: 

hi (l/Ia(t2 , t4» = ¢a(h2(t2), hi (t4», 

h2(1/I4(ta, tl» = ~4(ha(ta), hi (tl», 

ha(1/I1 (t4, t2» =;PI (h 4(t4), h2 (t2», 

h4(1/I2(tj, ta» = ;P2(hl (tl)' ha(ta». 

(1) 

The functions 1/1 and ;p constructed with "small" pieces 
of null geodesics are analytic with respect to a suffi
ciently small parameter domain as follows from an 
elementary result of differential (equations) geometry; 
cf. Hicks l1 (p. 59). Hence (1) represents an analytic 
system of equations for the unknown functions 
hi' hz, ha, h4 which may be written in the form 

(a) FI == hi (I/Ia (tz, t4» - ~a (h2 (t2), h4 (t4» = 0, 

(b) F2 == h2 (1/14 (fs, tl» - ~4(hs(ts), hi (tl» = 0, 

(c) Fs==hs(l/Il(t 4, t2»- ~1(h4(t4),h2(t2»=0, 

(d) F4==h4(1/I2(t1, ts»- ;P2(hl (t l),hs(ts»=0. 

(2) 

Comparison with Minkowski space within a sufficiently 
small region shows that 

(i) 0¢I(t4,t;) *0 o¢Z(l~,ts) *0 
at; , ors ' 

0~s(t;,4) *0 O~j~,t1) *0 
ot4 ' atl ' 

and 

(ii) a~1 a~ * a~l, ~~ ata * o/h 
ot4 ot2 at2 ats 071 otl ' 

The conditions (i) have been used in HKMs implicitly 
and the last one is given explicitly, cf. HKMa [Proof 
of Theorem 5, (4)]. With the third condition of (i) we 
calculate from (2a) 

~=-~*O 
oh4(t4) ah4(t4) , 

and by construction of I/Ia and ~3 there are some param
eters tt t~ and t~ [==1/I3(t~,lV] such that hl(t~) 
- ~3Ch2(tg), h4 (t2» = 0; cf. Fig. 1. Hence (2a) can be 
solved, Le., h4(t4) ==fl(h1(t1), h3(ta» is an analytic 
function by the implicit function theorem for a suffi
ciently small domain; cf. Narasimhan,12 p. 15, 17, 11l. 
In fact 

h'(f4) ==( !~a ) -lht(lJ!s(t2, t4» aOtl/la; 
ah4 (t4) 4 

Rudiger Gobel 851 



                                                                                                                                    

cf. HKM3 (II). Substituting into (2b), (2c), and 
(2d) we obtain three analytic equations for the remaining 
functions h2' h3' h4• Repeating this method two times, (2d) 
can be reduced with (i) and (ii) to an analytic equation 
which determines h3(t3)' Hence hS(t3) depends analytical
lyon t30 By symmetry we derive that hi(ti ) is an 
analytic function for each i = 1,2,3,40 Hence h is 
analytic too, repeating the final arguments in HKM3 
(Proof of Theorem 5). 

Remm'k: If h: M - M' is conformal and C2 and (M,g), 
(M' ,g') are analytic, we can derive the analytic differ
ential equation, describing h locally: 

(+) . ( ,0 ,3) oxl(yO, •.• ,y3) OXk(y~y3) 
g'k) , •.• ,) ayj ays 

= n 2(yO, •.• ,y3)gJs(Yo, ••. ,y3). 

Such an equation has only analytic solutions (since 
dimM? 3), as follows from Proposition 6.1. However 
it seems to be difficult to derive such a result directly 
from (+), which shows the insufficient knowledge on 
partial differential equations. That (+) has only analytic 
solutions in flat space, follows after lengthy calcula
tions in the 100 year old paper by Beez13 (and follows of 
course in the end from Liouville's theorem too). 

Theorem 6.2: Let Ml and M2 be two strongly causal 
space-times which are C~ or [C"']. Let II and I2 be, 
respectively, one of the topologies ~i or ~t (i =0, 1, ... , 
DC, w) respectively on Ml and on M2. The following con
ditions are equivalent: 

(1) h: (M!> ll) - (M2, l2) is an I - homeomorphism, 

(2) h: Ml - M2 is a conformal map which is C~ [or CW]. 

Remark: The definition of "strongly causal" can be 
found in Hawking and Ellis19 (p. 192) or in Penrose4 

(p. 34, Theorem 4. 24). Loosely speaking, space-times 
with "almost closed" world lines are excluded. 

Proof: (2) - (1): Timelike Ck-curves are mapped onto 
timelike Ck-curves under a conformal C~ - [or C"'-] 
map for each degree of differentiability k. Using the 
definition of II and %2, we obtain that l j-open sets are 
mapped onto l2-open sets. Hence conformal maps are 
l-homeomorphisms. 

(1) - (2): Let f be a timelike ll- continuous world line 
of M10 Since ~o '" II, it follows thatf is timelike and 
~o-continuous. Using HKM3 (Theorem 4 and Proposition 
5.1), we get that h of is timelike and $ o-continuous. 
Since Ii is an ~ - homeomorphism, h 0 f is in addition to 
that I z-continuous. Therefore II-continuous timelike 
curves are mapped onto ~2-continuous timelike curves. 
Therefore h is a causal map in the sense of Gobel, 2,14 
i. e. , 

(C) {x «y or y «x} if and only if {hex) «h(y) or 
hlY) «h(x)}. 

It has been shown in Gobel14 [cf. also Gobel2 

(Lemma 5.4) or HKM3 (Proposition 5.4)] that causal 
maps are orthochronal or antiorthochronal, teo, 

(0) x «.\' if and only if hex) «h(y), (01,thochYonal) , 
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(A) x ~y if and only if h(y) «h{x), (antiorthochYonal). 

Therefore, h maps lightlike geodesics onto lightlike 
geodesics as shown in Gobe12 (Sec. 5, p. 305) and HKM3 
(Proposition 6, I), Hence h is a conformal C~-map as 
follows from a theorem by Hawking15 which is now 
published in HKM3 (Theorem 5). In the case 11 = W we 
apply Proposition 6.1 in order to get h to be analytic, 
tooo 

Coyollayy 60 3: Let Ml and M2 be two strongly causal 
space-times endowed with the topologies! 1 and I 2 

both of the type ~8" Then the following conditions are 
equivalent: 

(1) h: (M1,ll) - (M2, ~2) is a ~8'-homeomorphism. 

(2) Iz; Ml - M2 is a homothetic map, i. eo, a conformal 
map with a constant conformal factor, 

Remayk; Corollary 603 has been conjectured by 
Zeeman in ReL 1, p. 169, for Ml = M2 = Minkowski 
space, which is a special strongly causal space-time, 
This proof should be substituted for the attempt by 
Nanda7 in this journal; cf. Gerocho 8 

Proof: (1) - (2); Since ~o <~8" we obtain from Theorem 
6.2 that h is conformaL From Corollary 5, 2(b) we 
know that timelike geodesics are mapped onto broken 
time like geodeSics under h. Since h is conformal, it is 
differentiable, hence "image-g'eodesics" are no longer 
broken. Therefore timelike geodesics are mapped onto 
timelike geodeSics under 11, By application of Gobe12 

(Proposition 5. 8) we derive that h is a homothetic map. 

(2) - (1); Since timelike geodesics are mapped onto 
timelike geodesics under a homothetic transformation 
h [cf. Gobe12 (Proposition 508)], the condition (1) fol
lows immediately from the definition of ~ g' 

In the case.B w we can drop the assumption "strongly 
causal" using Gobel2 (Corollary 5.7) p. 302). Using the 
techniques in Ref. 2 and in Sec. 4 of this paper we can 
derive the following theorem. 

Theorem 6.4: Let Mj, M2 be two analytic space--= 
times endowed with the topologies II and 12 of the type 
lL. The following conditions are equivalent; 

(1) h: (M!> ll) - (M2, 12) is a .Bw-homeomorphismo 

(2) h: MI - M2 is an (analytic) conformal map between 
Ml and M2. 

In the case of Minkowski space Theorem 6.4, Part (2) 
can be specialized even more, which is due to Liou
villelO and Lie16 : The conformal maps of Theorem 6.4, 
Part (2) are "classical conformal" maps-as defined, 
e,g., in Ref. 17-which constitute the 15-parameter 
Lie group on Minkowski space. Liouville gave a proof 
of this theorem for three dimensions and Lie stated the 
theorem (without pYGof) for arbitrary dimension? 3, A 
very explicit proof may be found in Beez13 and the most 
palatable proof of this classical result seems to be the 
one given by Caratheodory. 18 The only diffeomorphisms 
among the similtudes and inversions on Minkowski space 
are the Lorentz transformations or dilatations by a con
stanL Hence we may summarize and obtain a very 
unified result for Minkowski space. 
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Corollary 6.5: Let M be the Minkowski space [with 
dim(M);' 3]. For a map h: M- M, the following are 
equivalent. 

(1) h is a \lJ ! - homeomorphism on M for one i, or a 
13 r -homeomorphism on M for one i, or a.8 i
homeomorphism on M for one i, or a.8t
homeomorphism on M for one i, for i E {O, 1, 2, ... , 
00, w,g}, 

(2) h is a 13 I-homeomorphism, \lJ [-homeomorphism, 
.Bchomeomorphism and.8t-homeomorphism on M 
for eachi=O,1,2, ... ,co,w,g. 

(3) h is a Lorentz transformation times a (linear) 
dilation with a constant > 0. 

Remarks added in proof: It might be interesting to 
note, that the analog of Proposition 6. 1 in the case of 
analytic Riemannian manifolds will be proved by Lelong
Ferrand19 (Corollaire to Theoreme A): Conformal C2 

maps are necessarily analytic. A "global proof" includ
ing Euclidean and hyperbolic metrics seems to be 
unknown. 
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